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Abstract— Motivated by the complexity of spatio-temporal
patterns of interconnected human processes (e.g., crowds, car
traffic, social networks), this paper sets forth the fractal dy-
namic games as an analytical tool for modeling and predicting
human dynamics. Starting from a statistical physics description
of interactions between agents and from the observed statisti-
cal properties of economic measures, we construct a master
equation characterizing the dynamics of cost functionals as
stochastic variables affected by additive and multiplicative noise
forces. Given the significance of human behavior, we allow
the cost distribution to depend on the evolution of agents
density. By coupling the description of agent dynamics through
a fractal structure with a generic stochastic utility function,
we formulate a new dynamic game. Employing optimal control
theory concepts, we derive a continuum formulation of the car
traffic dynamics optimization resulting in a nonlinear fractional
partial differential equation.

I. INTRODUCTION AND PRIOR WORK

The study of the dynamics of coupled technological and
human networks has received significant attention in re-
cent years. On the one hand, this is the result of major
theoretical developments in statistical physics via network
science [2][3], economics via game theory [15][16][25][26]
and econometrics [32]; on the other hand, it is the outcome
of the highly increasing availability of large data sets and
computational processing power for information storage,
analysis and mining. As far as these latter aspects are
concerned, we have witnessed research efforts to quantify the
statistical characteristics of various processes. These efforts
were brought to fruition when Mandelbrot developed the
fractal theory [31]. From heart rate signals [20] to brain
activity [42], from price volatility to individual wealth [6],
from communication workload over off [29] and on-chip [7]
links to electron transportation in semiconductor devices, all
processes exhibit fractal properties.

By employing network theory concepts researchers were
able to distinguish between Erdos-Renyi and scale-free
graphs, as well as characterize the structure of networks
such as the Internet, social networks, biological networks,
epidemiological networks, etc. For instance, Barabasi and
Albert [2] have shown that the structure of genetic networks
and the World Wide Web are better described by power laws
than by Poisson distribution. Along the same lines, Blank and
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Solomon [6] have proposed a power law model for calculat-
ing the distribution of city population and investors’ wealth
on stock markets. All these findings pose new challenges to
modeling networked human processes.

Concerned with modeling competition and coordination
behavior in interconnected human processes, game theory ap-
proaches [34][33][30][37][1] have evolved into evolutionary
game theory [11][19][12][40]. Evolutionary games are de-
fined as ordinary differential equations of some macroscopic
measures (e.g., mean expected success of a strategy). Along
the same lines, Helbing [15][16] proposed a microscopic
view of evolutionary dynamic games by describing individual
behavior via a classical master equation [35][14]. In this
setup, each individual can choose one strategy from a set
of given strategies and the master equation describes the
dynamics of the probability of finding a certain configuration
of individuals embracing the set of strategies.

By taking the theory of dynamical games to a new
level and relying on statistical mechanics principles, Lasry
and Lions [25][26][27][28] set forth the concept of mean
field games (MFG). In this context, the individuals in a
population group interact with each other like particles in
a thermodynamic gas and their state is described by a
stochastic differential equation. The state and action of each
individual affect the instantaneous cost function of all other
players through a statistical distribution of the individuals
[22]. Simply speaking, the aim of MFG is to minimize a
cost function associated with a population of players. Hence,
it depends on the distribution of players dynamics. This
distribution is defined via a Fokker-Planck equation.

Several applications of MFG have been discussed in the
context of the production of an exhaustible resource [23],
human capital accumulation [28], pedestrian dynamics [10],
and in the choice of an insulation technology in a group
of households [24]. Motivated by the numerical analysis of
MFG, a discrete time finite state space description has been
presented in [21]. Along the same lines, Friedman and Ostrov
[13] show that the dynamics of players on a financial market
can exhibit shock waves leading to a clumped distribution.
In simple terms, their conclusion is that the interactions
among agents (e.g., adjustments of costs) dictated also by
the inter-play between population structures or distribution
and landscape lead to nontrivial dynamics.

Despite the considerable contribution of evolutionary
game theory and mean field games, which has complemented
prior advances in the field of statistical mechanics and
game theory, we argue that one needs to take into account
the intrinsic space and time characteristics (e.g., power
law inter-event times between individual actions or price
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Fig. 1. a) US Dollar to Euro exchange rates between January 4th, 1999 and February 11th, 2011 exhibits a time dependent mean, variance, skewness
and kurtosis. b) Time series of the effective federal funds rate between July 1st, 1954 and February 16th, 2011 also exhibit a non-stationary statistical
behavior. c) Multifractal spectrum for of US Dollar to Euro exchange rates and effective federal funds rates which influence the players costs.

changes) of interconnected human processes for modeling
and optimization purposes. In this context, we set forth a
fractal dynamic game as a finite horizon optimization of
two coupled equations: a fractional Fokker-Planck equation
describing the dynamics of the density of agents through a
fractal structure and a fractional master equation governing
the cost evolution (which depends on agents density). To
illustrate such a dynamic game, we consider the problem of
traffic modeling where agents represent cars on fractal roads.

The remainder of the paper is structured as follows. In
Section II.A, we discuss how the master equation of cost
variable, which is subject to additive and multiplicative noise
forces, can be constructed. Having the cost characterized
via a master equation helps us choose a better optimization
function in terms of higher order moments. Section II.B
describes how the agents dynamics through fractal struc-
tures can be modeled. For completeness, we also relate
various model parameters to real world measurements (i.e.
car flow). Section III provides the mathematical description
of the fractal dynamic game and the derivation of a fractal
Hamilton-Jacoby equation. Section IV summarizes the paper
contribution and gives a survey of future work.

II. FRACTAL-BASED TRAFFIC MODELING

A. A Statistical Physics Approach to Game Utility Modeling

Like any complex system, the macroscopic perspective
of traffic dynamics and congestion reveals that car traffic
exhibits various characteristics such as competition, frustra-
tion, collectivity (collective behavior), adaptability, sporadic
synchronization, pseudo-periodicity, complex space and time
correlations. From a microscopic perspective, the traffic is
understood as a complex phenomenon that results from the
effort of each agent (particle) that travels from one particular
source point to a very specific destination while seeking to
optimize a cost function (e.g., time of total traveling from
source to destination, amount of money/fuel spent/consumed
during the entire itinerary). This led towards a game theory
approach where each agent optimizes a deterministic cost
function [25][26][27][28].

However, due to the complex nature of human behavior
and the availability of advanced technology in a large number
of current vehicles (e.g., satelite radio/television that allow

the quick spread of news about gas price, sale events, jammed
roads, etc.), the cost cannot be reduced to a deterministic
function. In addition to being stochastic in nature, many of
such costs exhibit complex statistical and time dependent
characteristics. Fig. 1 shows the time series and a few statis-
tical measures (i.e., mean, variance, skewness and kurtosis)
of the US Dollar to Euro exchange rates (a) and the effective
federal fund rates (b) over a certain time interval. These time
series exhibit not only a pronounced non-stationary signature,
but also non-zero higher order moments. This implies that
the modeling of these real world processes should not rely
on Gaussian assumptions. In addition, many real world
processes exhibit a dynamics that can be characterized by one
or multiple fractal dimensions, as shown in Fig. 1.c. Given
this fact, modeling approaches need to embrace the use of
fractional derivatives [18]. Consequently, our next goal is to
show how we can construct a dynamical equation based on
fractional derivatives to model a process exhibiting fractal
behavior.

In addition to the reported economic metrics, there are
many other factors that affect human behavior. For instance,
although one agent seeks to minimize his/her amount of
money spent on gas by driving along the shortest path, a sales
event news or a nearby accident along its predefined shortest
path may make him/her choose alternative longer paths
contributing to increasing his/her expenses not necessarily in
an additive manner, but also in a multiplicative way. Simply
speaking, we can represent the cost paid by an agent by
means of the following stochastic differential equation:

dαu(x, y, t)

dtα
= f(u, d, t) + g(u, d, t)ξ(t) + η(t) (1)

where u(x, y, t) defines the cost an agent pays to reach
his/her destination and α is the fractional order of the
derivative associated with the fractal behavior. In accordance
with our assumption about various nonlinear interactions
that contribute to a particular cost instance, (1) describes
the fractal dynamics of the cost function u(x, y, t), which
is subject to an external field V (u), where f(u, d, t) =

−dV (u,d,t)
du can be represented by a nonlinear dependence

between the previous costs u(x, y, t) and previous deci-
sions d(t), a weighted functional g(u, d, t), multiplicative
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Fig. 2. a) Map of central London streets. b) Comparison between the number of boxes as a function of box size results for the street structure of London
and a full two dimensional plane. The London streets configuration presents a fractal structure with a fractal dimension of 1.857.

noise ξ(t) and additive noise η(t). From a thermodynamic
perspective, the existence of multiplicative noise can be
justified by the stochastic nature of the external fields (e.g.,
goals, desideratum, news broadcasting, fuel price fluctua-
tions, money income) or boundary conditions (e.g., salary
increases, depreciation). Along the same lines, the additive
noise can be seen as the result of the existence of various
degrees of freedom choices (e.g., particular decisions can
restrict or spread the amount of choices at later stages in the
dynamics) or the thermal agitation (non-zero temperature) of
the entire traffic system.

Adopting a statistical physics approach1, our next goal
is to find a Fokker-Planck type of equation describing
the dynamics of the probability distribution function (PDF)
P (u, t) that the stochastic cost variable attains value u at
time t or in mathematical terms P (u, t) = 〈δ (u− u(t))〉,
where δ (u− u(t)) represents the Delta function and the
angular brakets 〈...〉 represent the averaging over the noise
realisations. Using the statistical physics standard method
of characteristic function of cost u(x, y, t), we compute the
Fourier transform of P (u, t) obtaining:

P (v, t) =

∫
P (u, t)e−ivudu =

〈
e−ivu(t)

〉
(2)

Relying on the calculus of variations techniques, we
construct a dynamical equation for the PDF P (u, t) by
computing the changes δP (v, t) = P (v, t + ∆t) − P (v, t)
determined by an infinitesimal time increment ∆t→ 0:

δP (v, t) = −iv∆tα
〈
e−ivu(x,y,t)f(u, d, t)

〉
+

+
〈
e−ivu(x,y,t)

(
e−ivg(u,d,t)δξ − 1

)〉
+ (3)

+
〈
e−ivu(x,y,t)

(
e−ivδη − 1

)〉
where the term ∆tα is a consequence of the fact that the
stochastic process u(x, y, t) may exhibit fractal dynamics
as shown in Figure 1.c. Using the properties of Fourier

1In statistical physics, the main tool for studying stochastic dynamics
affected by multiplicative noise is by constructing a dynamical equation for
the probability distribution function [9].

transform, the first term in equation (3) can be written as
follows:∫

iveivu
〈
e−ivuf(u, d, t)

〉
dv =

∂ [f(u, d, t)P (u, t)]

∂u
(4)

Moreover, we divide both sides of (3) by ∆tα, take
the limit ∆t → 0 and consider the following defition of
fractional derivative of order α [18]:

∂αP (u, t)

∂tα
= lim

∆t→0

P (u, t+ ∆t)− P (u, t)

∆tα
(5)

Hence, we obtain the next dynamical equation for P (u, t):

∂αP (u, t)

∂tα
= −∂ [f(u, d, t)P (u, t)]

∂u
+

+ lim
∆t→0

∫ pξ(
u−z

g(z,d,t) ,∆t)− δ(
u−z

g(z,d,t) )

|g(z, d, t)|∆tα
P (z, t)dz +

+ lim
∆t→0

∫
pη(u− z,∆t)− δ(u− z)

∆tα
P (z, t)dz (6)

Equation (6) describes the evolution of P (u, t) associated
with a fractal process u via fractional derivatives rather than
the classical integer order derivative. This is partially justified
by the cost time series in Fig. 1. Although these series are
continuous, they are not differentiable.

B. Traffic Through Fractal Road Structures

Statistical physics aims at enhancing our understanding of
the properties and evolution of systems consisting of many
interacting elements in both space and time [39]. Conse-
quently, instead of dealing with and analyzing the evolution
of each agent in our game (e.g., number of cars in road traffic,
number of buyers on market), we assume that our entire
population of agents is distributed across space and evolves
according to very specific rules (depending on the nature
of interactions). More precisely, we seek to describe the
evolution of a PDF n(x, y, t) (where

∫ ∫
n(x, y, t)dxdy = 1

for any time instant t) representing the density of agents at
space coordinates (x, y) at time t. For simplicity, we also
assume that all agents have similar interests. This implies
that agents try to minimize their cost function (e.g., traveling
time, fuel consumption).
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Fig. 3. a) Time series for the traffic flow, flow increments and absolute flow increments recorded between February 3, 2010 and February 22, 2011 at
the sensor between the 11th Street and Bryant Street in San Francisco obtained from [8]. Both the flow increments and their absolute values exhibit a
self-similar structure. b) Time intervals at which the traffic flow attains value 10, 20, and 40 cars per 5 minutes exhibit a spiky behavior. c) The observed
self-similar structure is confirmed by measuring the multifractal spectrum of the traffic flows along the two lanes recorded by the sensor. The existence of
fractal behavior calls for new modeling approaches of road traffic.

Before going into the details of deriving a dynamical
equation for n(x, y, t), we make a few observations: 1) the
structure on which our agents (cars) evolve (move) does not
entirely fill the 2D (or for that matter 3D) and is most often
proved to be fractal [5]; 2) the distribution of agents across
the entire space is not necessarily uniform, but it is frequently
very skewed, maybe even power law distributed; 3) the
distribution of inter-event times (e.g., time intervals between
successive traffic flow increments) is better approximated
by a power law rather than by an exponential distribution
denoting a fractal dynamic of traffic processes. For com-
pleteness, Fig. 2 shows the road map of London (a) and the
box counting2 graph leading to a fractal dimension of 1.857.
The existence of fractional dimensionality in road structures
calls for modeling approaches based on fractional derivatives
of the distribution of players (cars) in a dynamic game. In
addition, Fig. 3 shows the traffic flow, flow increments and
their multifractal spectrum. This calls for a new modeling
approach to the agents density dynamics (i.e., n(x, y, t)).

To derive a partial differential equation for the density
n(x, y, t), we follow the classical technique of Wang and
Uhlenbeck [41] and consider the following integral together
with its continuum limit time derivative approximation:∫ ∫

R(x, y)
∂βn(x, y, t)

∂tβ
dxdy = (7)

= lim
∆t→0

∫ ∫
R(x, y)

n(x, y, t+ ∆t)− n(x, y, t)

∆tβ
dxdy

where R(x, y) is an arbitrary function which vanishes for
x, y → ±∞. Note that in (7) we assume that the evolution
of n(x, y, t) is fractal in time as shown in Fig. 3 and use
the definition in (5) to express the fractal dynamics via a
fractional derivative of order β. Using the Bayes formula,
the right hand side in (7) can be written as follows:

lim
∆t→0

∫ ∫
R(x, y)

n(x, y, t+ ∆t)− n(x, y, t)

∆tβ
dxdy =

2The box counting method is used to estimate the fractal dimension of
an object as the slope of a linear fit between the logarithm of the number of
boxes requires to cover optimally the object and the logarithm of the box
size [31].

= lim
∆t→0

∫ ∫
R(x, y)

∆tβ
{
∫ ∫

n(x, y, t+ ∆t|x1, y1, t) ·

n(x1, y1, t)dx1dy1 − n(x, y, t)}dxdy (8)

Interchanging the order of integration and using the fol-
lowing fractional Taylor expansion:

R(x, y) = R(x1, y1) + (x− x1)γ ∂
γR(x,y)
∂xγ | (x,y)=

(x1,y1)

+

+(y − y1)γ ∂
γR(x,y)
∂yγ | (x,y)=

(x1,y1)

+ (x− x1)2γ ∂
2γR(x,y)
∂x2γ | (x,y)=

(x1,y1)

+(x− x1)γ(y − y1)γ
[
∂2γR(x,y)
∂xγ∂yγ + ∂2γR(x,y)

∂yγ∂xγ

]
(x,y)=

(x1,y1)

+

+(y − y1)2γ ∂
2γR(x,y)
∂y2γ | (x,y)=

(x1,y1)

+O
(
x2γ , y2γ

)
+ ... (9)

the density n(x, y, t) satisfies the following equation:∫ ∫
R(x, y)∂

βn(x,y,t)
∂tβ

dxdy =

=
∫ ∫

n(x, y, t)[(x− x1)γ ∂
γR
∂xγ + (y − y1)γ ∂

γR
∂yγ +

+(x− x1)γ(y − y1)γ
(

∂2γR
∂xγ∂yγ + ∂2γR

∂yγ∂xγ

)
+

+(x− x1)2γ ∂
2γR(x,y)
∂x2γ + (y − y1)2γ ∂2γR

∂y2γ ]dxdy (10)

where γ is the fractional order associated with the fractal
structure on which the agents evolve. Considering the inte-
gration by parts formula:∫

∂γR(x, y)

∂xγ
n(x, y, t)dx =

∫
R(x, y)

∂γn(x, y, t)

∂xγ
dx

(11)
(10) can now be written into the following form:∫ ∫

R(x, y){∂
βn(x,y,t)
∂tβ

− ∂γ

∂xγ [A1(x, y, t)n(x, y, t)]−
− ∂γ

∂yγ [A2(x, y, t)n(x, y, t)]− ∂2γ

∂x2γ [A3(x, y)n(x, y, t)]−

− ∂2γ

∂y2γ [A6(x, y)n(x, y, t)]− ∂2γ

∂xγ∂yγ [A4(x, y)n(x, y, t)]

− ∂2γ

∂yγ∂xγ [A5(x, y)n(x, y, t)]}dxdy = 0 (12)

where internal functions A1(x, y, t), A2(x, y, t), A3(x, y, t),
A4(x, y, t), A5(x, y, t) and A6(x, y, t) are given by:

A1(x, y, t) = lim∆t→0

∫ ∫
(x− x1)γ

n(x−x1,y−y1,∆t)
∆tβ

dx1dy1 (13)
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A2(x, y, t) = lim∆t→0

∫ ∫
(y − y1)γ

n(x−x1,y−y1,∆t)
∆tβ

dx1dy1 (14)

A3(x, y, t) = lim∆t→0

∫ ∫
(x− x1)2γ

n(x−x1,y−y1,∆t)
2∆tβ

dx1dy1 (15)

A4(x, y, t) = A5(x, y, t) = lim∆t→0

∫ ∫
(x− x1)γ

(y − y1)γ n(x−x1,y−y1,∆t)
∆tβ

dx1dy1 (16)

A6(x, y, t) = lim∆t→0

∫ ∫
(y − y1)2γ

n(x−x1,y−y1,∆t)
2∆tβ

dx1dy1 (17)

The only way to satisfy (12) is for the terms within curly
brackets to vanish, leading to a fractional Fokker-Planck
equation:

∂βn
∂tβ
− ∂γ

∂xγ [A1n]− ∂γ

∂yγ [A2n]− ∂2γ

∂x2γ [A3n]−

− ∂2γ

∂xγ∂yγ [A4n]− ∂2γ

∂yγ∂xγ [A5n]− ∂2γ

∂y2γ [A6n] = 0 (18)

where β and γ are the fractal exponents characterizing the
traffic flow process and the road structure across which the
agents navigate and interact. Note also that (18) contributes
to the state-of-the-art in traffic modeling by accounting for
various fractal characteristics of transport processes, which
have not been addressed by current models [17][38]. Next,
we discuss how the fractal dynamic game can be formulated.

III. OPTIMAL FRACTAL DYNAMIC GAMES

Borrowing concepts from optimal control [4], we define
the fractal dynamic game by considering a finite time horizon
between an initial time ti and a final time tf over which each
player minimizes a criterion of the following form:

J(t, x, y, n) = mind(t)∈D
∫ xmax
xmin

dxγ
∫ ymax
ymin

dyγ
∫ umax
umin∫ tf

ti
c(u, x, y, n, τ)P (u, τ |x, y, n, d)n(x, y, τ)dταdu(19)

where c(u, x, y, n, τ) is a strictly convex function that de-
pends not only on the cost u, but also on the density of
players n(x, y, τ) and where P (u, τ |x, y, n, d) is described
by a master equation of the type presented in (6) and
represents the conditional PDF of the costs to attain value
u at time τ given the state (x, y) and the corresponding
actions d(t) of the density of players n(x, y, τ). Note that
in (19) the dynamics of the players are assumed to follow
not a classical Poisson process as in [25][26][28], but are
in fact characterized by a power law between inter-event
times. Thus, these dynamics should be described by a fractal
stochastic differential equation. Moreover, in the context of
traffic modeling, the cost function depends both on the speed
at which an agent wants to move in order to minimize his/her
travel time and on the traffic density n(x, y, τ). Following
the lines of dynamic games, we assume that all players try
to minimize the same type of criterion.

Let us now consider an infinitesimal time interval ∆t and
split the optimization of the criterion over two intervals,
[ti, ti + ∆t] and [ti + ∆t, tf ], as shown below:

J(t, x, y, n) = min d(τ)∈D
ti≤τ≤ti+∆t

∫ xmax
xmin

dxγ
∫ ymax
ymin

dyγ∫ umax
umin

du
∫ ti+∆t

ti
dταc(u, x, y, n, τ)P (u, τ |x, y, n, d) (20)

n(x, y, τ) +min d(τ)∈D
ti+∆t≤τ≤tf

∫ xmax
xmin

dxγ
∫ ymax
ymin

dyγ
∫ umax
umin∫ tf

ti+∆t
c(u, x, y, n, τ)P (u, τ |x, y, n, d)n(x, y, τ)dταdu

Assuming that the cost function c(u, x, y, n, τ) is continuous,
we can approximate the first term in (20) by the next relation:∫ t+∆t

t
c(u, x, y, n, τ)P (u, τ |x, y, n, d)n(x, y, τ)dτα =

= c(u, x, y, n, t)P (u, t|x, y, n, d)∆tα +O(∆tα) (21)

where O(∆tα) implies that infinitesimals of order higher
than ∆tα are neglected. The fractal analysis of various cost
functions shown in Fig. 1.c makes us to adopt a fractional
differentiation ∆tα of order α.

Now, we assume that the function J(ti + ∆t, x, y, n) can
be expanded in terms of fractional derivatives by means of
the Taylor formula as follows:

J(ti + ∆t, x, y, n) = J(ti, x, y, n) + ∂αJ
∂tα ∆tα + ∂γJ

∂xγ ∆xγ

+∂γJ
∂yγ ∆yγ + ∂2γJ

∂x2γ ∆x2γ + ∂2γJ
∂y2γ ∆y2γ+ (22)

+ ∂2γJ
∂xγ∂yγ ∆xγ∆yγ +O(∆tα) +O(∆x2γ ,∆y2γ)

where all the fractional derivatives (which can be particu-
larized to classical integer order derivatives) are evaluated
in (t, x(t), y(t)). Note that in writing the relation in (22),
we assume that J(ti, x, y, n) is continuous and fractal and it
does not need to be differentiable.

By substituting (21) and (22) in (20), dividing it by ∆tα

and taking the limit lim∆t→0, we obtain a fractal Hamilton-
Jacobi type of equation for the loss function J(ti, x, y, n):

∂αJ
∂tα +B1(t, x)∂

γJ
∂xγ +B2(t, y)∂

γJ
∂yγ +B3(t, x)∂

2γJ
∂x2γ +

B4(t, y)∂
2γJ
∂y2γ +B5(t, x, y) ∂2γJ

∂xγ∂yγ +mind(t)∈D (23)∫ umax
umin

c(u, x, y, n, τ)P (u, τ |x, y, n, d)dταdu = 0

where the funtional coefficients B1(t, x), B2(t, y), B3(t, x),
B4(t, y) and B5(t, x, y) satisfy the following relations:∫ xmax

xmin
dxγ

∫ ymax
ymin

dyγ
∫ umax
umin

du
∫ tf
ti

(xt+∆t − xt)γ (24)

P (u, t|xt, yt, n, d)n(xt, yt, t)dt
α = B1(t, x)∆tα +O(∆tα)

∫ xmax
xmin

dxγ
∫ ymax
ymin

dyγ
∫ umax
umin

du
∫ tf
ti

(yt+∆t − yt)γ (25)

P (u, t|xt, yt, n, d)n(xt, yt, t)dt
α = B2(t, y)∆tα +O(∆tα)

∫ xmax
xmin

dxγ
∫ ymax
ymin

dyγ
∫ umax
umin

du
∫ tf
ti

(xt+∆t − xt)2γ (26)

P (u, t|xt, yt, n, d)n(xt, yt, t)dt
α = B3(t, x)∆tα +O(∆tα)

∫ xmax
xmin

dxγ
∫ ymax
ymin

dyγ
∫ umax
umin

du
∫ tf
ti

(yt+∆t − yt)2γ (27)

P (u, t|xt, yt, n, d)n(xt, yt, t)dt
α = B4(t, y)∆tα +O(∆tα)
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∫ xmax
xmin

dxγ
∫ ymax
ymin

dyγ
∫ umax
umin

du
∫ tf
ti

(xt+∆t − xt)γ

(y(t+ ∆t)− y(t))γP (u, t|xt, yt, n, d)n(xt, yt, t)dt
α =

= B5(t, x, y)∆tα +O(∆tα) (28)

Note that we omit the subscripts t for xt and yt because
we assume that the variables x and y are evaluated at time
t. Meanwhile, the density n(x, y, t) is still described by the
fractional Fokker-Planck type of equations:

∂βn(x,y,t)
∂tβ

− ∂γ

∂xγ [A1n(x, y, t)]−
− ∂γ

∂yγ [A2n(x, y, t)]− ∂2γ

∂x2γ [A3n(x, y, t)]−

− ∂2γ

∂xγ∂yγ [A4n(x, y, t)]− ∂2γ

∂yγ∂xγ [A5n(x, y, t)]−

− ∂2γ

∂y2γ [A6n(x, y, t)] = 0 (29)

The relations in (23) and (29) with prescribed final costs
and intial conditions on n(x, y, t) represent a fractal dynamic
game. More precisely, (23) describes the backward evolution
of agents decisions based on their future desideratum while
(24) characterizes the forward evolution of the traffic based
on its initial distribution.

IV. CONCLUSIONS AND FUTURE WORK

In this paper, we defined a new fractal dynamic game
by using finite-horizon optimal control theory and fractional
(fractal) calculus concepts. The proposed fractal differential
game facilitates the modeling of various human and bio-
logical networked processes such as road traffic or crowd
evolution. By assuming that traffic agents are cost minimizers
and by investigating the fractal structure of various real world
processes, we set forth novel models for traffic behavior.
Nevertheless, solving such a complex fractal dynamic game
is a nontrivial task and requires future work because we need
to develop efficient and robust numerical algorithms for the
prediction of road traffic and financial market evolution.
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