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Abstract— A fast implementation of a given predictive con-
troller for nonlinear systems is introduced through a piecewise
constant approximate function defined over an hyper-cube
partition of the system state space. Such a state partition
is obtained by maximizing the hyper-cube volumes in order
to guarantee, besides stability, an a priori fixed trajectory
error as well as input and state constraints satisfaction. The
presented approximation procedure is achieved by solving a
set of nonconvex polynomial optimization problems, whose
approximate solutions are computed by means of semidefinite
relaxation techniques for semialgebraic problems.

I. INTRODUCTION

In Model Predictive Control (MPC) (see, e.g., [1]) the
control move u(k) at each time instant k is computed
through the solution to optimization problems aiming at the
minimization of a given cost function. This fact introduces
serious limitations in using MPC when small sampling
times are required which may prevent online solution to
the optimization problem. Furthermore, as a consequence
of the application of the Receding Horizon (RH) principle,
the control move u(k) is a nonlinear static function of the
system state x(k), i.e. u(k) = k(x(k)) (see [1]). In general,
the function k is not known explicitly, except when the
optimization problem is a linear or a quadratic program (see
[2], [3], [4]), in which case, the control law k is known to
be piece-wise affine (PWA) on a polyhedral partition of the
state space. While such an approach is quite attractive, since
online optimization can be avoided, it may show serious
drawbacks. More precisely, since the polyhedral region
containing the initial state must be computed between two
sampling time instants, and the number of such regions
exponentially increases with the control horizon, the time
required to perform such a computation may limit the
application of the procedure. In order to speed up the
evaluation of the region containing the state, an efficient
algorithm based on a binary search tree is proposed in [5].
Alternatively, in order to speed up the online computation
of the control action in predictive control of linear time
invariant (LTI) systems subject to a quadratic cost function
and linear constraints, several online optimization algorithms
can be found in the literature (see, e.g., [6], [7], [8], [9]).
An alternative solution which permits online implementation
of predictive controllers for both linear and nonlinear systems
is based on approximate control laws k̃ ≈ k derived from
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a finite number of exact values of k computed off–line. A
first contribution along this line is given in [10], where a
neural network approximation of k is presented. However,
since the use of neural networks in approximating the
function k does not allow the evaluation of the guaranteed
approximation error, analysis of the approximate control
law effects on performance of the closed loop system can
not be carried out. In particular, constraints satisfaction on
both the system state and input is not guaranteed a priori.
Some results in this direction can be found in [11] where
the use of a piece-wise constant approximation of k is
investigated in the case of quantized input, and in [12], [13]
and [14], where PWA approximations of k are presented.
More precisely, an hyper-rectangular partition of the state
space is proposed in [11], [12], [13], while a simplicial
partition is used in [14]. In the above works feasibility
of the approximate control law is shown and performance
degradation is estimated in terms of an upper bound on
the difference between the optimal cost function and the
one obtained with k̃. Guaranteed stability and regulation
properties depend on this bound, which, on the other hand,
can be reduced to a desired level of accuracy by increasing
the number of partitions. The main assumption in [12],
[13] and [14] is the convexity of the optimization problem
involved in the predictive controller design.
Set membership (SM) function approximation theory is
employed in [15], [16] to compute tight bounds on the
approximation error. From such bounds approximate MPC
laws with guaranteed stability, input constraints satisfaction
and state regulation to an arbitrarily small neighborhood
of the origin can be obtained. Furthermore, accuracy
properties and performance are related to the number of
the exact control moves employed for the computation of
the approximating control law. However, no systematic
procedure is introduced in [15] in order to a priori choose
the number of the exact control moves needed to obtain a
specified state trajectory error. Moreover, state constraints
satisfaction is only guaranteed after a finite number of
steps. In order to overcome these problems, in this paper,
a piecewise constant approximation is introduced over an
hyper-cubic partition of the system state space. In particular,
an original optimization procedure is presented which
allows the computation of a piecewise constant control law
function k̃ that a priori guarantees a given state trajectory
error as well as input and state constraints satisfaction. This
is achieved by solving nonconvex polynomial optimization
problems by means of semidefinite relaxation techniques.
The paper is organized as follows. The considered model
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predictive control problem is introduced in Section II-A,
while the performance requirements to be satisfied by the
approximate control law are described in Section II-B. In
Section III an algorithm to define a suitable piecewise-
constant function k̃ which satisfies the performance
specification given in Section II-B is presented. A
simulation example is reported in Section IV in order to
show effectiveness of the proposed approach.

II. MODEL PREDICTIVE CONTROL

A. Nominal formulation

Consider the nonlinear dynamical system

x(k + 1) = f(x(k), u(k)), (1)

where x(k) ∈ R
n and u(k) ∈ R

m are the state and the
input of the system, respectively. We assume that f : Rn ×
R

m → R
n is a polynomial function in x and u. The aim

of the controller is to regulate the system state to the origin
under input and state constraints of the kind u(k) ∈ U and
x(k) ∈ X , for all k > 0, where U and X are assumed to be
semialgebraic sets containing the origin and defined as

U = {u ∈ R
m : sj(u) ≥ 0, j = 1, . . . , ns} , (2)

X = {x ∈ R
n : gj(x) ≥ 0, j = 1, . . . , ng} , (3)

with sj(u) and gj(x) real-valued polynomials.
The control move is computed by solving, at each time step
k, the optimization problem

min
U

Np−1∑
h=1

(‖x(k + h|k)‖2,Q + ‖u(k + h− 1|k)‖2,R)+

+ ‖x(k +Np|k)‖2,P
s.t.

x(k + h|k) ∈ X , h = 1, . . . , Np

u(k + h|k) ∈ U , h = 0, . . . , Np − 1
(4)

with Q,P � 0, R � 0; x(k + h|k) = f(x(k + h −
1|k), u(k+h−1|k)) is the i-th step-ahead predicted state at
time h for initial condition x(k) and ‖x‖2,Q is a shortcut for
xTQx. The vector U =

[
u(k|k)T , . . . , u(k +Nc − 1|k)T ]T

is the set of control moves to be optimized, Np and
Nc ≤ Np are the prediction horizon and the con-
trol horizon, respectively. The remaining predicted con-
trol moves

[
u(k +Nc|k)T , . . . , u(k +Np − 1|k)T ]T can be

computed according to different strategies, e.g. u(k +
j|k) = u(k + Nc − 1|k), for all j = Nc, . . . , Np −
1. The minimizer for problem (4) is denoted as U∗ =[
u∗(k|k)T , . . . , u∗(k +Nc − 1|k)T ]T and the control move

at time k is chosen according to the Receding Horizon (RH)
principle, i.e. u(k) = u∗(k|k). The set of the state x(k|k)
for which problem (4) is feasible is denoted as F ⊆ R

n.
The application of the RH strategy leads to a predictive
controller which is a static nonlinear function of the current
state x(k), i.e. u(k) = k(x(k)). In the sequel, function k is

referred to as the nominal control law. Indeed, the control
function k is defined only in the feasibility set F . It is
assumed that, by applying the nominal control law k, system
(1) is asymptotically stable at the origin for any initial state
x0 ∈ F (see. e.g. [17]). It is worth remarking that, in general,
an explicit representation of both the feasibility set F and
of the nominal control law k is not known. Therefore, at
each sample time k, problem (4) must be solved in order
to compute the control move u(k). Indeed, this leads to a
limitation in the practical use of the MPC for fast dynamical
systems, whose sampling time is too small for a real-time
solution of problem (4). A possible solution to ensure online
implementation of a predictive controller is the use of an
approximate control law k̃ ≈ k derived using a finite number
of exact values of k computed off–line. The evaluation of the
approximate function k̃ allows the on-line computation of the
control move ũ(k) = k̃(x(k)) within the required sampling
time. In this work, the optimal control law k is supposed to
be Lipschitz over F , i.e.

‖k(x(1))− k(x(2))‖2 ≤ γL‖x(1) − x(2)‖2, ∀x(1), x(2) ∈ F ,
(5)

where γL is the Lipschitz constant, whose a rough upper-
bound is assumed to be available.

B. Approximate control law

Let x(k) and x̃(k), with k = 0, 1, 2, . . ., be the state trajec-
tories obtained by applying the optimal control law k(x(k))
and the approximate control law k̃(x̃(k)), respectively, at
each time k and for a given initial condition x0 ∈ F . Indeed,
state x(k) and x̃(k) satisfy the following difference equations

x(k + 1) = f(x(k),k(x(k))), ∀k ≥ 0; x(0) = x0. (6)

x̃(k + 1) = f(x̃(k), k̃(x̃(k))), ∀k ≥ 0; x̃(0) = x0. (7)

In this paper, it will be shown how to compute an
approximate control law k̃ guaranteing that the controlled
system (7) satisfies the performance introduced in the
following Definition.

Definition 1: Performance properties for the approxi-
mate control law k̃

P 1.1: The control move ũ(k) = k̃(x(k)) is required to
satisfy the input constraints defined in (2), i.e. ũ(k) ∈ U for
all k = 0, 1, 2, . . .

P 1.2: The approximate state x̃(k) in (7) is required to
satisfy the state constraints defined in (3), i.e. x̃(k) ∈ X for
all k = 1, 2, . . .

P 1.3: The distance between the nominal state trajectory
in (6) and the approximate state trajectory in (7) is required
to be bounded, i.e., for a given ε > 0,

‖x(k)− x̃(k)‖q ≤ ε ∀k = 1, 2, . . . (8)

with q ≥ 1. In this work, q = ∞ is assumed. �

Remark 1: Satisfaction of Property P1.3 implies stability
of the closed-loop system. In fact, since by applying the
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nominal control law k the nominal state trajectory asymp-
totically converges to the origin, then, the approximate state
trajectory asymptotically converges to an arbitrarily small set
B(0, ε) = {x ∈ R

n : ‖x‖∞ ≤ ε}, i.e.

lim
k→∞

‖x̃(k)‖∞ ≤ ε. (9)

�

III. EVALUATION OF A SUITABLE APPROXIMATE
CONTROL LAW

In this section, it is described how to get an approximate
control law k̃(x) satisfying Properties P1.1-P1.3. A piece-
wise constant approximating function k̃(x) will be looked
for, and the regions where k̃(x) is locally constant will be
axis-aligned equal-sized boxes in the state space, so that the
real-time effort in evaluating in which box a given state x lies
is reasonably low. In order to simplify notation single-input
systems, i.e. m = 1 are considered. Extension to systems
with multiple inputs is trivial.

A. Overview of the method

For the sake of clarity, a general overview of the algorithm
used to define a piecewise-constant control law k̃(x)
satisfying Properties P1.1-P1.3 is first presented.

Algorithm 1: Definition of a piecewise-constant ap-
proximate control law k̃(x) with guaranteed performance

A1.1 Pick a box X0 ⊇ X such that the center of X0 is
the origin of the state space.

A1.2 Solve problem (4) for x(k|k) = xc
0, where xc

0 is the
center of the box X0. If problem (4) is not feasible
go to step A1.3, else go to step A1.4.

A1.3 If the volume of the box X0 is smaller than a given
tolerance, mark X0 as infeasible, else split X0 into
3n axis-aligned equal-sized boxes Xi, with i =
1, . . . , 3n. For every i = 1, . . . , 3n, set X0 = Xi

and go to step A1.2.
A1.4 Let uc

0 be the optimal control law computed at step
A1.2 of the algorithm. If, for any state x(k|k) ∈
X0, the control move uc

0 is such that Properties
P1.2-P1.3 are satisfied, mark X0 as feasible. Else,
if the volume of the box X0 is smaller than a given
tolerance, mark X0 as infeasible, else split X0 into
3n axis-aligned equal-sized boxes Xi, with i =
1, . . . , 3n. For every i = 1, . . . , 3n, set X0 = Xi

and go to step A1.2.
A1.5 Collect all the boxes marked as feasible in an

N -dimensional list F0, where N is the number of
boxes marked as feasible.

By using Algorithm 1, the feasibility set F is inner-

approximated by Fin =
N⋃
j=1

Xj , where Xj denotes a

component of the list F0. Besides, for every x(k|k) ∈ Xj ,

when the input u(k) = uc
j (corresponding the optimal control

law associated to the center of the box Xj and computed at
stage A1.2 of the algorithm), the predicted state x(k+1|k) =
f(x(k|k), uc

j) belongs to the state-constraint set X and the
distance between the approximate state trajectory and the
nominal state is smaller than a given tolerance ε. In other
words, the piecewise-constant control law k̃ : Fin → R

defined as:
k̃(x) = uc

j when x ∈ Xj (10)

guarantees satisfaction of properties P1.2-P1.3. Besides,
since uc

j is the solution of problem (4) for a given state value
x(k) = xc

0, it follows that uc
j ∈ U for all j = 1, . . . , N .

Therefore, u(k) = k̃(x(k)) satisfies also Property P1.1. It
is worth noting that the proposed algorithm implies that
the optimal control move is applied when the approximate
state trajectory x̃(k) reach the origin of the state space
which is assumed to be an equilibrium point for the nominal
controlled system. This is due to the fact that the initial box
X0 is centered at the origin and subsequently split into 3n

axis-aligned equal-sized boxes.
In order to reduce the complexity in evaluating which region
Xj of F0 a given state x(k|k) belongs to, the set Xj is
partitioned into Nj axis-aligned boxes Xi

j of edges of length
{Δ1, . . . ,Δn}, where Δi, with i = 1, . . . , n, are the lengths
of the edges of the smallest box in F0. In such a way, the
set Fin is partitioned into M =

∑N
j=1 Nj equal-sized boxes

and k̃ in (10) can be rewritten as

k̃(x) = uc
j when x ∈ Xi

j . (11)

B. Technical results

Technical details of stage A1.4, which is the key point of
Algorithm 1, are now discussed.

Satisfaction of Property P1.2

Checking if the controlled system satisfies Property P1.2
requires the solution to the following infinite-dimensional
feasibility problem:

Problem 1: ∀x(k) ∈ X0, the set of the one-step ahead
predicted state f(x(k), uc

0) belongs to X . �

Problem 1 is equivalent to the following finite-dimensional
feasibility problem:

Problem 2: The set {x ∈ X0 : f(x, uc
0) �∈ X} is not

empty, that is g∗j < 0 for some j = 1, . . . , ng , where

g∗j = min
x∈X0

gj(f(x, u
c
0)). (12)

�

Indeed, Problem 1 is feasible if and only if no solution
exists to Problem 2. Then, in order to guarantee that the
approximate control law k̃ satisfies Property P1.2 for all
x ∈ X0, the global minimum g∗j of problem (12) has
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to be computed, and then inequality g∗j ≥ 0 has to be
checked for all j = 1, . . . , ng . Unfortunately, problem
(12) is not convex since the function g ◦ f = g (f(x, uc

0))
is a polynomial function of the decision variable x.
Therefore, standard nonlinear optimization methods (e.g.
Gauss-Newton algorithm or nonlinear conjugate gradient
method) can not be exploited to solve problem (12) since
they can trap in a local minimum glj . As a consequence, the
solutions to problems (12) obtained through such nonlinear
optimization algorithms cannot be used to infer that the
approximate control law k̃ satisfies Property P1.2 for all
x ∈ X0. In fact, from condition glj ≥ 0, it is not possible
to infer that g∗j ≥ 0. On the other hand, by relaxing (12)
into convex optimization problems, lower bounds g

j
of the

global minimum g∗j can be numerically computed. If g
j
≥ 0

for all j = 1, . . . , ng , then g∗j ≥ 0 for all j = 1, . . . , ng .
This means that the approximate control law k̃ is guaranteed
to satisfy Property P1.2 for all x ∈ X0. Indeed, relaxing
problem (12) may lead to conservativeness in partitioning
the domain of the approximate control law k̃. In fact, g∗j
can be greater or equal than zero even if g

j
< 0 and, as

a consequence, X0 can be either splitted into 3n boxes or
marked as infeasible at stage A1.4 of Algorithm 1 even if
the control law k̃ satisfies Property P1.2 for all x ∈ X0.
Anyway, the approximate control law k̃ is guaranteed to
satisfy Property P1.2 for all x belonging to the domain Fin

of k̃.
Since (12) is a polynomial optimization problem, a lower
bound g

j
of the global minimum g∗j can be computed

through the relaxation technique proposed by Lasserre
in [18], which is based on the idea of constructing an
increasing sequence of convex semidefinite programming
(SDP) problems, whose optima are guaranteed to converge
monotonically to the global optimum g∗j of the original
nonconvex polynomial problem (12). Although the method
is guaranteed to converge as far as the length of the
number of successive SDP relaxations (relaxation order)
goes to infinity, exact global optima have been obtained
for a number of small and medium size problems with
a low relaxation order (see [19] for a collection of test
problems solved with relaxation order less or equal than
4). An efficient Matlab implementation of such a relaxation
technique has been recently developed by Henrion and
Lasserre in the open source freeware software Gloptipoly
[20], which exploits the solver SeDuMi [21] to solve SDP
problems in polynomial time.

Fulfillment of Property P1.3

In order to check if the controlled system satisfies
Property P1.3, feasibility of the following infinite-
dimensional problem has to be evaluated.

Problem 3: For all x̃(k) ∈ X0 and for all x(k) such that
‖x̃(k) − x(k)‖∞ ≤ ε, the distance between the one step-
ahead predicted nominal state x(k + 1) = f(x(k),k(x))

and the one-step predicted approximate state x̃(k + 1) =
f(x̃(k),k(x̃)) is bounded by ε, i.e.

‖f(x̃, uc
0)− f(x,k(x))‖∞ ≤ ε. (13)

�

In view of assumption (5), the optimal control move k(x)
is such that

‖k(xc
0)− k(x)‖2 ≤ γL‖xc

0 − x‖2, ∀xc
0, x ∈ F . (14)

Let us define δu = k(xc
0) − k(x). Inequality (14) can be

rewritten as

‖δu‖2 ≤ γL‖xc
0 − x‖2, ∀xc

0, x ∈ F . (15)

From equation (10), condition (15) and definition of δu, it
follows:

k(x) = uc
0 − δu, with δu : ‖δu‖2 ≤ γL‖xc

0 − x‖2. (16)

Then, from conditions (16), statement of the problem can be
reformulated as follows: for all x̃ ∈ X0, for all x : ‖x̃ −
x‖∞ ≤ ε, and for all δ s.t. ‖δu‖2 ≤ γL‖xc

0 − x‖2, the set
H, defined as

H =
{
x̃, x, δu : ‖f(x̃, uc

0)− f(x, uc
0 − δu)‖∞ ≤ ε

}
, (17)

is not empty. Let us rewrite the set H as:

H =
{
x̃, x, δu : hi(x̃, x, δu) ≥ 0, i = 1, . . . , 2n

}
, (18)

where hi(x̃, x, δu) ≥ 0, with i = 1, . . . , 2n, are the
constraints defining H in (17), i.e.

hi(x̃, x, δu) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

fs(x̃, u
c
0)− fs(x, u

c
0 − δu) + ε

when i = 1, . . . , n; s = i;

−fs(x̃, u
c
0) + fs(x, u

c
0 − δu) + ε

when i = n+ 1, . . . , 2n; s = i− n;
(19)

with fs denoting the s-th component of the vector function
f .
Then, Problem 3 can be evaluated by solving the following
finite-dimensional feasibility problem.

Problem 4: There exists at least one value of x̃ ∈ X0,
x ∈ R

n : ‖x̃−x‖∞ ≤ ε and δu : ‖δu‖22 ≤ γL‖xc
0−x‖22, such

that hi(x̃, x, δu) < 0 for some i = 1, . . . , 2n, i.e. h∗
i < 0 for

some i = 1, . . . , 2n, where

h∗
i = min

x̃,x∈Rn,δu∈R

hi(x̃, x, δu)

s.t

x̃ ∈ X0; ‖x̃− x‖∞ ≤ ε, ‖δu‖22 ≤ γ2
L‖xc

0 − x‖22.
(20)

�

Indeed, Problem 3 is feasible if and only if no solution
exists to Problem 4. Comments on Problem 2 also hold for
Problem 4, and a lower bound hi of the global optimum of
problem (20) can be efficiently computed through the same
SDP-relaxation technique proposed to relax (12).
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IV. A SIMULATED EXAMPLE

In order to show the effectiveness of the proposed ap-
proach, a simulated example is here reported. The following
nonlinear system is considered:{
x1(k + 1) = 8

10x1(k)+
1
20 (−x2(k)− 3

2x
2
1(k)− 1

2x
3
1(k))

x2(k + 1) = 1
2x2(k)+

1
20 (3x1(k)− x2(k)) +

1
2u(k)

(21)
State x ∈ R

2 is constrained to belong to the set X defined
as

X =
{
x ∈ R

2 : ‖x‖∞ ≤ 1
}
, (22)

while the input u is assumed to take values in the interval
[−0.5, 0.5], i.e. u ∈ U with

U = {u ∈ R : |u| ≤ 0.5} . (23)

A model predictive controller is designed by solving problem
(4) using the following values of matrixes Q,P,R:

Q =

[
1 0
0 1

]
, P =

[
0 0
0 0

]
, R = 0.01. (24)

The prediction horizon Np is chosen equal to 10, while
the control horizon Nc is set to 5. All the control moves
u(k +Nc|k), u(k +Nc + 1|k), . . . , u(k +Np − 1|k) are set
equal to u(k+Nc − 1|k). The approximate control law k̃ is
computed through Algorithm 1 by imposing that the distance
between the nominal and the approximate state trajectory is
smaller than ε = 0.05, i.e. ‖x̃(k) − x(k)‖∞ ≤ 0.05, for all
k = 1, 2, . . .. An upper-bound of the Lipschitz γL in (5)
has been numerically evaluated with the algorithm proposed
in [15] and it is equal to 1.1. The algorithm is initialized
at stage A1.1 with the set X0 =

{
x ∈ R

2 : ‖x‖∞ ≤ 2
}

.
The obtained equal-sized boxes partition of the feasibility
set Fin for function k̃ is reported in Fig. 1. The edge of
each box is equal to 0.0494. A comparison between the
nominal state trajectory and the approximate state trajectory
is shown in Fig. 2, starting from initial conditions x(0) =
[1.5; 1.5]. It is worth remarking that, although the initial
state x(0) does not belong to the state-constraint set X ,

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

   x1

   
x 2

Fig. 1. Hyper-cube partition of the feasibility set Fin. In each box the
approximate control law k̃ is constant.

the evolution of both the nominal x(k) and approximate
state x̃(k) lies in X for all k = 1, 2, . . .. This means that
the approximate control law k̃ satisfies Property P 1.2. The
error ε1(k) = x1(k) − x̃1(k) between the nominal state
variable x1(k) and the approximate state variable x̃1(k) at
each time k = 0, 1, . . . is reported in Fig. 3, while the error
ε2(k) = x2(k)− x̃2(k) between the nominal variable x2(k)
and the approximate state variable x̃2(k) is reported in Fig. 4.
As can be seen from Fig. 3 and Fig. 4, such errors are lower
than ε = 0.05 for each time k = 0, 1, . . .. Therefore, the
approximate control law k̃ satisfies also requirement P1.3,
as expected. Fig. 5 shows that both the nominal and the
approximate control moves satisfy the input constraints, in
fact the input signal u(k) belongs to the interval [−0.5; 0.5]
for all k = 0, 1, . . .
A significant computational speed improvement is obtained
with the approximate controller. In fact, in a 2.40-GHz Intel
Pentium IV with 3 GB of RAM, the mean elapsed time taken
by the function fmincon in Matlab to solve the nominal
problem (4) at each step time k is equal to 0.02 s, while
the mean time in evaluating the approximate control move
k̃(x(k)) at each step time k is 2.5 10−5 s.

V. CONCLUSION

A procedure to approximate the optimal predictive control
law for nonlinear systems is presented. The approximate
control law is a piecewise-constant function defined over an
equally-sized hyper-cube partition of the space state, such
that it can be online evaluated in the presence of a sampling
time significantly smaller than the one required by the on-line
optimization. Performance of the approximate control law,
such as closed-loop stability, fulfillment of input and state
constraints and boundedness of the distance between nominal
and approximate state trajectory are guaranteed. Satisfaction
of such performance specifications is formulated as infinite-
dimensional feasibility problems. Such problems are recasted
as finite-dimensional polynomial optimization problems and
their approximate solution is computed by means of recently
proposed semidefinite programming relaxation techniques.

0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

   x
1

   
x 2

Fig. 2. Nominal state trajectory (x-marks and dashed line) and approximate
state trajectory (circles ‘◦’ and solid line).
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ε 1

Fig. 3. Error ε1(k) = x1(k)− x̃1(k) between the nominal state variable
x1(k) and the approximate state variable x̃1(k) at each sample time k =
0, 1, . . .
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Fig. 4. Error ε2(k) = x2(k)− x̃2(k) between the nominal state variable
x2(k) and the approximate state variable x̃2(k) at each sample time k =
0, 1, . . .
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Fig. 5. Nominal control moves (dashed line) and approximate control
moves (solid line)

The reported simulated example shows that the presented
approximation technique can be efficiently employed to
obtain a fast model predictive controller implementation.
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