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Abstract— Symbolic models of continuous and hybrid sys-
tems provide a formal approach to solve control problems where
software and hardware interact with the physical world. Sym-
bolic models are abstract descriptions of continuous systems in
which one symbol corresponds to an ”aggregate” of continuous
states. In this paper, we address the construction of symbolic
models for nonlinear control systems affected by disturbances.
The main contribution of this paper is in proposing symbolic
models that can be effectively constructed and that are alternat-
ing approximately bisimilar to incrementally stable nonlinear
control systems, with arbitrarily good accuracy.

I. INTRODUCTION

An emerging trend in the control systems community is the
use of symbolic models for the analysis and control design
of continuous and hybrid systems [1]. Symbolic models
are abstract descriptions of continuous systems in which
each symbol corresponds to an ”aggregate” of continuous
states [2]. The use of symbolic models provides a formal
approach to solve problems of control in which software
and hardware interact with the physical world. Moreover, it
provides the designer with a systematic method to address
a wide spectrum of novel specifications, that are difficult to
enforce by means of conventional control design paradigms.
Examples of such specifications include logic specifications
expressed in linear temporal logic or automata on infinite
strings.

During the last years, several classes of dynamical and
control systems admitting symbolic models were identified.
We recall from [3] timed, multi–rate, rectangular automata,
and o-minimal hybrid systems in the class of hybrid au-
tomata. Control systems were addressed in [4], [5] and [6],
where symbolic models were shown to exist for controllable
discrete–time linear systems, piecewise–affine systems and
multi–affine systems, respectively. Most of the aforemen-
tioned work is based on the notions of simulation and
bisimulation relations, as introduced by Milner [7] and Park
[8]. Insights into the construction of symbolic models for
continuous and hybrid systems have been recently gained by
the notion of approximate bisimulation [9]. Based on this
notion, incrementally stable nonlinear control systems were
shown in [10] to admit symbolic models. This result has
been further generalized to nonlinear switched systems in
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[11] and nonlinear time–delay systems in [12], [13]. In the
aforementioned work, control systems are supposed to be not
affected by exogenous disturbance inputs. However, in many
realistic situations, physical processes are characterized by
a certain degree of uncertainty which is often modeled by
disturbance inputs.

In this paper, we face the problem of studying symbolic
models for nonlinear control systems affected by distur-
bances. The presence of disturbances requires us to replace
the notion of approximate bisimulation employed in [10],
[11], [12] with the notion of alternating approximate bisim-
ulation, as introduced in [14] and inspired by Alur and
coworkers’ alternating bisimulation [15]. As discussed in
[14], [2], this notion is a key ingredient when construct-
ing symbolic models of systems affected by disturbances
because it guarantees that control strategies synthesized
on the symbolic models can be readily transferred to the
original model. The existence of alternating approximately
bisimilar symbolic models for incrementally stable nonlinear
control systems affected by disturbances has been proved in
[14]. However, the results of [14] cannot easily be used in
practice because they rely upon the computation of the set
of reachable states, which is a difficult task in general.

This work proposes alternative symbolic models to the
ones proposed in [14], which are proved to be effectively
computable. The key ingredient in our results is in deriving
a finite approximation of the disturbance input functional
space, by resorting to spline analysis [16]. Spline analysis has
been also employed in [12], [13] for constructing symbolic
models of time–delay systems. However, the approximation
scheme proposed in these papers does not guarantee a proper
approximation of the disturbance input functional space,
which leads us to propose an alternative approximation
scheme.
The main contribution of this paper lies in showing that if the
disturbance input functional space is bounded and Lipschitz
continuous with uniform Lipschitz constant, and if the control
system is incrementally stable, then symbolic models can be
effectively constructed, which are shown to be alternating
approximately bisimilar to the original control systems.

This paper is organized as follows. Preliminary definitions
are recalled in Section II. In Section III, we propose a
spline–based approximation scheme for the disturbance input
functional space. In Section IV, we present symbolic models
and show how they are related to nonlinear control systems
affected by disturbances, in terms of alternating approximate
bisimulation. In Section V, we present an illustrative exam-
ple. Finally, Section VI offers some concluding remarks.
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II. PRELIMINARY DEFINITIONS

A. Notation

The identity map on a set A is denoted by 1A. Given
two sets A and B, if A is a subset of B we denote by
ıA : A ↪→ B or simply by ı the natural inclusion map taking
any a ∈ A to ı(a) = a ∈ B. Given a function f : A → B
the symbol f(A) denotes the image of A through f , i.e.
f(A) := {b ∈ B : ∃a ∈ A s.t. b = f(a)}; if C ⊂ A we
denote by f |C the restriction of f to C, i.e. f |C(x) := f(x)
for any x ∈ C. Given a relation R ⊆ A × B, R−1 denotes
the inverse relation of R, i.e. R−1 := {(b, a) ∈ B × A :
(a, b) ∈ R}. The symbols N, Z, R, R+ and R+

0 denote the
set of natural, integer, real, positive real, and nonnegative real
numbers, respectively. Given a vector x ∈ Rn, we denote by
‖x‖ the infinity norm of x. Given a measurable function
f : R+

0 → Rn, the (essential) supremum of f is denoted by
‖f‖∞. Given µ ∈ R+ and A ⊆ Rn, we denote by µA
the set {b ∈ Rn | ∃a ∈ A s.t. b = µa}. A set A ⊆ Rn is
radial if µA ⊆ A for any µ ∈ [0, 1]. A continuous function
γ : R+

0 → R+
0 is said to belong to class K if it is strictly

increasing and γ(0) = 0; γ is said to belong to class K∞
if γ ∈ K and γ(r) → ∞ as r → ∞. A continuous function
β : R+

0 × R+
0 → R+

0 is said to belong to class KL if, for each
fixed s, the map β(r, s) belongs to class K∞ with respect
to r and, for each fixed r, the map β(r, s) is decreasing
with respect to s and β(r, s) → 0 as s→∞. The symbol
C0([0, τ ];Y ) denotes the set of continuous functions from
the closed interval [0, τ ] with τ ∈ R+ to the set Y ⊆ Rm.

B. Control systems and incremental stability

In this paper, we consider the following nonlinear control
system:

ẋ = f(x, u, d), (1)

where x ∈ X ⊆ Rn is the state, u ∈ U ⊆ Rm and
d ∈ D ⊆ Rl are the control input and the disturbance input.
We suppose that U and D are compact, convex sets with
the origin as an interior point. Control and disturbance input
functions are supposed to belong to the sets U and D of con-
tinuous functions of time from intervals of the form ]a, b[⊆ R
to U and D, respectively, and f : Rn × U ×D → Rn is a
continuous map satisfying the following Lipschitz assump-
tion: for every compact set K ⊂ Rn, there exists a constant
κ ∈ R+ such that

‖f(x, u, d)− f(y, u, d)‖ ≤ κ‖x− y‖,

for all x, y ∈ K, u ∈ U and d ∈ D. In the sequel, we refer
to the nonlinear control system in (1) by means of the tuple:

Σ = (X,U ,D, f), (2)

where each entity has been defined above. A curve
ξ :]a, b[→ Rn is said to be a trajectory of Σ if there exist
u ∈ U and d ∈ D, satisfying

ξ̇(t) = f(ξ(t), u(t), d(t))

for almost all t ∈ ]a, b[. Although we have defined tra-
jectories over open domains, we shall refer to trajectories

ξ :[0, T ]→ Rn defined on closed domains [0, T ], T ∈ R+

with the understanding of the existence of a trajectory
ξ′ :]a, b[→ Rn such that ξ = ξ′|[0,T ]. We also write ξxud(t)
to denote the point reached at time t under the control input u
and the disturbance input d from the initial condition x; this
point is uniquely determined, since the assumptions on f en-
sure existence and uniqueness of trajectories [17]. A control
system Σ is said to be forward complete if every trajectory
is defined on an interval of the form ]a,∞[. Sufficient and
necessary conditions for a system to be forward complete
can be found in [18]. In the sequel, we will make use of the
following stability notion.

Definition 2.1: [19] A control system Σ is incrementally
input–to–state stable (δ–ISS) if it is forward complete and
there exist a KL function β and two K∞ functions γu and γd
such that for any t ∈ R+

0 , any x1, x2 ∈ Rn, any u1, u2 ∈ U
and any d1, d2 ∈ D, the following condition is satisfied:

‖ξx1u1d1(t)− ξx2u2d2(t)‖ ≤
β(‖x1 − x2‖, t) + γu(‖u1 − u2‖∞) + γd(‖d1 − d2‖∞).

(3)
The above incremental stability notion can be character-

ized in terms of dissipation inequalities, as follows.
Definition 2.2: [19] A smooth function

V : Rn × Rn → R

is called a δ–ISS Lyapunov function for a control system
Σ = (X,U ,D, f) if there exist λ ∈ R+ and K∞ functions α,
α, σu and σd such that, for any x1, x2 ∈ Rn, any u1, u2 ∈ U ,
and any d1, d2 ∈ D, the following conditions hold true:
(i) α(‖x1 − x2‖) ≤ V (x1, x2) ≤ α(‖x1 − x2‖),

(ii) ∂V
∂x1

f(x1, u1, d1) + ∂V
∂x2

f(x2, u2, d2) ≤
− λV (x1, x2) + σu(‖u1 − u2‖) + σd(‖d1 − d2‖).

The following result completely characterizes δ–ISS in terms
of existence of δ–ISS Lyapunov functions.

Theorem 2.3: [19] A control system Σ = (X,U ,D, f) is
δ–ISS if and only if it admits a δ–ISS Lyapunov function.

C. Systems and approximate equivalence notions

We will use systems to describe both control systems as
well as their symbolic models.

Definition 2.4: [2] A system S is a quintuple

S = (X,L, - , Y,H),

consisting of:
• a set of states X;
• a set of inputs L = A×B, where A is the set of control

inputs and B is the set of disturbance inputs;
• a transition relation - ⊆ X × L×X;
• a set of outputs Y ;
• an output function H : X → Y .

A transition (x, (a, b), x′) ∈ - is denoted by x
(a,b)- x′.

System S is said to be countable if X and L are countable
sets, symbolic if X and L are finite sets, and metric if the
output set Y is equipped with a metric dY : Y × Y → R+

0 .
In the sequel, we consider bisimulation relations [7], [8]

to relate properties of control systems and symbolic models.
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Intuitively, a bisimulation relation between a pair of systems
S1 and S2 is a relation between the corresponding state
sets explaining how a state trajectory s1 of S1 can be
transformed into a state trajectory s2 of S2 and vice versa.
While typical bisimulation relations require that s1 and s2 are
observationally indistinguishable, the notion of approximate
bisimulation, introduced in [9], relaxes this condition by
requiring the outputs of s1 and s2, to simply be close, where
closeness is measured with respect to the metric on the output
set. In this work we consider a generalization of approximate
bisimulation, called alternating approximate bisimulation,
which has been introduced in [14] as an appropriate notion to
relate properties of control systems affected by disturbances
and their symbolic models.

Definition 2.5: [14] Consider a pair of metric systems
S1 = (X1, A1 × B1,

1
- , Y1, H1) and S2 = (X2, A2 ×

B2,
2

- , Y2, H2) with the same output set Y1 = Y2 and

metric dY and consider a precision ε ∈ R+
0 . A relation

R ⊆ X1 × X2 is said to be an alternating ε–approximate
(AεA) bisimulation relation between S1 and S2 if for every
(x1, x2) ∈ R the following conditions are satisfied:
(i) dY (H1(x1), H2(x2)) ≤ ε;

(ii) ∀a1 ∈ A1 ∃a2 ∈ A2 ∀b2 ∈ B2 ∃b1 ∈ B1 such that
x1

(a1,b1)

1
- x′1, x2

(a2,b2)

2
- x′2 and (x′1, x

′
2) ∈ R.

(iii) ∀a2 ∈ A2 ∃a1 ∈ A1 ∀b1 ∈ B1 ∃b2 ∈ B2 such that
x1

(a1,b1)

1
- x′1, x2

(a2,b2)

2
- x′2 and (x′1, x

′
2) ∈ R.

Systems S1 and S2 are alternating ε–approximately (AεA)
bisimilar if there exists an AεA bisimulation relation so that
R(X1) = X2 and R−1(X2) = X1.

When the sets B1 and B2 are singleton, the above notion
boils down to the one of approximate bisimulation [9]. When
ε = 0, the above notion can be viewed as the two-player
version of the notion of alternating bisimulation [15]. For a
detailed discussion on the above notion of bisimulation the
reader is referred to [14], [2].

III. SPLINE APPROXIMATION OF FUNCTIONAL SPACES

In this paper, we approximate the disturbance input func-
tional space through spline analysis [16]. Given a time
parameter τ ∈ R+ define:

Dτ = {d ∈ D| the domain of d is [0, τ ]},

and suppose that:
Assumption 3.1:

(i) The set D ⊆ Rl is radial;
(ii) there exists κ ∈ R+ such that ‖d(b)−d(a)‖ ≤ κ|b−a|,

for any a, b ∈ [0, τ ] and d ∈ Dτ .
Let M ∈ R+ so that ‖d‖∞ ≤ M for any d ∈ Dτ . In the
sequel, we propose an approximation of the functional space
Dτ in the sense of the following definition.

Definition 3.2: A map

A : R+ → 2C
0([0,τ ];D)

is a finite inner approximation of Dτ if for any desired
precision λ ∈ R+:

(i) A (λ) is a finite set;
(ii) A (λ) ⊆ Dτ ;

(iii) ∀y ∈ Dτ , ∃z ∈ A(λ) such that ‖y − z‖∞ ≤ λ.
We start by recalling from [16] the notion of spline. Given

N ∈ N, consider the following functions:

s0(t) =

{
1− t/h, t ∈ [0, h],
0, otherwise,

si(t) =

 1− i+ t/h, t ∈ [(i− 1)h, ih],
1 + i− t/h, t ∈ [ih, (i+ 1)h],
0, otherwise,

i = 1, 2, ..., N,

sN+1(t) =

{
1 + (t− τ)/h, t ∈ [τ − h, τ ],
0, otherwise,

where h = τ/(N + 1). Functions si, called splines, are
used to approximate Dτ . The approximation scheme that we
propose is based on three steps:
• We first scale the function d ∈ D (Figure 1; first panel)

to get the function d1 = ρκ,τ,M (N,µ)d, where:

ρκ,τ,M (N,µ) := 1−max

{
µ

M
,

2µ(N + 1)

κτ

}
, (4)

and µ ∈ R+ is a suitable quantization parameter whose
role will appear clear in the sequel. For notational
simplicity in the following we write ρκ,τ,M (N,µ) = ρ.

• We then approximate the function d1 ∈ D (Figure 1;
second panel) by means of the piecewise–linear func-
tion d2 (Figure 1; third panel), obtained by the linear
combination of the N + 2 splines si with coefficients1

d1(ih).
• We finally approximate the function d2 by means of

function d3 (Figure 1; fourth panel), obtained by the
linear combination of the N + 2 splines si with coeffi-
cients di3, chosen in the set 2µZl ∩ ρD and minimizing
the distance from2 d2(ih), i.e.

di3 = arg min
di∈2µZl∩ρD

‖di − d2(ih)‖.

Given N ∈ N and µ ∈ R+, define the following function:

Λκ,τ,M (N,µ) = (1− ρ)M + (1 + ρ)κh+ µ. (5)

Function Λ will be shown to be an upper bound of the error
associated to the approximation scheme that we propose. It
is readily seen that:

Lemma 3.3: For any λ ∈ R+, there exist N ∈ N and
µ ∈ R+ so that Λκ,τ,M (N,µ) ≤ λ and ρ > 0.

Let Nλ and µλ satisfy the inequalities in the above lemma
for a given λ ∈ R+, and write ρκ,τ,M (Nλ, µλ) = ρ for a
shorter notation.

Definition 3.4: Consider the map

ADτ : R+ → 2C
0([0,τ ];D)

1This second step allows us to approximate the infinite-dimensional space
D by means of the finite-dimensional space DN+2.

2This third step allows us to approximate the finite-dimensional space
DN+2 by means of the finite set (2µZl ∩ ρD)N+2.
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Fig. 1. Spline–based inner approximation scheme of the disturbance input
space.

that associates to any precision λ ∈ R+ the set ADτ (λ)
consisting of the collection of all functions:

z(t) :=

Nλ+1∑
i=0

zisi(t), t ∈ [0, τ ], (6)

satisfying the following conditions:
(i) zi ∈ 2µλZl ∩ ρD, for any i = 0, 1, ..., Nλ + 1;

(ii) ‖zi+1 − zi‖ ≤ κτ/(Nλ + 1), for any i = 0, 1, ..., Nλ.

Remark 3.5: Since the set D is bounded then the set
2µλZl∩ρD is finite. Therefore the set ADτ (λ) is composed
of a finite number of functions which can be effectively
computed.

It is readily seen that:
Lemma 3.6: For any λ ∈ R+, ADτ (λ) ⊆ Dτ .

We are now ready to present the main result of this section.
Theorem 3.7: Map ADτ in Definition 3.4 is a finite inner

approximation of Dτ .
Proof: Consider any precision λ ∈ R+. By Assumption

3.1 (i), the set ADτ (λ) is finite. Hence, condition (i) in
Definition 3.2 is satisfied. Condition (ii) in Definition 3.2
is implied by Lemma 3.6. We now show that also condition
(iii) in Definition 3.2 is satisfied. For any function d ∈ Dτ ,
consider a function z as in (6), with zi ∈ 2µλZl ∩ ρD for

any i = 0, 1, ..., Nλ + 1 and

‖zi − ρ d(ih)‖ ≤ µλ, (7)

for any i = 0, 1, ..., Nλ. Note that such values zi always
exist. We first show that function z ∈ ADτ (λ). By definition
of z, condition (i) in Definition 3.4 is satisfied. We now show
that also condition (ii) is satisfied. From (7), the following
chain of inequalities holds:

‖zi+1 − zi‖ ≤ ‖zi+1 − ρd((i+ 1)h)‖
+ ‖ρd((i+ 1)h)− ρd(ih)‖+ ‖ρd(ih)− zi‖
≤ ρ‖d((i+ 1)h)− d(ih)‖+ 2µλ
≤ ρκh+ 2µλ ≤ (1− 2µλ

κh )κh+ 2µλ = κh,

where h = τ/(Nλ + 1) and the last inequality holds by
definition of ρ. Hence, condition (ii) is satisfied and z ∈
ADτ (λ). In order to conclude the proof of condition (iii) in
Definition 3.2, we need to show that ‖d − z‖∞ ≤ λ. By
Assumption 3.1, the following chain of inequalities holds:

‖d− z‖∞ = max
i=0,1,...,Nλ
t∈[0,h]

‖d(ih+ t)− z(ih+ t)‖

≤ max
i=0,1,...,Nλ
t∈[0,h]

(‖d(ih+ t)− ρ d(ih+ t)‖

+ ‖ρ d(ih+ t)− ρ d(ih)‖
+ ‖ρ d(ih)− z(ih)‖+ ‖z(ih)− z(ih+ t)‖)
≤ (1− ρ)M + (1 + ρ)κh+ µλ

= Λκ,τ,M (Nλ, µλ) ≤ λ,

where the last step holds by Eq. (5) and by definition of Nλ
and µλ. From the above chain of inequalities, condition (iii)
in Definition 3.2 is satisfied, concluding the proof.

We conclude this section by stressing that while the spline
approximation scheme here proposed guarantees that the
map ADτ is a finite inner approximation of Dτ , the scheme
proposed in [12] does not. This feature is of key importance
in the subsequent results.

IV. ALTERNATING APPROXIMATE BISIMILAR SYMBOLIC
MODELS

In this section, we propose symbolic models that approxi-
mate nonlinear control systems with disturbances in the sense
of alternating approximate bisimulation.
Given the control system Σ = (X,U ,D, f) and a sampling
time parameter τ ∈ R+, consider the following system:

Sτ (Σ) := (X,Uτ ×Dτ ,
τ
- , Y,H), (8)

where:
• Uτ = {u ∈ U| the domain of u is [0, τ ] and u(t) =
u(0), t ∈ [0, τ ]};

• Dτ = {d ∈ D| the domain of d is [0, τ ]};
• x

(u,d)

τ
- x′ if there exists a trajectory ξ : [0, τ ]→ X of

Σ satisfying ξxud(τ) = x′;
• Y = X;
• H = 1X .
System Sτ (Σ) is metric when we regard Y = X as being

equipped with the metric dY (p, q) = ‖p− q‖. System Sτ (Σ)
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can be thought of as the time discretization of the control
system Σ. Given a nonlinear control system Σ, suppose that
Dτ satisfies Assumption 3.1 with κ = κd ∈ R+ and let
Md ∈ R+ s.t. ‖d‖∞ ≤ Md for any d ∈ Dτ . Consider a
vector of (positive) quantization parameters

Q = (τ, η, µu, Nd, µd), (9)

and define the following system:

SQ(Σ) := (XQ, LQ, Q
- , YQ, HQ), (10)

where:
• XQ = 2ηZn ∩X;
• LQ = (2µuZm ∩U)×ADτ (Λκd,τ,Md

(Nd, µd)), where
ADτ is a finite inner approximation of Dτ , as in
Definition 3.4 and function Λ is defined as in (5);

• x
(u,d)

Q
- y if ‖ξxud(τ)− y‖ ≤ η;

• YQ = X;
• HQ = ı : XQ ↪→ YQ.
Remark 4.1: It is readily seen that the system SQ(Σ) is

countable and it becomes symbolic when the set of states
X is bounded. As stressed in Remark 3.5, the set of control
and disturbance inputs LQ can be effectively computed, from
which the system SQ(Σ) can be effectively computed.

We now have all the ingredients to present the main result
of this paper.

Theorem 4.2: Consider a control system Σ =
(X,U ,D, f) and suppose that:

(A1) There exists a δ–ISS Lyapunov function satisfying the
inequality (ii) in Definition 2.2 for some λ ∈ R+.

(A2) There exists a K∞ function γ such that3:

V (x, x′)− V (x, x′′) ≤ γ(‖x′ − x′′‖),

for every x, x′, x′′ ∈ X .
(A3) The disturbance input space Dτ satisfies Assumption

3.1.
Then, for any desired precision ε ∈ R+ and any quantization
parameters in the vector Q in (9) satisfying the following
inequality:

max{σu(µu), σd(Λκd,τ,Md
(Nd, µd))}

λ
+

γ(η)

1− e−λτ
≤ α(ε),

(11)
systems Sτ (Σ) and SQ(Σ) are alternating ε–approximately
bisimilar.

Proof: Consider the relation R ⊆ X ×XQ defined by
(x, y) ∈ R if and only if V (x, y) ≤ α(ε). Condition (i) in
Definition 2.5 is satisfied by the definition ofR and condition
(i) in Definition 2.2. Let us now show that condition (ii)
in Definition 2.5 holds. Consider any (x, y) ∈ R. For any
u1 ∈ Uτ there exists u2 ∈ 2µuZm ∩ U such that:

‖u2 − u1‖∞ ≤ µu. (12)

3Note that since V is smooth, if the state spaceX is bounded, which is the
case in many concrete applications, one can always choose γ(‖w− z‖) =(

maxx,y∈X ‖ ∂V∂y (x, y)‖
)
‖w − z‖.

Set d1 = d2 ∈ Dτ and z = ξyu2d2(τ). There exists v ∈ XQ
so that:

‖z − v‖ ≤ η. (13)

Hence, by definition of SQ(Σ), the transition y
u2,d2

Q
- v is

in SQ(Σ). Consider now the transition x
u1,d1

τ
- w in Sτ (Σ).

By Assumption (A1), condition (ii) in Definition 2.2 and the
inequality in (12), one gets:

∂V
∂w f(w, u1, d2) + ∂V

∂z f(z, u2, d2)
≤ −λV (w, z) + σu(‖u1 − u2‖) + σd(‖d1 − d2‖)
≤ −λV (w, z) + σu(µu),

which, by Assumption (A2), the definition of R and the
inequality in (13), implies:

V (w, v) ≤ V (w, z) + γ(‖z − v‖)
≤ V (w, z) + γ(η)

≤ e−λτV (x, y) + (1− e−λτ )
σu(µu)

λ
+ γ(η)

≤ e−λτα(ε) + (1− e−λτ )
σu(µu)

λ
+ γ(η).

(14)

Hence, by the inequality in (11), V (w, v) ≤ α(ε), from
which (w, v) ∈ R and condition (ii) in Definition 2.5 is
proved. By using similar arguments, it is possible to show
that condition (iii) in Definition 2.5 is true, as well.
Finally, by definition of R, it is easy to see that R(X) = XQ
and R−1(XQ) = X .

V. AN ILLUSTRATIVE EXAMPLE

Consider a nonlinear control system Σ described by the
following differential equation:

ẋ = f(x, u, d) =

[
−4y + z2 − u
2y − 7 sin z + d

]
, (15)

where x = (y, z) ∈ X = [−1, 1[×[−1, 1[, u ∈ U = [−1, 1]
and d ∈ D = [−0.005, 0.005]. We first note that Md =
0.005. We now construct a symbolic model for Σ. To this
aim, we apply Theorem 4.2. Consider the following quadratic
function:

V (x1, x2) = 0.5‖x1 − x2‖22.

It is readily seen that V satisfies condition (i) of Definition
2.2 with α(r) = 0.5 r2 and α(r) = r2, r ∈ R+

0 . Moreover:

∂V

∂x1
f(x1, u1, d1) +

∂V

∂x2
f(x2, u2, d2) =

= (x1 − x2)
′
[f(x1, u1, d1)− f(x2, u2, d2)] =

≤ −5V (x1, x2) + 2‖u1 − u2‖+ 4‖d1 − d2‖.

Condition (ii) of Definition 2.2 is therefore fulfilled with
λ = 5, σu(r) = 2r, σd(r) = 4r, r ∈ R+

0 . Hence, by Theorem
2.3, system (15) is δ–ISS. In this example, we consider
disturbance inputs with Lipschitz constant κd = 2 · 10−3.
For a chosen precision ε = 0.25, the inequality in (11) is
satisfied with the following choice of parameters:

τ = 2 η = 0.005 µu = 0.005 µd = 0.001 Nd = 1.
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Fig. 2. State trajectory of control system Σ.

Fig. 3. Control input and disturbance input realization.

We have now all the ingredients to construct a symbolic
model that is alternating ε–approximately bisimilar to the
system in (15). The resulting number of states is 40401,
the number of control inputs is 201 and the number of
disturbance inputs is 66. Due to the large size of the symbolic
model obtained, further details are not included here. Instead,
we use the obtained symbolic model to solve the control
design problem of enforcing a trajectory starting from the
initial state x0 = (0.5, 0.5) to definitively remain in the
positive orthant, independently from the disturbance signal
realization. By using standard fixed–point algorithms, we
designed the symbolic controller enforcing the prescribed
specification. Figure 2 shows that the specification is indeed
satisfied for the disturbance signal illustrated in Figure 3.

VI. CONCLUSION

In this paper we proposed symbolic models that approxi-
mate nonlinear control systems affected by disturbances, in
the sense of alternating approximate bisimulation. The results
presented in this paper provide an important improvement
upon the results reported in [14] in that they propose sym-
bolic models that can be effectively computed, through spline
analysis.
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