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Abstract— This paper investigates a distributed formation
control problem in an operator-vehicle network where each
vehicle is remotely controlled by an operator. Each operator-
vehicle pair is attacked by an adversary, who corrupts the
commands sent from the operator to the vehicle following a
partially unknown strategy. We propose a novel distributed
control algorithm that allows operators to adapt their policies
online by exploiting the latest collected information about
adversaries. The algorithm enables vehicles to asymptotically
achieve the desired formation from any initial configuration
and initial estimate of the adversaries’ strategies. It is shown
that the sequence of the distances to the desired formation is
summable. A numerical example is provided to illustrate the
performance of the algorithm. In particular, we observe that
the rate of convergence to the desired formation is exponential,
outperforming our theoretical result.

I. INTRODUCTION

Recent advances in communications, sensing and com-

putation have made possible the development of highly so-

phisticated unmanned vehicles. Applications include border

patrol, search and rescue, surveillance, and target identifi-

cation operations. Unmanned vehicles operate without crew

onboard, which lowers their deployment costs in scenarios

that are hazardous to humans. More recently, the use of

unmanned vehicles by (human) operators has been proposed

to enhance information sharing and maintain situational

awareness. However, this capability comes at the price of the

increased vulnerability of cyber and communication systems.

Motivated by this, we consider a formation control problem

for an operator-vehicle group where each unmanned vehicle

is able to perform real-time coordination with operators (or

ground stations) via sensor and communication interfaces.

However, the operator-vehicle link can be attacked by an

adversary, disrupting the overall group objective. Our main

goal is to provide a resilient solution that assures mission

completion despite the presence of security threats.

Literature review. Information networks have had a great

impact on the way modern control systems operate today.

Unfortunately, they have also become an attractive target

of causal and organized attacks. In practice, either reac-

tive or protective mechanisms have been exploited to deal

with cyber attacks. Non-cooperative game theory [15] has

been advocated as a mathematical framework to model the

interdependency between attackers and administrators, and

predict the behavior of attackers; see an incomplete list of

references [1], [16], [30], [35].
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The area of networked control systems focuses on the

effect of imperfect communication channels on remote con-

trol. Most of the existing papers focus on; e.g., band-

limited channels [20], [24], quantization [11], [23], packet

dropout [17], [31], delay [10], [36], and sampling [25].

Very recently, the security of the new generation of control

systems, namely cyber-physical systems, has drawn mount-

ing attention in the control society, and our current paper

falls into this field. Denial-of-service attacks, destroying the

data availability in control systems, are entailed in recent

papers [2], [4], [6], [16]. Another important class of cyber

attacks, namely false data injection, compromises the data

integrity of state estimation and is attracting considerable

effort; an incomplete reference list includes [21], [28], [34],

[37]. Replay attacks maliciously repeat transmitted data,

and their impact to control systems is first studied in [22].

The papers [3], [38] are devoted to studying deception at-

tacks where attackers intentionally modify measurements and

control commands. In [7], [8], the authors exploit pursuit-

evasion games to compute optimal evasion strategies for

mobile agents in the face of jamming attacks. The paper [3]

examines the stability of a SCADA water management

system under a class of switching attacks, and the authors

in [19] propose a class of trust based distributed Kalman

filters for power systems to prevent data disseminated by

untrusted phase measurement units.

Regarding malicious behavior in multi-agent systems, we

distinguish [27], [32] as two representative references rel-

evant to this work. The paper [32] consider the problem

of distributed function calculation in the presence of faulty

or malicious agents, whereas [27] focuses on consensus

problems. In both settings, the faulty or malicious agents

are part of the network and subject to unknown (arbitrar-

ily non-zero) inputs. Their main objective is to determine

conditions under which the misbehaving agents can (or

cannot) be identified, and then devise algorithms to overcome

the malicious behavior. This significantly departs from the

problem formulation we consider here, where the attackers

are external to the operator-vehicle group and can affect

inter operator-vehicle connections. Additionally, we make

use of a model of attackers as rational decision makers,

who can make decisions in real-time and feedback fashion.

In contrast, the malicious model in [27], [32] may not

be sufficient to capture the features of human adversaries.

Here, we aim to design completely distributed algorithms

for the operator-vehicle group to maintain mission assurance

under limited knowledge of teammates and opponents. The

objective is to determine an algorithm that is independent of

the number of adversaries and robust to dynamical changes
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of communication graphs between operators.

Statement of contributions. The current paper studies a

formation control problem for an operator-vehicle network

where each vehicle is remotely controlled by an operator.

Each operator-vehicle pair is attacked by an adversary, who

corrupts the control commands sent to the vehicle. The

adversaries are modeled as rational decision makers and

their strategies are linearly parameterized by some unknown

matrix. We propose a distributed resilient formation control

algorithm which consists of two feedback-connected blocks:

a formation control block and an online learning block. The

novel online learning mechanism serves to collect informa-

tion in a real-time fashion and update the estimates of adver-

saries through continuous contact with them. The formation

control law of each operator is adapted online to minimize

a local formation error function. To do this, each operator

exploits the latest estimate of her opponent and locations of

neighboring vehicles. We show how the proposed algorithm

guarantees that vehicles achieve asymptotically the desired

formation from any initial vehicle configuration and any

initial estimates of adversaries. The sequence of the distances

to the desired formation is shown to be summable. In our

simulation, the convergence rate turns out to be exponential,

which outperforms the analytic result characterizing a worst-

case convergence rate.

II. PROBLEM FORMULATION

Here, we first articulate the layout of the operator-vehicle

network and its formation control mission. Then, we present

the adversary model that is used in the rest of the manuscript.

After this, we specify the information assumptions that

operators have on adversaries.

A. Architecture and objective of the operator-vehicle net-

work

Consider a group of vehicles in R
d, labeled by i ∈ V :=

{1, · · · , N}. The dynamics of each vehicle is governed by

the following discrete-time and fully actuated system:

pi(k + 1) = pi(k) + ui(k), (1)

where pi(k) ∈ R
d is the position of vehicle i and ui(k) ∈ R

d

is its input. Each vehicle i is remotely maneuvered by an

operator i, and this assignment is one-to-one and fixed. For

simplicity, we assume that vehicles communicate only with

the associated operator and not with other vehicles. More-

over, each vehicle is able to identify its location and send this

information to its operator. On the other hand, an operator

can exchange information with neighboring operators and

deliver control commands to her vehicle. We assume that

the communications between operators, and from vehicle

to operator are secure1, while the communications from

operator to vehicle can be attacked. Other architectures are

possible, and the present one is chosen as a first main class

of operator-vehicle networked systems; see Figure 1.

1Alternatively, it can be assumed that operators have access to vehicles’
positions by an external and safe measurement system.

 

 

 

 

 

 

 

 

Fig. 1. The architecture of the operator-vehicle network

The mission of the operator-vehicle network is to achieve

some desired formation which is characterized by a (directed)

formation graph G := (V, E). Each edge (j, i) ∈ E ⊆ V ×V \
diag(V ), starting from vehicle j and pointing to vehicle i,

is associated with a vector νij ∈ R
d. Denote by Ni := {j ∈

V | (j, i) ∈ E} the set of in-neighbors of vehicle i in G
and let ni be the cardinality of Ni; i.e., ni = |Ni|. The

set of in-neighbors of agent i will be enumerated as Ni =
{i1, . . . , ini

}. Being a member of the team, each operator i is

only aware of local formation constraints; i.e., νij for j ∈ Ni.

The multi-vehicle formation control mission can be en-

coded into the following optimization problem2:

min
p

[

J(p) :=
∑

(j,i)∈E

‖pi − pj − νij‖
2
Pij

]

,

where p = [pT
1 , · · · , pT

N ]T ∈ R
Nd, Pij ∈ R

d×d is a diagonal

and positive-definite weight matrix assigned to the link (j, i).
The objective function J(p) can describe any shape in R

d

by adjusting νij . Notice that J(p) is a convex function of p

since ‖ · ‖2
Pij

is convex and pi − pj − νij is affine; c.f. [9].

Denote by the set of the (global) minimizers X∗ ⊂ R
Nd.

We impose the following to ensure the desired formation is

well-defined:

Assumption 2.1: The digraph G is strongly connected. In

addition, X∗ 6= ∅ and J(p∗) = 0 for any p∗ ∈ X∗.

We assume that operators and vehicles are synchronized.

Each operator only receives information from neighbors in

Ni at each time instant. The communication graph between

operators is then assumed to be fixed and identical to G.

Remark 2.1: Similar formation functions are used

in [13], [14]. When νij = 0 for all (i, j) ∈ E , then the

formation control problem reduces to the special case of

rendezvous which has received considerable attention [12],

[18], [26], [29]. •

B. Model of rational adversaries

A group of N adversaries aims to abort the mission

of formation stabilization. To achieve this, an adversary

is allocated to attack a specific operator-vehicle pair and

this relation does not change over time. Thus, we identify

2In this paper, we denote by ‖x‖2

A
:= xT Ax the weighted norm of

vector x for a matrix A with the proper dimensions.
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adversary i with the operator-vehicle pair i. Each adversary

is able to eavesdrop on incoming messages of her target

operator. We further assume that adversaries are able to

collect some imperfect information of their opponents in

advance. Specifically, adversary i will have estimates ν̂ij ∈
R

d of νij and P̂ij ∈ R
d×d of Pij , for j ∈ Ni. Here,

P̂ij ∈ R
d×d is positive-definite and diagonal.

Adversaries make real-time decisions based on the latest

information available. In particular, at time k, adversary i

eavesdrops pj(k) sent from operator j ∈ Ni to operator i,

and intercepts pi(k)+ui(k) sent from operator i to vehicle i.

The adversary then computes a vi(k) which is added to

pi(k) + ui(k) so that vehicle i implements pi(k) + ui(k) +
vi(k) instead. The command vi(k) will be the solution to

the program:

max
vi∈Rd

∑

j∈Ni

‖pj(k) − (pi(k) + ui(k) + vi) − ν̂ij‖
2
P̂ij

− ‖vi‖
2
Ri

, (2)

where Ri ∈ R
d×d is diagonal and positive definite. The

above optimization problem captures two partly conflicting

objectives. On the one hand, adversary i would like to

destabilize the formation associated with vehicle i, and

this interest is encapsulated in the term
∑

j∈Ni
‖pj(k) −

(pi(k)+ui(k)+vi)− ν̂ij‖2
P̂ij

. On the other hand, adversary i

would like to avoid a high attacking cost ‖vi(k)‖2
Ri

, which

represents the energy consumption of adding the signal vi(k)
and will be justified in Section II-C. We assume the following

on the cost matrices of adversaries:

Assumption 2.2: For all j ∈ Ni,
∑

j∈Ni
P̂ij − Ri < 0.

In this way, the objective function of the optimization prob-

lem (2) is strictly concave. This can be verified by noticing

that the Hessian 2
∑

j∈Ni
P̂ij − 2Ri is negative definite. As

a consequence, the solution to the optimization problem (2)

is unique and given by:

vi(k) = −
∑

j∈Ni

Lij(pj(k) − (pi(k) + ui(k)) − ν̂ij), (3)

where Lij = (Ri −
∑

j∈Ni
P̂ij)

−1P̂ij ∈ R
d×d is diagonal

and positive definite.

C. Justification of attacking costs and our attacker model

Here we provide a justification on the attacking cost

‖vi‖2
Ri

in problem (2). At each time, adversary i has to

spend some energy to successfully decode the message and

deliver the wrong data to vehicle i. The energy consumption

depends upon security schemes; e.g., cryptography and/or

radio frequency, employed by operator i. A larger vi alerts

operator i that there is a greater risk to her vehicle, and

consequently operator i will raise the security level (e.g.,

the expansion of radio frequencies) of the link to vehicle i,

increasing the subsequent costs paid by adversary i (e.g. to

block all of the radio frequencies following the operator). The

term ‖vi(k)‖2
Ri

represents the consideration of adversary i

for her subsequent energy consumption which is directly de-

termined by vi(k). As a rational decision maker, adversary i

is willing to reduce such security cost, which, for simplicity,

we model as a weighted 2-norm.

Problem (2) assumes that each adversary is a rational

decision maker, and always chooses the optimal action based

on the information available. Compared with [21], [27], [28],

[32], [34], [37] focusing on attacking detection, our attacker

model limits the actions of adversaries to some extent.

Assumptions that restrict the behavior of attackers are usually

taken in main references on system control under jamming

attacks. For example, the paper [16] limits the number of

denial-of-service attacks in a time period. This is based

on the consideration that the jammer is energy constrained.

Moreover, the paper [7] assumes that the maximum speeds of

UAVs and the aerial jammer are identical in a pursuit-evasion

game. In addition, the papers [2], [4], [6] restrict the attacking

strategies to follow some I.I.D. probability distributions. We

argue that the investigation of resilient control policies for

constrained jamming attacks is reasonable and can lead to

important insights for network vulnerability and algorithm

design. Clearly, if the actions of adversaries were omnipotent,

no strategy could counteract them. But, even in the case that

jammer actions are limited, it is not fully clear what strategy

would work or fail. The analysis of these settings can reveal

important system and algorithm weaknesses.

D. Information about adversaries and online adaptation

In an adversarial environment, it is not realistic to expect

that operators have complete and perfect information on their

opponents. In this paper, we assume that operator i knows

that adversary i makes decisions online based on the solution

to the optimization problem (2), but has no access to the

value of Ri, P̂ij and ν̂ij , which is some private information

of adversary i. This implies that operator i knows that vi(k)
is in the form of (3), but is unaware of the real value of Lij

and ν̂ij . A more compact expression for vi(k) is given next.

Lemma 2.1: The vector vi(k) can be written in the

following compact form:

vi(k) = ΘT
i Φi(k)

= −
∑

j∈Ni

{Lij(pj(k) − (pi(k) + ui(k)) − νij) + ηij},

where ηij := Lij(νij − ν̂ij) ∈ R
d, and matrices Θi ∈

R
ni(d+1)×d, φi(k) ∈ R

nid, Φi(k) ∈ R
ni(d+1) are given

by:

ΘT
i := [Lii1 · · · Liini

ηii1 · · · ηiini
],

φi(k) := −







pi1(k) − (pi(k) + ui(k)) − νii1

...

pini
(k) − (pi(k) + ui(k)) − νiini






,

Φi(k) := −[φi(k)T 1 · · · 1]T ,

where Ni = {i1, . . . , ini
}.

Proof: This fact can be readily verified.

In the light of the above lemma, we will equivalently assume

that operator i is aware of vi(k) being the product of Θi and

Φi(k), without knowing the parameter Θi. It would be hard
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to gather the private information Θi of adversaries a priori.

We will exploit the ideas of reinforcement learning [33], and

adaptive control [5], that operators can use to estimate Θi

through continuous contact with adversaries. This will allow

operators to adapt their policies online and eventually defeat

adversaries.

Notations. In the sequel, we let tr be the trace operator of

matrices, and let ‖A‖F and ‖A‖ denote the Frobenius norm

and 2-norm of a real matrix A ∈ R
m×n, respectively. Recall

that ‖A‖2
F = tr(AT A) =

m
∑

i=1

n
∑

j=1

a2
ij and ‖A‖ ≤ ‖A‖F .

Consider the diagonal vector map, diagve : Rd×d → R
d,

defined as diagve(A) = v, with vi = Aii, for all i. Similarly,

define the diagonal matrix map, diagma : R
d×d → R

d×d,

as diagma(A) = D, with Dii = Aii, Dij = 0, for all

i, j and j 6= i. Let P≥0 : R
d → R

d be the projection

operator from R
d onto the non-negative orthant of Rd. Now

define Pi : R
ni(d+1)×d → R

ni(d+1)×d as follows. Given

Λ ∈ R
ni(d+1)×d, then Pi(Λ) = Λ̃ ∈ R

ni(d+1)×d, where

ΛT := [LT
ii1

· · · LT
iini

ηT
ii1

· · · ηT
iini

],

Λ̃T := [L̃T
ii1

· · · L̃T
iini

η̃T
ii1

· · · η̃T
iini

],

L̃T
ij = diagma(P≥0(diagve(L

T
ij))), ηT

ij = η̃T
ij , j ∈ Ni.

The block-decomposition of Λ and Λ̃ is analogous to that

of Θi in Lemma 2.1. The operator Pi will be used in the

learning step of the proposed algorithm below.

III. ATTACK-RESILIENT FORMATION CONTROL

ALGORITHM AND ANALYSIS

In this section, we propose a novel attack-resilient forma-

tion control algorithm, AR-FORM for short, and then sum-

marize its properties of guaranteeing the formation control

mission under malicious attacks. Due to the space limitation,

we omit the proofs of the main results.

Overall, the algorithm can be roughly described as follows:

At each time instant, each operator first collects the

latest locations of neighboring operators’ vehicles.

Then, the operator computes a control law ui(k)
minimizing a local formation error function by

assuming that her neighboring vehicles do not

move. This computation is based on the certainty

equivalence principle; i.e., operator i exploits her

latest estimate Θi(k) to predict how adversary i

corrupts her command as if Θi(k) were identical

to Θi. After that, the operator sends the new

command pi(k) + ui(k) to her associated vehicle.

Adversary i then corrupts the command by adding

the signal vi(k) parameterized by Θi. Vehicle i

receives, implements, and further sends back to

operator i the corrupted command pi(k)+ui(k)+
vi(k). After receiving the new location of her

vehicle, operator i computes the estimation error

of Θi, and updates her estimate to minimize an

estimation error function.

We now formally state the interactions of the ith group

consisting of operator, vehicle and adversary i in Algo-

rithm 1. The rule to compute ui(k), and the precise update

law for Θi(k) can be found there.

Algorithm 1 The AR-FORM Algorithm for group i

Initialization: Initial value Θ̃i ∈ R
ni(d+1)×d and estimate

Θi(0) = Pi[Θ̃i] of the adversary parameter.

Iteration: At each k ≥ 0, adversary, operator, and vehicle i

interact through the following sequence of steps:

1: Operator i receives pj(k) from operator j ∈ Ni, and

solves the following quadratic program:

min
ui(k)∈Rd

∑

j∈Ni

‖pj(k) − pi(k + 1|k) − νij‖
2
Pij

,

s.t. pi(k + 1|k) = pi(k) + ui(k) + Θi(k)T Φi(k), (4)

to obtain the optimal solution ui(k).
2: Operator i sends pi(k)+ui(k) to vehicle i, and generates

the estimate:

pi(k + 1|k) = pi(k) + ui(k) + Θi(k)T Φi(k).

3: Adversary i eavesdrops on pj(k) sent from operator j ∈
Ni to operator i, and corrupts pi(k) + ui(k) by adding

vi(k) = ΘT
i Φi(k).

4: Vehicle i receives and implements pi(k)+ui(k)+vi(k),
and then sends back pi(k + 1) = pi(k) + ui(k) + vi(k)
to operator i.

5: Operator i computes the estimation error ei(k) = pi(k+
1)− pi(k +1|k), and updates the parameter estimate as:

Θi(k + 1) = Pi[Θi(k) +
1

mi(k)2
Φi(k)ei(k)T ],

where mi(k) :=
√

1 + ‖Φi(k)‖2.

6: Repeat for k = k + 1.

Remark 3.1: Let Θi(k)T be partitioned in the form:

Θi(k)T = [Lii1(k) · · · Liini
(k) ηii1 (k) · · · ηiini

(k)],

where Lij(k) ∈ R
d×d and ηij(k) ∈ R

d, for j ∈ Ni =
{1, · · · , ni}. Then, the solution ui(k) to the quadratic pro-

gram in Step 1 can be explicitly computed as follows:

ui(k) =
(

∑

j∈Ni

Pij(I +
∑

l∈Ni

Lil(k))
)−1

×
∑

j∈Ni

Pij

{

(pj(k) − pi(k) − νij)

+
∑

l∈Ni

Lil(k)(pl(k) − pi(k) − νil) +
∑

l∈Ni

ηil(k)
}

. (5)

Hence, the program in Step 1 is equivalent to the computa-

tion (5). In Step 5, operator i utilizes a projected parameter

identifier to learn Θi online. This scheme extends the classic

(vector) normalized gradient algorithm; e.g., in [5], to a

class of matrices, and further incorporates a projection to

guarantee that ui(k) is well defined. That is, the introduction

of Pi ensures that the estimate Lij(k) is positive definite,
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and that I +
∑

j∈Ni
Lij(k) is nonsingular. As in [5], the

term 1
mi(k)2 Φi(k)ei(k)T in the update law of Θi(k) is

to minimize the error cost
ei(k)T ei(k)

mi(k)2 . Here, ei(k) is the

position estimation error, and mi(k) is a normalizing factor.

•
The following theorem guarantees that the proposed algo-

rithm allows the operator-vehicle network to achieve the de-

sired formation despite the malicious attacks of adversaries.

Theorem 3.1: (Convergence properties of the

AR-FORM algorithm): Consider any initial position

p(0) ∈ R
Nd of vehicles. If Assumptions 2.1 and 2.2

hold, then the AR-FORM algorithm for every group i

ensures that the vehicles asymptotically achieve the desired

formation; i.e., lim
k→+∞

dist(p(k), X∗) = 0. Furthermore, the

rate of convergence of the algorithm ensures

+∞
∑

k=0

∑

(i,j)∈E

‖pj(k) − pi(k) − νij‖
2 < +∞.

We provide a coupled of remarks to conclude this section.

Persistent excitation (e.g., in [5]) is not guaranteed to be

satisfied by the AR-FORM algorithm, thus the formation

convergence rate may not be exponential. Furthermore, with-

out persistent excitation, we cannot guarantee either the

convergence of the estimate Θi(k) to the true value Θi.

Note that the regressor Φi(k) is coupled by the locations

of different vehicles. Thus, we would need full coordination

between operators at each time instant to guarantee persistent

excitation. The absence of a centralized authority makes this

task challenging.

IV. SIMULATION

We now set out to elucidate the performance of our

proposed algorithm through a numerical example. Consider

a group of 15 vehicles which are initially randomly deployed

over the square of 50×50 as in Figure 2. Figure 3 delineates

the trajectory of each vehicle in the first 60 iterations of

the algorithm. The configuration of the vehicles at the 60th

iteration is given by Figure 4 and this one is identical to

the desired formation. This fact can be verified by Figure 5,

which shows the evolution of the formation errors. Figure 5

also demonstrates that the convergence rate in the simulation

is exponential and this is faster than our analytical result.

V. CONCLUSIONS

In this paper, we have studied a formation control problem

for a operator-vehicle network in the presence of a team

of adversaries. We have proposed a novel attack-resilient

distributed formation control algorithm, the AR-FORM, and

analyzed its asymptotic convergence properties. Our results

have demonstrated the potential of online learning to enhance

network resilience, and suggest a number of future research

directions which we plan to investigate. For example, more

challenging scenarios can be created by considering intel-

ligent adversaries who can learn some private information

of operators; e.g., νij and Pij , and adapt their attacking
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Fig. 2. Initial configuration of vehicles.
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Fig. 3. Trajectories of the vehicles during the first 60 iterations. The green
squares stand for initial locations and red circles represent final locations.

policies online. The current operator-vehicle architecture can

be enlarged to allow for more complex interactions. In

addition, it would be interesting to study the impact of other

attacks; e.g., denial-of-service attacks and replay attacks, to

cooperative control in the operator-vehicle network.
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