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Abstract—A novel consensus-based protocol is developed for
estimating the load information at nodes in a distributed comput-
ing system operating over a partially connected communication
network. The challenge in such estimation process arises from the
existence of tangible delays in the exchange of information, and
the fact that loads are dynamic since nodes continue to execute
their loads while the estimation process is ongoing. The protocol
utilizes the concept of trust weight that each node has about
any other node, based on the number of hops in between, to
periodically form an updated estimate of the loads of the other
nodes. The probability of consensus at any given time as well as
the probability density function of the time to the first consensus
are analytically characterized and used to determine the best
instant for executing a dynamic load balancing (DLB) action.
Detailed Monte-Carlo simulations of the average completion time
of a workload by a distributed system under different system
configurations are presented and discussed. The results suggest
a range of time for executing the DLB over which satisfactory
average completion time is achieved. The results also provide
insight on the effects of network connectivity and the frequency
of communication on the DLB performance.

Index Terms—consensus-based estimation, distributed comput-
ing, partially connected network, load balancing, trust-weight

I. INTRODUCTION

Distributed computing systems (DCSs) offer an efficient
and inexpensive way to process workloads composed of a
large number of independent tasks in a cooperative manner.
The completion time required to execute a workload on a
DCS is mainly dependent on the distribution of tasks on
the computing nodes as well as their individual processing
power. As computing nodes in the system process tasks, some
nodes may be overloaded while other nodes may run out of
tasks, thereby becoming idle. To avoid such scenarios that
defeat the purpose of cooperative computing, load balancing
(LB) techniques are used [1] so that the system resources are
utilized optimally, and consequently the workload completion
time is minimized. Specifically, the goal of LB is to give
every computational node its fair share of the workload so
that ideally no node becomes idle prematurely before the
entire workload is completed. The LB problem belongs to a
more general class of problems in resource allocation. These
problems appear not only in DCSs but also in routing in

wireless networks, telecommunications, and other problems in
computer science and operational research [2]–[4].

From the perspective of the type of system information
(online vs. off-line) used by the DCS to perform task redis-
tribution, LB can be categorized as either dynamic or static
[5]. In dynamic load balancing (DLB), the current state of the
DCS is utilized to redistribute tasks across nodes. From the
perspective of the structure of the decision-making process,
on the other hand, there are two methods to pursue DLB in
a DCS: centralized and decentralized. In the centralized DLB
[6], a central coordinating node fuses the global load informa-
tion of the DCS and conducts appropriate LB decisions. For
the decentralized DLB [7], [8], no such central coordination
exits; nodes execute DLB autonomously based on their own
local estimates of the loads at other nodes. The estimation is
facilitated by a process of information exchange among the
nodes that accompanies the DLB process. Decentralized DLB
is a more useful approach for many distributed systems, such
as wireless sensor networks and cloud computing, because it
alleviates the dependence on a centralized control node that
can make the system vulnerable to its failure.

The performance of decentralized DLB also relies vitally
on the accurate estimation of the load at each node. As
nodes exchange information, they form their own individual
estimates of the loads across the DCS based upon the received
information, which can be local or global. When a DCS
operates over a partially connected network, where nodes
communicate over multiple hops, the information exchange
is not as effective as that in the scenario for which a fully
connected network is utilized. This is because of the pres-
ence of tangible delays in communication, especially between
distant nodes, that deem the information dated. Furthermore,
the frequency of information exchange is equally important in
forming accurate estimates of the loads at the nodes. Due to
bandwidth or energy constraints in certain practical distributed
systems such as wireless sensor networks [9], the frequency
of information exchange can be limited. We emphasize that
both communication delays and infrequent load-information
exchange affect the quality of estimates of the load at each
node. This is because nodes continue to process tasks during
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the time when the information is exchanged; as such, the load
of the system is dynamic. Thus, lack of accurate global load
information in real time at every node cannot be ignored in
DCSs operating over a partially connected network.

While DLB can be executed repeatedly over the span of
time for which the workload is being executed, limiting the
number of DLB executions and optimizing the choice of the
DLB instant have been shown to be a viable and more-efficient
alternative approach [10], [11]. This motivated us to look
into the so-called one-shot DLB policy [11]: once a workload
arrives a DLB is to be executed at an optimized “best” instant.
Clearly, there is a trade-off between delaying the DLB instant,
in order to acquire more accurate estimates by receiving more
information, and wasting computing resources as nodes may
be kept idle due to large delays before a DLB execution.

In as much as it is clear that large estimation errors of
the loads (across the system) degrade the performance of
DLB, it is less obvious that any disagreement among nodes
in their estimates of the loads also degrades the performance.
Our experience suggests that in most cases of interest, the
inconsistency along the nodes in the network about their
estimates of the loads can worsen the performance of the DLB
compared to cases of similar average estimation error but with
agreed-upon estimates. Disagreement in the estimated loads
results in conflict in LB decisions, which causes unnecessary
task transfers among nodes. In a simple scenario of two
disagreeing nodes, for example, one node may send tasks to
the other node while the other node may also send tasks to the
first node concurrently [7]. Therefore, estimation mechanisms
leading to consensus cases can be beneficial to DLB [12].

Gonzalez-Ruiz and Mostofi [12] studied the problem of
DLB over partially connected networks and examined the
advantage of consensus amongst nodes in estimating the
average overall load in the DCS. This advantage was viewed in
the context of reducing the time required to reach the so-called
“balanced state” of the DCS. According to [12], an informed
load-balancing (I-LB) policy is defined as that for which nodes
exchange information about their locally estimated global load
and reach an agreement over the “balanced state” of the system
before executing DLB repeatedly. In [12] DLB is performed
locally, namely, tasks are transferred only among neighboring
nodes. They showed that in the case of the I-LB approach, the
number of LB actions required so that all nodes attain their
fair share of the load is less compared to the scenario where
DLB is executed repeatedly without prior consensus about the
“balanced state.”

While the work in [12] points to the benefit of consensus-
based estimation of loads it assumes that nodes do not process
tasks during the time when consensus is being reached. There-
fore, the load at each node prior to DLB actions is assumed to
be deterministic and constant; hence, the value of a “balanced
state” to be agreed upon is fixed. However, the load of the
nodes is not only dynamic but also stochastic as the processing
powers of nodes change stochastically in a shared-computing
environment due to other processes in the system, randomness
in length of tasks and varying memory latencies in the com-

puting nodes [13]. We further point out that in the problem
stated in this paper, the consensus equilibrium to be estimated
by nodes, namely the unknown vector representing the global
load information of the DCS, is time varying and stochastic.
Meanwhile, an effective DLB requires the estimation error to
be small. Therefore, the problem at hand is different from
the canonical consensus problem where the dynamics of the
states are modeled by deterministic differential equations [14]–
[16]. As such, linear-consensus protocols and related analysis
proposed in the literature are not suitable for our problem.

In this paper we propose a novel consensus-based protocol
for estimating the load information at nodes in a DCS setting
operating over a partially connected communication network.
Our formulation assumes that the load at each computing
node is both dynamic and stochastic. The estimation protocol
utilizes the concept of trust weight, that each node has of
any other node based on the number of hops in between,
to periodically form an updated estimate of the loads of the
other nodes by fusing the information it receives from neigh-
boring nodes. The consensus-based protocol is of practical
interest for DLB because it provides a simple and efficient
way to disseminate the information among the network. We
analytically characterize the probability of consensus at any
given time as well as the probability density function (PDF)
of the time to the first consensus; these quantities facilitate
our understanding of the best instant for executing a DLB
after a workload is assigned to the DCS. Because the load
is dynamic and stochastic, there is no guarantee that the
consensus of the true global load information will be achieved
asymptotically. Detailed Monte-Carlo (MC) simulations on the
average completion time of a workload under different system
configurations are presented and discussed. The results provide
insight on the effects of network connectivity and frequency
of communication on the DLB performance.

This paper is organized as follows. In Section II we propose
a novel consensus-based protocol for updating the global load
information. In Section III, we conduct a probabilistic analysis
of the time to consensus using the proposed protocol. We
present the simulation results on the average completion time
of a workload in Section IV. Our conclusions and suggestions
for future work are presented in Section V.

II. PROBLEM STATEMENT

Consider a DCS consisting of n nodes operating over a
partially connected network with an arbitrary topology denoted
by the undirected graph G(V, E), where V is the set of
nodes, V = {1, . . . , n}, and E is the set of bidirectional
communication links between nodes. At an initial time t0, a
workload consisting of total M individual tasks is allocated
onto the computing nodes of the DCS. We assume that tasks
are the smallest unit of the work to be processed and they
have random length since they consist of various number of
instructions. Let Qi(tk) represent the random number of the
tasks in the queue of node i at time tk. At time t0 we have
M =

∑n
1 Qi(t0).
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Nodes process tasks and estimate the dynamic global load
information vectors as follows. We assume that the execution
time of tasks queued at the ith node are independently and
identically distributed (i.i.d.) following an exponential distri-
bution with a rate λi, i.e., the average execution time per task
is 1/λi. This assumption is commonly adopted in computing
literature [17], [18]. Between every two consecutive discrete
time instants, (tk−1, tk) and k = 1, 2, . . . , each node, the
ith node say, estimates the dynamic global load information
vector, Q̂i(tk) = [Q̂i1(tk), . . . , Q̂ij(tk), . . . , Q̂in(tk)], where
Q̂ij(tk) denotes the load of node j at time tk estimated by
node i. The estimation protocol is discussed in Section II-A.

At every tk, single-hop communications are allowed in
the network. Here, we assume a fixed time interval between
successive communications, ∆t = tk − tk−1 for all k. At tk,
each node i shares its estimate, Q̂i(tk−1), with its neighbors,
N (i), defined to be the set of nodes that are one hop from i.
Besides the dynamic global load information vector, at time
t0 each node i broadcasts its processing rate, λi, to all the
nodes in the network. However, the broadcast packets are
also assumed to travel one communication hop during every
∆t, and nodes forward the broadcast packets they received
at time tk−1 to their neighbors at time tk. By convention, if
node i has not received the processing rate information about
another node j at any tk, then Q̂ij(tk) is assumed to be zero.
Therefore, at time t0, Q̂i(t0) has only one nonzero element
since Q̂ii(t0) = Qi(t0) and Q̂ij(t0) = 0 for all j ∈ V\i, where
V\i represents the set of nodes in V except node i.

In this paper, we assume that the processing rates, λi, for
all nodes are known and fixed, and the delays in every one-
hop communications are negligible compared to ∆t. These as-
sumptions are realistic, for example, in a dedicated computing
cluster environment where the type and speed of processors are
known a priori, processors are geographically close to each
other, and the communication channel is a dedicated, high-
speed local-area network. We also assume that there are no
external incoming workloads after time t0 until the present
workload is executed.

A. Trust-weight-based load-estimation protocol for DLB

In this subsection, we propose a consensus-based estimation
protocol called trust-weight protocol. We first explain the
concept of trust weight. In a partially connected network, the
distance, dj(i), from node j to node i is defined as the number
of hops between the two nodes when choosing the shortest
path connecting them. Considering two nodes i and j that
are not directly connected, node i estimates the dynamic load
of node j relying on its neighbors’ estimates of node j. As
information flows over the network, it becomes outdated and
the estimates become less accurate. Therefore, it is intuitive
that node i possesses a more reliable estimate of node j’s
dynamic load if dj(i) is small. We introduce the trust weight
of node i with respect to node j, rj(i), as a positive integer
providing an indication on the reliability of the dynamic load
information that node i has about the node j. For each node

j, there is an associated positive integer

Rj
4
= max

i
{dj(i)}, (1)

according to its location in the network. (Note that the diam-
eter of the network, D, is given by maxj Rj .) We next define
the trust-weight value, rj(i), as

rj(i) = Rj − dj(i). (2)

If rj(i) > rj(`), then we say node i has more reliable
dynamic load information about node j compared with node
`. The possible values for rj(i) are 0, 1, . . . , Rj , and only
node j has the largest trust-weight value Rj since dj(j) =
0. Nodes can be classified into different equivalence classes,
Cj(r), based on their trust-weight values with respect to a
node j, where Cj(r) is the set of nodes that have the same
trust-weight value r, i.e., Cj(r)

4
= {i : rj(i) = r} for r =

0, 1, . . . , Rj .
In order to lead nodes to reach consensus about the current

global load, our idea is that node i estimates the load of node
j using information exclusively from nodes with high trust-
weight values. The trust-weight protocol forming Q̂i(tk) is
described below.

Trust-weight protocol: In this estimation, we use the fact
that node i always has the exact information about itself at all
k, that is,

Q̂ii(tk) = Qi(tk). (3)

For other nodes j ∈ V\i, we form the estimate for node j at
tk, k = 1, 2, . . . , as a weighted-average of the estimated load
of node j by the neighbors of node i with larger trust-weight
values than node i’s trust-weight value, then minus the average
number of executed tasks by node j during ∆t, i.e.,

Q̂ij(tk) =

⌊∑
`∈Nj(i) rj(`)Q̂

`
j(tk−1)∑

`∈Nj(i) rj(`)
− bλj∆tc

⌋
+

, (4)

where Nj(i) defines a set of nodes {` ∈ N (i) : rj(`) > rj(i)}
and bxc and bxc+ are the greatest integer and greatest non-
negative integer smaller than or equal to x, respectively.

B. Important properties of trust-weight protocol

Here, we state three key properties of the trust-weight values
and estimates of the dynamic load of a node j. In the analysis
that follows in this subsection and Section III, we assume that
Qj(tk) > 0 for all k. This is a reasonable assumption in DCSs
processing large workloads.
Property A: Neighbor trust-weight values. For i ∈ V\j,
Nj(i) 6= ∅ and |rj(i)− rj(`)| ≤ 1 for all ` ∈ N (i).

What the above property says is that to estimate the dynamic
load of a node j, every distinct node i has at least one
neighbor with higher trust-weight value than itself. Moreover,
the difference of the trust-weight values between node i and
its neighbors is less than or equal to 1.

Proof Consider a representative (specific) shortest path
between nodes i and j. Assume that node ` is on the specific
shortest path and directly connected to node i, i.e., ` ∈ N (i).
Note that the route between node ` and j is also a shortest
path. Therefore, rj(`) = rj(i) + 1 > rj(i) and Nj(i) 6= ∅.
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Without loss of generality, assume that dj(i) < dj(`) and
rj(`) = rj(i)− h, where h is an integer larger than 1. Since
` ∈ N (i), according to the definition of the trust-weight value
we have rj(`) = rj(i)−1 . Hence, rj(`) < rj(i)−h = rj(`),
a contradiction, which proves the latter part of Property A. 2
Property B: Same-class consensus. For any value, r, of trust
weight and for any k, Q̂ij(tk) = Q̂`j(tk) if i, ` ∈ Cj(n).

This property says that nodes in the same class always stay
in agreement with the estimated load of a node j.

Proof From Property A, Nj(i) can be expressed as
Nj(i) = {` ∈ N (i) : rj(`) = rj(i) + 1}. Now consider

a node i ∈ Cj(Rj − 1), Q̂ij(tk) =
RjQ̂

j
j(tk−1)

Rj
− bλj∆tc =

Qj(tk−1)−bλj∆tc. It is clear that Q̂ij(tk) has the same value
for all nodes i ∈ Cj(Rj − 1) and all k. Let Q̂Cj(Rj−1)

j (tk)

denote Q̂ij(tk) if i ∈ Cj(Rj − 1).
Next, consider a node i ∈ Cj(Rj−2) and note that Q̂ij(tk) =∑
`∈Nj(i)

rj(`)Q̂`
j(tk−1)∑

`∈Nj(i)
rj(`) −bλj∆tc = Q̂

Cj(Rj−1)
j (tk−1)−bλj∆tc.

Therefore, the estimates by all nodes i ∈ Cj(Rj − 2) also
have the same value for all k, which could be denoted as
Q̂
Cj(Rj−2)
j (tk). Similarly, we can derive Q̂ij(tk) for nodes i ∈
Cj(r), where r = Rj − 3, ..., 0. 2
Property C: Boundedness of the estimator’s bias. The bias
of the estimate Q̂ij(tk) is bounded by dj(i) for all k > dj(i),
namely,

∣∣E[Q̂ij(tk+dj(i))]− E[Qj(tk+dj(i))]
∣∣ ≤ dj(i).

Proof According to (4) and the two properties (A and
B) stated above, if we condition on Qj(tk) = m then
Q̂ij(tk+dj(i)) is deterministic and it equals to m−dj(i)bλj∆tc.
Since the number of tasks executed by node j during one ∆t
follows a Poisson distribution with rate λj∆t, Qj(tk+dj(i)) =
m − Pois

(
dj(i)λj∆t

)
, where Pois(x) is a Poisson random

variable with mean x. Therefore,
E[Q̂ij(tk+dj(i))|Qj(tk)]

= Qj(tk)− dj(i)bλj∆tc
= E[Qj(tk+dj(i))|Qj(tk)] + dj(i)

(
λj∆t− bλj∆tc

)
≤ E[Qj(tk+dj(i))|Qj(tk)] + dj(i).

By taking expectations of both sides we obtain∣∣E[Q̂ij(tk+dj(i))]− E[Qj(tk+dj(i))]
∣∣ ≤ dj(i). 2

C. Estimation error
Due to the uncertainty in the estimation caused by the

randomness in the processing time of tasks at each node, there
would be a concern that, in general, the mean of estimation
error (over all nodes) may diverge in time. We will show that
the mean and the variance of the total estimation error using
the trust-weight protocol are both bounded. It is shown in
the proof of Property C that for any k ≥ Rj , the error in
the estimate of node i of the load of a node j at time tk is
eij(tk)

4
=
∣∣Q̂ij(tk) − Qj(tk)

∣∣ = dj(i)
∣∣Pois

(
λj∆t

)
− λj∆t

∣∣.
The mean of the above error is upper bounded by dj(i) and
its variance is dj(i)λj∆t, both of which are independent of
tk. Thus, the mean of the total estimation error of the trust-
weight protocol is bounded by n(n− 1)D and its variance is
bounded by n(n− 1)D∆tmaxj∈V λj .

To demonstrate the above features of the estimation error’s
mean, consider the following partially connected network with
diameter D = 4 and whose topology is represented in Fig. 1.
The average task execution times of the nodes are assumed to
be λ−1

1 = 2 s, λ−1
2 = 2.5 s, λ−1

3 = 1.5 s, λ−1
4 = 1 s, λ−1

5 = 1
s, λ−1

6 = 3.5 s, λ−1
7 = 3 s, and λ−1

8 = 2.5 s.

Fig. 1: Topology of the partially
connected network for the exam-
ples considered.

Figure 2(a) represents the
MC estimate of the mean of
the total estimation error as
a function of time for five
different values of ∆t, 2 s,
4 s, 8 s, 16 s and 32 s.
In this simulation we have
assumed that each node is
initially assigned 100 tasks.
Results for each ∆t value
are averaged over 1000 independent trials. Note that for all
the cases, the average total estimation error sharply drops at
the beginning to a local minimum at the discrete time instant
corresponding to one diameter of the network, i.e., at k = D,
which is marked by a larger diamond. The reason is that
tD is the minimum time for all nodes to spread their load
information in a partially connected network. When k ≥ D,
the average total estimation error saturates at around 100
seconds, which is the average time for the fastest node to
run out of its initial tasks. In addition, as shown in Fig. 2(a),
the average total estimation error is decreasing to zero when
nodes become idle.

To appreciate the benefit of the trust-weight protocol over
a uniformly averaging protocol, we compare the average
total estimation errors under the two protocols using MC
simulation, as shown in Fig. 2(b). The uniformly averaging
protocol takes the average of the estimates at each node from
its neighbors without assigning trust-weight values. The results
show that the average total estimation error is always smaller
when using the trust-weight protocol. Also, the local minimum
value of the mean total error in the trust-weight protocol case
is much smaller than that for the uniformly averaging protocol.
Additionally, it is clear from Fig. 2(b) that the effect of ∆t on
the average total estimation error is much smaller when using
the trust-weight protocol compared with the uniformly aver-
aging protocol. This result shows the efficiency of the trust-
weight protocol in the amount of communication-exchanges
required to reach a satisfactory error performance.

III. PROBABILISTIC ANALYSIS OF THE TIME TO
CONSENSUS

Developed an efficient estimation protocol, the next chal-
lenge is to determine the best time to execute a DLB action.

A. Sufficient and necessary conditions for achieving consensus
estimation for an arbitrary target node

We first study the probability of reaching consensus at time
k, denoted by PC(k). The consensus instant is the time when
nodes agree on their estimated global load information vector.
If there is a particular time k0 in which PC(k0) is maximized,
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Trust weight protocol ∆ t = 2 s

Trust weight protocol ∆ t = 8 s

Unif. averaging protocol ∆ t = 2 s

Unif. averaging protocol ∆ t = 8 s

(b)
Fig. 2: (a) Average total estimation error using the trust-weight
protocol for five different values of ∆t; (b) Comparison of the
average total estimation error under the trust-weight protocol and
the uniformly averaging protocol.

then tk0 would be the best instant to execute a DLB since it
will be optimal in terms of computing resource utilization.

To characterize the PC(k), we first state and prove suffi-
cient and necessary conditions in order to have a consensus
estimation by all the nodes on the load of any target node
j. We emphasize again that the load of the node j is always
assumed to be positive at all time for analysis purpose.

Lemma 1. All nodes have consensus on their estimates of
the load of a target node j at time k if and only if node j
executes bλj∆tc tasks during every time interval ∆t for Rj
consecutive times from time k −Rj to k, where k ≥ Rj .

Proof Sufficiency — After exchange of information at
time k − Rj , the estimates at the next time k − Rj + 1 are,
Q̂
Cj(Rj)
j (k−Rj+1) = Qj(k−Rj+1) = Qj(k−Rj)−bλj∆tc,

and Q̂Cj(Rj−1)
j (k −Rj + 1) = Q̂

Cj(Rj)
j (k −Rj)− bλj∆tc =

Qj(k−Rj)−bλj∆tc. Similarly after exchange of information
at time k − Rj + 1, the estimates at the next time are
Q̂
Cj(Rj)
j (k−Rj + 2) = Qj(k−Rj + 2) = Qj(k−Rj + 1)−
bλj∆tc = Qj(k−Rj)− 2bλj∆tc, Q̂

Cj(Rj−1)
j (k−Rj + 2) =

Q̂
j(Rj)
j (k−Rj + 1)−bλj∆tc = Qj(k−Rj)− 2bλj∆tc, and

Q̂
Cj(Rj−2)
j (k−Rj +2) = Q̂

Cj(Rj−1)
j (k−Rj +1)−bλj∆tc =

Qj(k − Rj) − 2bλj∆tc. Continuing a similar analysis, after
the exchange of information at time k − 1, the estimates
are Q̂

Cj(Rj)
j (k) = Q̂

Cj(Rj−1)
j (k) = · · · = Q̂

Cj(0)
j (k) =

Qj(k − Rj) − Rjbλj∆tc. This means that all nodes agree
on their estimates of node j’s load.

Necessity — Assume that Q̂Cj(0)
j (k) = Q̂

Cj(1)
j (k) = · · · =

Q̂
Cj(Rj)
j (k) = Qj(k). Then the estimates for all the classes of

trust-weight values, i = 1, . . . , Rj , at time k−1, can be written
as Q̂Cj(i)

j (k−1) = Q̂
Cj(i−1)
j (k)+bλj∆tc = Qj(k)+bλj∆tc.

Therefore, Qj(k − 1) = Q̂
Cj(0)
j (k − 1) = Q̂

Cj(1)
j (k − 1) =

· · · = Q̂
Cj(Rj)
j (k−1) = Qj(k) + bλj∆tc. Following the same

analysis and after the exchange of information at k − 2, k −
3, . . . , k−Rj , it is trivially to see that Qj(k− n) = Qj(k) +
nbλj∆tc, for n = 1, 2, . . . , Rj . 2

B. Probability of reaching consensus at any given instant

In order to characterize PC(k), we define the event Aj as
the event that node j executes bλj∆tc tasks during ∆t. Since

the execution times of tasks queued at node j are i.i.d. and
exponentially distributed, P(Aj), denoted as p(j), follows a
Poisson law for all discrete time k,

p(j) =
e−λj∆t(λj∆t)

bλj∆tc

(bλj∆tc)!
. (5)
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Fig. 3: Probability of consensus at
different discrete time instants.

Based on the trust-weight
protocol, at least Rj hops
are necessary for perceiving
the information on node j
by every node in the net-
work. Therefore, the prob-
ability of consensus on the
load of node j, P (j)

C (tk),
when k < Rj , is zero. On
the other hand, when k ≥
Rj , in order for nodes to
reach a consensual estimate on node j, event A should emerge
Rj consecutive times according to Lemma 1. Since occurrence
of event A is independent in each time interval, we can write

P
(j)
C (k) =

(
p(j)
)Rj

. (6)

Figure 3 shows the MC simulation results which confirms
the previous statement. We choose node 3 as the target node
in the partially connected network shown in Fig. 1, where
R3 = 4 and ∆t is 2 s. The MC simulation results are averaged
by 100000 independent iterations for each k.

Note that the procedure for estimating the load of a target
node j by all nodes is independent for different target nodes.
Hence, the consensus probability at time k for the global load
is

PC(k) =

n∏
j=1

P
(j)
C (k). (7)

It is clear that P (j)
C (k) is zero when k < Rj and a constant(

p(j)
)∑n

j=1 Rj when k ≥ Rj . The above result indicates that
DLB performance could not be improved, on average, for time
k ≥ Rj as long as none of the nodes is idle.

C. PDF of the time to first consensus

The best instant for DLB cannot be clearly identified from
the consensus probability characterized in the previous subsec-
tion. In turn, here, we derive and examine the PDF of the time
to first consensus, denoted as P̃C(k). First-time consensus is
when all the nodes agree upon their estimates of the dynamic
global load for the first time. Choosing such instant as the time
to execute a DLB action presumably benefits the efficiency
of the DLB as it allows the use of consensual estimates
of the loads in the LB action, while keeping the required
communications to a minimum.

We firstly characterize P̃
(j)
C (k), which is the PDF of the

time when all the nodes agree upon their estimates of a target
node j for the first time. We define a discrete random variable
T

(j)
n indicating the first time that node j executes bλj∆tc tasks

during ∆t for n consecutive steps. By recalling the sufficient
and necessary conditions of achieving a consensual estimate
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of node j, we can cast P̃ (j)
C (k) as P{T (j)

Rj
= k}.

Theorem 1. The probability P̃ (j)
C (k) in a partially connected

network can be analytically characterized by the following
recursive equations and initial conditions. When 1 ≤ k < Rj ,

P̃
(j)
C (k) = 0, (8)

and for k > Rj ,

P̃
(j)
C (k) = p(j)P{T (j)

Rj−1 = k − 1}+
(
1− p(j)

)
×

k−2∑
k′=1

P{T (j)
Rj−1 = k′}P{T (j)

Rj
= k − (k′ + 1)}. (9)

Proof When 1 ≤ k < Rj , there exist a node, say i, so
far from node j that it has not yet received the processing rate
information of node j; this implies that Q̂ij(tk) = 0. However,
it is assumed that Qj(tk) 6= 0 for all k; therefore, P̃ (j)

C (k) = 0.
Next, when k > Rj , there are two possibilities for the event

{T (j)
Rj

= k} to occur. The first is that the event {T (j)
Rj−1 =

k − 1} occurs and then the event Aj occurs at time k. The
second possibility is that the event {T (j)

Rj
6= k′ + 1} occurs

following the occurrence of the event {T (j)
Rj−1 = k′}, where

k′ = 1, 2, . . . , k−2, and then in the remaining time, i.e., from
k′+1 to k, the event Aj occurs for Rj consecutive times firstly
at time k implies the event {T (j)

Rj
= k}. By conditioning on

the event {T (j)
Rj−1 = k′}, we can derive

P̃
(j)
C (k) = P{T (j)

Rj
= k} = P{T (j)

Rj−1 = k − 1, T
(j)
Rj

= k}
+
∑k−2
k′=1 P{T

(j)
Rj−1 = k′, T

(j)
Rj
6= k′ + 1}

×P{T (j)
Rj

= k − (k′ + 1)}
= P{T (j)

Rj
= k|T (j)

Rj−1 = k − 1}P{T (j)
Rj−1 = k − 1}

+
∑k−2
k′=1 P{T

(j)
Rj
6= k′ + 1|T (j)

Rj−1 = k′}
×P{T (j)

Rj−1 = k′}P{T (j)
Rj

= k − (k′ + 1)}
= p(j)P{T (j)

Rj−1 = k − 1}+
(
1− p(j)

)∑k−2
k′=1

P{T (j)
Rj−1 = k′}P{T (j)

Rj
= k − (k′ + 1)}. 2
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Fig. 4: (a) PDF of first-time consensus for node 3; and (b) PDF of
first-time consensus instant for different nodes.

In Fig. 4(a), we represent the PDF for the first-time consen-
sus by solving the recursion in Theorem 1 numerically; MC
simulations are also shown. It is interesting to note that the
PDF for first-time consensus of node j has a peak at k = Rj ,
after which it decays exponentially and asymptotically. The
three parameters, Rj , λj and ∆t, determine the exponential

TABLE I: Exponential decay rate of PDF for the first-time
consensus under various values of Rj and ∆t, but same λj .

Exponential decay rate
∆t Rj = 2 Rj = 3 Rj = 4 Rj = 5 Rj = 6
0.5 0.7234 0.8926 0.9100 0.9395 0.9452
1.0 0.8638 0.9650 0.9729 0.9849 0.9869
1.5 0.9283 0.9878 0.9914 0.9960 0.9967
2.0 0.9605 0.9956 0.9972 0.9989 0.9992
2.5 0.9776 0.9984 0.9991 0.9997 0.9998

TABLE II: Exponential decay rate of PDF for the first-time
consensus under various values of Rj and λj , but same ∆t.

Exponential decay rate
λj Rj = 2 Rj = 3 Rj = 4 Rj = 5 Rj = 6
0.5 0.8285 0.9311 0.9704 0.9867 0.9939
1.0 0.9100 0.9729 0.9914 0.9972 0.9991
1.5 0.9411 0.9855 0.9962 0.9990 0.9997
2.0 0.9575 0.9910 0.9980 0.9996 0.9999
2.5 0.9635 0.9928 0.9985 0.9999 0.9999

rate of the first-time consensus PDF. Table I and II list the
exponential rates by curve fitting for a node j with different
parameters. (An analytical proof of the exponential asymptotic
behavior can also be established in a straight forward fashion
but it is not included here due to space limitation.) Based on
Table I and II, we see that for a node j with fixed processing
rate λj , a larger Rj or ∆t leads to a larger decay rate; under
a fixed communication interval ∆t, a node j with larger Rj
or λj leads to a larger decay rate. Figure 4(b) compares the
first-time consensus probability for nodes, 1, 2, 3, 4 and 5,
under the same ∆t = 2 s; however, each node has its own
Rj and λj . Note that nodes with larger Rj and larger λj
lead to smaller first-time consensus probabilities than other
nodes. Therefore, we conclude that one node dominates the
first-time consensus probability for the whole system. As such,
the probability P̃C(k) can be approximated as P̃ (J)

C (k), where
node J is the node with RJ = D and largest processing rate.
According to the above analysis on the first-time consensus
PDF, it is reasonable to choose the DLB instant at one diameter
D time instant, tb = tD.

IV. DYNAMIC LOAD BALANCING WITH CONSENSUS-BASED
LOAD ESTIMATION

In this section, we present MC simulation results on the
average completion time, a common metric for evaluating
the performance of DLB, of a workload by applying the
proposed protocol for different system configurations. We also
compare the results with that by applying the “local multi-shot
DLB policy” employed in [12]. In simulating our protocol,
we adopt the DLB policy presented in [7], which is a one-
shot DLB policy for decentralized DLB in a fully connected
network, and extend it to the case over a partially connected
network by assuming that tasks could be relayed through
median node(s) between the two indirectly connected nodes
without processing. The one-shot DLB policy means that the
task redistribution by all nodes are executed only one time.
The one-shot DLB policy is an efficient approach in DLB
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performance as well as bandwidth savings [10], [11]. We also
adopt the method presented in [7] in order to calculate the
task reallocation partitions, which specifies the redistribution
decisions of the nodes on how many tasks to transfer to other
nodes. We also assume that if a node i has not received
the processing rate information, λj , at the DLB instant, tb,
it would assume that node j does not exist in the system
and therefore it does not send any tasks to node j, even
though Q̂ij(tb) = 0. We call the one-shot DLB policy used
in this paper for the partially connected network along with
the added assumptions, the “extended one-shot DLB” policy.
We emphasize that all the MC simulation results in this section
correspond to centers of 95% confidence intervals.

Next, we present the average completion time of a workload
as a function of DLB instant tb. In order to investigate the
effect of information exchange frequency, five ∆t values, 2 s,
4 s, 8 s, 16 s and 32 s (same as in Section II-C), are considered.
In our simulations, the total number of tasks in the workload
is fixed to be 800 tasks. The task execution rates of nodes are
also same as in Section II-C. In the results shown in Fig. 5(a),
the workload is initially allocated evenly at the nodes of the
topology presented in Fig. 1, i.e., 100 tasks at each node. As
it can be seen in Fig. 5(a), the average completion time of
the workload using the trust-weight protocol along with the
extended one-shot DLB policy indicates a similar pattern for
all the five ∆t values. Note that the first point of each curve
(for tb = 0) corresponds to the case for which nodes execute
their own initial tasks without executing DLB. The larger
diamond markers represent the results for which the DLB has
been executed at the time tD (namely, after a “diameter time”
of information exchange). The sharp decay in the beginning of
the curves in Fig. 5(a) are due to the fact that more accurate
dynamic load information become available to every node
in the network as information is exchanged. By performing
DLB after exchanging information by an amount equal to the
diameter time, the average completion time becomes stable
due to saturation of the estimation error shown in Section II-C.
However, if the DLB is executed with a large delay, some
of the nodes may become idle, which causes a waste in
computing resources of the system. Therefore, the average
completion time starts to increase around 100 s, which is the
average time for the fastest node to become idle.

We now investigate the effect of the connectivity and the
diameter of the network on the completion time. Here we
modify the topology of the network presented in Fig. 1 by
removing the links between node 2 and 6 as well as node 4
and 7 in order to have an extreme-case topology (all nodes
in a line). Note that in the modified topology the fastest two
nodes (4 and 5) are at one end of the line and the slowest two
nodes (6 and 7) are at the other end of the line. We keep other
settings the same as in Section II-C and present the simulation
results in Fig. 5(b). Note that the results presented in Fig. 5(b)
represent a similar behavior as the results shown in Fig. 5(a).

It is interesting to note that when D∆t is less than the
average time for the fastest node to execute its initial tasks,
i.e., when ∆t = 2 s, 4 s, 8 s, and 16 s, the minimum average

completion time of the workload is approximately 200 s under
both network connections. This indicates adaptability of the
trust-weight protocol to various topology and communication
constraints. Now, we propose what we term a safe zone,
[tmin, tmax] for tb, where tmin = tD, and tmax is the average
time for the fastest node in the network to become idle. Based
on the results for these two topologies satisfactory average
completion time can be achieved when tb is chosen to be in the
safe zone. Note that by executing DLB with more exchanges
of information after time tD, the average completion time of
a workload is not reduced evidently. However, if tD is greater
than the average time for the fastest node in the network to
become idle, as in the case ∆t = 32 s, then there is no safe
zone for choosing tb. The results in Fig. 5(b) also show that
the best DLB execution instant, emphasized by the diamond
marker, is postponed due to increased diameter of the modified
network, D′, from 4 to 7.

Next, to explore the effect of initial task distribution over
the nodes, we consider the case for which all the tasks of the
workload are initially allocated to the fastest node in the DCS
operating over the original topology (Fig. 1). The simulation
results are shown in Fig. 5(c). In this scenario, the best choice
for tb is definitely after D exchanges of information has taken
place for all the ∆t values because it is the first time that
the computing resources of all the nodes in the system can be
utilized after a DLB action is executed.

Finally, we will compare the efficiency, in terms of the
average completion time, of the trust-weight protocol in con-
junction with the extended one-shot DLB policy with the
local multi-shot DLB policy employed in [12]. In the local
multi-shot policy, each node exchanges information with its
neighboring nodes and then executes a DLB action only within
its neighborhood after each information exchange. Figure 5(d)
represents the results of the average completion time using
the local multi-shot DLB policy for the same settings as in
Fig. 5(a). In the local multi-shot policy, it is obvious that as the
number of DLB executions increases, the average completion
time gradually reduces and converges to the best achievable
completion time. Based on these results, our approach outper-
forms the local multi-shot policy, in terms of the minimum
achievable average completion time of a workload except
when ∆t = 2 s. This is expected as the latter does not
take into account the task executions as the load estimation is
ongoing. The minimum achievable average completion time of
a workload when ∆t = 2 s is around 188 s in Fig. 5(d), which
is nearly 7% lower than the minimum average completion time
for same ∆t in Fig. 5(a). However, the local multi-shot policy
achieves the same performance using larger number of DLB
actions than our approach (in this example, at least 50 vs.
4). Note also that transferring tasks in the network is much
more bandwidth consuming than exchanging information, and
therefore, our approach reduces the communication costs.

V. CONCLUSIONS

In this paper we presented a novel consensus-based protocol
for estimating the load information at nodes in a DCS setting
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Fig. 5: Average completion time of a workload for; (a) evenly
distributed tasks over the nodes of the original topology, (b) evenly
distributed tasks over the nodes of the modified topology, (c) unevenly
distributed tasks over the fastest node of the original topology, by
applying extended one-shot DLB policy, and (d) evenly distributed
tasks over the nodes of the original topology, by applying the local
multi-shot DLB policy [12].

operating over a partially connected communication network
where loads are both dynamic and stochastic. The necessity
of forcing all the estimates to be consensual (in order to have
higher effectiveness of DLB) motivated the development of the
protocol. Our results indicate that the proposed protocol is of
great advantage in terms of the estimation error as well as the
efficiency in communication cost compared with the uniformly
averaging protocol that does not utilize the trust weight. To
determine the time to execute DLB, we have analytically
characterized the probability of consensus at any given time as
well as the PDF of the time to the first consensus; the latter
suggests that the best DLB instant is at a diameter number
of exchanges of information. We presented MC simulation
results of the average completion time of a workload using
the proposed protocol along with the extended one-shot DLB
policy. The results show that our method works better than the
local multi-shot DLB method when the information exchange
period is long relative to the average task-processing time. In
addition, our method offers an advantage in the bandwidth
usage compared with the existing method. We also defined a
safe zone for executing DLB over which the performance is
stable if DLB instant is chosen in this zone.

Future work will consider more general distributed-
computing scenarios for which nodes deal with different types
of tasks at the same time. In such scenarios, the processing
rates become varying, which makes the consensus-estimation
problem far more challenging. In addition, in such scenarios
there is the possibility that consensus may not even happen
before the workload is accomplished. One possible approach

for such extension would be to consider an adjustable esti-
mation protocol while performing multiple DLBs periodically
with a period governed by the diameter of the network.
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