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Abstract—The objective of this paper is to propose a new
Direct MRAC (Model Reference Adaptive Control), having finite-
time convergence of the tracking error and the parameter
estimation algorithm under appropriate Persistence of Excitation
Conditions. Moreover, enhanced robustness properties are also
achieved. This is obtained by adding some strong, i.e. non
locally Lipschitz or discontinuous, nonlinearities to the controller
and parameter estimation algorithm of the classical MRAC.
A Lyapunov-based approach is used to prove these properties.
Some simulations illustrate how the proposed algorithm provides
the MRAC with a much faster convergence of the tracking
and parameter errors. Moreover, the improved convergence is
obtained with less control action and with enhanced robustness
properties of the control loop.

I. INTRODUCTION

The direct Model Reference Adaptive Control (MRAC) is

a well-known approach for adaptive control of linear and

some nonlinear systems [13], [14], [2], [3]. When the Linear

Time-Invariant (LTI) plant has relative degree n∗ = 1 and the

reference model is Strictly Positive Real (SPR), the controller

is particularly simple to implement, and to design. In this

case the convergence analysis becomes very simple by using

the passivity properties of the error equation. Fig 1 gives

the basic structure of the MRAC. In the Direct MRAC the

tracking error dynamics, i.e. the difference between the desired

behavior of the output of the plant, given by the behavior

of the output of the reference model, and its actual value,

is represented as a non-linear dynamical system, depending

affinely on the Controller parameters. The Adjustment Mech-

anism tunes these controller parameters in such a way, that

convergence of reference model’s output ym and plant’s output

yp is achieved. Under appropriate persistence of excitation

conditions asymptotic convergence of the parameters to their

nominal values can be also achieved [13], [14], [2], [3].

In [8] a new recursive algorithm for parameter estimation

in finite time, and with improved robustness properties, has

been proposed. Its structure resembles the classical parameter

estimation algorithms, but extra strong (not locally Lipschitz

or discontinuous) nonlinear terms are added, so that the

convergence and robustness properties of the basic linear

algorithm are enhanced. These nonlinear terms are borrowed

from the Super-Twisting Algorithm (STA), a second-order

sliding mode algorithm proposed for the first time by [4].

Due to its strong convergence and robustness properties, this

algorithm has proved to be useful in several applications as,

for example, exact differentiators [5], [6], output feedback

controllers [6], and observers [1]. A Lyapunov function for

this algorithm has been presented in [10] (see also [9]), and

the algorithm has been generalized in [11], [12]. The parameter

estimation algorithm proposed in [8] inherits some of the

properties of the Generalized Super-Twisting Algorithm.

The objective of this paper is to modify the Adjustment

Mechanism of the classical Direct MRAC by adding the Super-

Twisting-Like nonlinearities, so as to achieve the finite-time

convergence and robustness properties. A Lyapunov-based

approach is used to prove these properties. It is shown, also

by means of simulations, that the proposed algorithm provides

the MRAC a much faster convergence of the tracking error,

and (when possible) of the parameter errors. More importantly,

this improved convergence is obtained with less control action

and with improved robustness properties of the control loop.

II. MRAC WITH RELATIVE DEGREE n∗ = 1

A. Classical MRAC

The basic structure of a MRAC scheme is shown in Fig. 1.

As it was mentioned the reference model is chosen to generate

the desired trajectory, ym, that the plant yp output has to follow.

The control C(θ ) in the direct MRAC has an structure that

depends on unknown constant parameters which are updated

by an adaptive law.

Fig. 1. General structure of MRAC scheme [2].

For the classical Direct MRAC [13], [2], [3] one considers

the SISO, LTI plant

ẋp = Apxp +Bpup

yp =CT
p xp

(II.1)
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where xp ∈R
n; yp, up ∈R

1 and Ap, Bp, Cp have the appropriate

dimensions, that can also be described in the input/output form

yp = Gp(s)up = kp

Zp(s)

Rp(s)
up (II.2)

where Zp, Rp are monic polynomials and kp is a constant

referred to as the “high frequency gain”. The reference model,

selected by the designer, is described by

ẋm = Amxm +Bmr, xm(0) = xm0

ym =CT
mxm

(II.3)

where xm ∈ R
pm for some integer pm; ym, r ∈ R

1 and r

is the reference input, which is assumed to be uniformly

bounded and piecewise continuous function of time. The

transfer function of the reference model, given by

ym =Wm(s)r = km

Zm(s)

Rm(s)
r (II.4)

where Zm(s), Rm(s) are monic polynomials, km is a constant.

When the parameters of the plant are known, the Model

Reference Control (MRC) problem consists in determining the

plant input up so that all signals are bounded and the plant

output yp tracks the reference model output ym for the class

of reference input r (t) mentioned. In order to meet the MRC

objective it is assumed that both Gp(s) and Wm(s) satisfy the

following assumptions:

A1 An upper bound n of the degree np of Rp(s) is

known.

A2 The relative degree n∗ = np−mp of Gp(s) is one, i.e.

n∗ = 1.

A3 Zp(s) is a monic Hurwitz polynomial of degree mp =
np − 1.

A4 The sign of the high frequency gain kp is known.

B1 Zm(s), Rm(s) are monic Hurwitz polynomials of

degree qm, pm, respectively, where pm ≤ n.

B2 The relative degree n∗m = pm −qm of Wm is the same

as that of Gp(s), i.e., n∗m = n∗ = 1.

B3 Wm(s) is designed to be Strictly Positive Real (SPR).

Under these conditions, if the parameters of the plant (II.1)

are known, the MRC problem can be solved by the control

law given by [13], [2]

ẇ1 = Fw1 + gup, w1(0) = 0 (II.5a)

ẇ2 = Fw2 + gyp, w2(0) = 0 (II.5b)

up = θ ∗T w (II.5c)

where w1,w2 ∈ R
n−1,

w =
[
wT

1 wT
2 yp r

]T
, θ ∗ =

[
θ ∗T

1 θ ∗T
2 θ ∗T

3 c∗0
]T

(II.6)

F =




−λn−2 −λn−3 · · · −λ0

1 0 · · · 0
...

...
. . .

...

0 · · · 1 0


 , g =




1

0
...

0


 , (II.7)

λi are the coefficients of

Λ(s) = sn−1 +λn−2sn−2 + · · ·+λ1s+λ0 = det(sI −F) ,

that is an arbitrary monic Hurwitz polynomial of degree n−1

that contains Zm (s) as a factor, i.e., Λ(s) =Λ0 (s)Zm (s), being

Λ0 (s) monic, Hurwitz and of degree n0 = n− 1− qm. θ ∗ is

the vector of nominal values of the controller coefficients.

When the parameters of the plant are unknown, the objec-

tives of the Model Reference Adaptive Control (MRAC) is

also to design the control variable up so that the same MRC

objectives are met. It is well-known [2], [14], [13]that this

objective is attained if the control law (II.5c) is replaced by

up = θ T (t)w (II.8)

where θ (t) is the estimate of θ ∗, generated by

θ̇ (t) =−Γe1wsign(ρ∗) , (II.9)

where

e1 = yp − ym , sign(ρ∗) = sign

(
kp

km

)
, Γ = ΓT > 0 . (II.10)

This is a classical Adaptive Control result [2], [13]

Theorem 1. Under the stated assumptions the MRAC scheme

given by (II.8-II.10) guarantees that:

1) All signals in the closed-loop plant are bounded and the

tracking error e1 converges to zero asymptotically with

time for any reference input r ∈ L∞ .

2) If r is sufficiently rich of order 2n, ṙ ∈ L∞ and Zp(s),
Rp(s) are relatively coprime, then the parameter error

|θ̃ |= |θ −θ ∗| and the tracking error e1 converge to zero

exponentially fast.

B. Finite-time convergent MRAC

In order to enhance the convergence properties of the usual

MRAC, some nonlinear correction terms will be added to

the classical adaptive control law. These are motivated by the

higher order sliding modes and, in particular, by the finite-time

convergent parameter estimation algorithm introduced in [8].

The modified controller and adaption laws have the form

up = θ T (t)w− k1φ1 (e1)sign(ρ∗) (II.11)

θ̇ (t) =−Γφ2 (e1)wsign(ρ∗) , (II.12)

where

φ1 (e1) = µ1 |e1|1/2
sign(e1)+ µ2e1

φ2 (e1) =
µ2

1
2

sign(e1)+
3
2

µ1µ2 |e1|1/2
sign(e1)+ µ2

2 e1

(II.13)

and µ1 > 0, µ2 > 0 are arbitrary positive constants. If µ1 =
0, µ2 = 1 , k1 = 0 and Γ = 1 the classical MRAC (II.8-

II.9) is recovered. The extra non Lipschitz continuous term

|e1|1/2
sign(e1) in φ1 and the discontinuous term sign(e1)

in φ2 are able to accelerate the tracking error e1 and the

parameter error θ̃ so that, under appropriate conditions, they

will converge in finite time. The main contribution of this

paper is the following Theorem (cfr. with Theorem 1).
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Theorem 2. Assume that Zm (s) = 1, i.e. it is a polynomial of

degree zero. Under the stated assumptions the MRAC scheme

given by (II.11-II.12) guarantees that:

1) All signals in the closed-loop plant are bounded and the

tracking error e1 converges to zero asymptotically with

time for any reference input r ∈ L∞ .

2) If r is sufficiently rich of order 2n, ṙ ∈ L∞ and Zp(s),
Rp(s) are relatively coprime, then the parameter error

|θ̃ |= |θ −θ ∗| and the tracking error e1 converge to zero

in finite time.

It is also shown in the proof of the Theorem, that the control

loop is robust against additive perturbations in the control

channel and in the parameters, i.e. bounded perturbations

entering in the control channel, and/or bounded perturbations

of the parameters’ derivatives, cause a bounded control error.

III. PROOF OF THEOREM 2

The proof will be divided in several parts.

A. The error dynamics

Plant (II.1) and controller (II.11) can be represented as

Ẋc = A0Xc +Bcup, Xc(0) = X0

yp =CT
c Xc

up = θ T w− k1φ1 (e1)sign(ρ∗)
(III.1)

where Xc =
[
xT

p wT
1 wT

2

]T
,

A0 =




Ap 0 0

0 F 0

gCT
p 0 F



 , Bc =




Bp

g

0





CT
c =

[
CT

p 0 0
]

(III.2)

and then add and subtract the desired input Bcθ ∗T w to obtain

Ẋc = A0Xc +Bcθ ∗T w+Bc(up −θ ∗T w) . (III.3)

If we absorb the term Bcθ ∗T w into the homogeneous part of

(III.3), we end up with the representation

Ẋc = AcXc +Bcc∗0r+Bc

(
up −θ ∗T w

)
, Xc(0) = X0

yp =CT
c Xc

(III.4)

where Ac =




Ap +Bpθ ∗
3 CT

p Bpθ ∗T Bpθ ∗T

gθ ∗CT
p F + gθ ∗T

1 gθ ∗T
2

gCT
p 0 F


 and up =

θ (t)T w− k1φ1 (e1)sign(ρ∗).
If the parameters of the plant were known, then the nominal

control law up = θ ∗T w would produce in equation (III.4) the

closed loop in the nominal case

Ẋm = AcXm +Bcc∗0r, Xm(0) = Xm0

ym =CT
c Xm

(III.5)

that corresponds exactly with the nominal model, i.e. Wm (s) =
CT

c (sI−Ac)
−1

Bcc∗0. Note that (III.5) is a nonminimal rep-

resentation of the reference model. This shows that equa-

tion (III.4) is the same as the closed-loop system in the

known parameter case except for the additional input term

Bc

(
up −θ ∗T w

)
that depends on the choice of the input up.

Let e = Xc −Xm and e1 = yp − ym , where Xm is the state of

the reference model (III.5), we have the error equation

ė = Ace+Bc

(
up −θ ∗T w

)
, e(0) = e0

e1 =CT
c e .

(III.6)

Substituting for the control law we obtain the error equation

ė = Ace+ B̄cρ∗ (θ̃ T w− k1φ1 (e1) sign(ρ∗)
)
, e(0) = e0

e1 =CT
c e ,

(III.7)

where B̄c = Bcc∗0 and ρ∗ = 1/c∗0. Because Wm (s) =

CT
c (sI −Ac)

−1
Bcc∗0 is SPR and Ac is Hurwitz, equation (III.7)

can be transformed to the normal form

ė1 = A11e1 +A12e2 +ρ∗(θ̃ T w− k1φ1 (e1) sign(ρ∗)
)

ė2 = A21e1 +A22e2.
(III.8)

with e1(0) = e10, e2(0) = e20 and ė2 = A22e2 is the zero

dynamics (see for example [15]). Recall

Lemma 3 (Meyer-Kalman-Yakubovich (MKY) [13], [2]).

Given a stable matrix A, vectors B, C and a scalar d ≥ 0,

we have the following: If G(s) =CT (sI −A)−1
B+ d is SPR,

then for any given L = LT > 0, there exists a scalar ν > 0, a

vector q and a P = PT such that

AT P+PA =−qqT −νL

PB−C =±q
√

2d .
(III.9)

Applying this MKY-Lemma to the model (III.8) of the SPR

transfer function Wm (s) one concludes that for every l11 > 0

and L22 = LT
22 > 0 there exists a scalar q1 , a vector q2, a scalar

ν > 0 and a matrix P22 = PT
22 > 0 so that

AT
22P22 +P22A22 =−q2qT

2 −νL22

AT
21P22 +A12 =−q1qT

2 , 2A11 =−q2
1 −νl11 .

(III.10)

B. Uniform Stability

To prove the first item in the Theorem we propose a

Lyapunov-like function

V
(
e, θ̃

)
=

1

2
φ2

1 (e1)+ eT
2 P22e2 +

1

2
|ρ∗| θ̃ T Γ−1θ̃ , (III.11)

where Γ = ΓT > 0 and P22 = PT
22 satisfies (III.10). The time

derivative of V is given by

V̇ = φ1 (e1)φ
′
1 (e1)

(
A11e1 +A12e2 +ρ∗θ̃ T w− k1 |ρ∗|φ1 (e1)

)
+

+ 2e1AT
21P22e2 + eT

2

(
AT

22P22 +P22A22

)
e2 −ρ∗θ̃ T φ2 (e1)w .

Using φ2 (e1) = φ1 (e1)φ
′
1 (e1) and (III.10) it turns out that

V̇ =−k1 |ρ∗|φ1 (e1)φ2 (e1)+φ2 (e1)(A11e1 +A12e2)+

+ 2e1

(
−A12 − q1qT

2

)
e2 − eT

2 q2qT
2 e2 −νeT

2 L22e2 .

Using (from (III.10)) q2
1 =−2A11−νl11 and adding, substract-

ing the term 2e1

(
A11 +

1
2
νl11

)
e1 and factorizing becomes

V̇ =−k1 |ρ∗|φ1 (e1)φ2 (e1)+φ2 (e1) (A11e1 +A12e2)−νeT
2 L22e2

+ 2e1

(
−A12e2 −

(
A11 +

1

2
νl11

)
e1

)
−ψT (e)ψ (e) ,
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where ψ (e) = qT
2 e2+

√
−2

(
A11 +

1
2
νl11

)
e1. When Zm (s) = 1

the reference model has no zero dynamics, that is all zeros of

the system (III.8) are unobservable from the output e1, what

implies that A12 = 0. Using this fact one finally obtains

V̇ ≤−k1 |ρ∗|φ1 (e1)φ2 (e1)+φ2 (e1)A11e1+ (III.12)

−νeT
2 L22e2 + e1q2

1e1 .

It is easily seen that the rhs of the previous inequality is

negative definite in e1 and e2 if k1 is large enough, or

µ2 ≥ 1. (III.11) and (III.12) imply that V and, therefore,

e, θ̃ ∈ L∞. Because e = Xc − Xm and Xm ∈ L∞, we have

Xc ∈ L∞, which implies that yp,w1,w2 ∈ L∞. Because up =
θ T (t)w− k1φ1 (e1) sign(ρ∗) and θ ,w,e1 ∈ L∞ we also have

up ∈L∞. Therefore all the signals in the closed loop plant are

bounded.

We finally show that the tracking error e1 converges to

zero, i.e. limt→∞ e1 = limt→∞ (yp − ym) = 0. From (III.11) and

(III.12) we establish that e and therefore e1 ∈L2. Furthermore,

using θ ,w,e1 ∈ L∞ in (III.8) we have that ė, ė1 ∈ L∞. Hence,

e1, ė1 ∈L∞ and e1 ∈L2, which, by Barbalat’s Lemma, imply

that limt→∞ e1 (t) = 0.

C. Convergence under Persistence of Excitation Conditions

From [13], [2], [3] (see also the pertinent observations in

[7]), it follows that for the auxiliary nonlinear system

ΣL1 :

{
ė1 = −k1|ρ∗|e1 +ρ∗wT (t,e, θ̃ )θ̃
˙̃
θ = −Γe1w(t,e, θ̃ )sign(ρ∗)

(III.13a)

Σ2 :
{

ė2 = A22e2 +A21e1 (III.13b)

under the conditions of item 2 of Theorem 1, the equilibrium

point
(
e1,e

T
2 , θ̃

T
)
= 0 is exponentially stable, when Zm = 1

(and therefore A12 = 0), and the persistence of excitation

conditions for the bounded part of w(t,e, θ̃ ). In [8] it was

shown that under the same conditions and with w(t) holding

the persistence excitation condition for the system

ΣNL1 :

{
ė1 = −k1|ρ∗|φ1 (e1)+ρ∗wT (t)θ̃ + δ1

˙̃
θ = −Γφ2 (e1)w(t)sign(ρ∗)+ δ2

e1 and θ̃ converge to zero in finite time, when δ1 = 0 and

δ2 = 0. Moreover, for bounded signals (normally seen as per-

turbations) δ1 and δ2 the variables e1 and θ̃ remain bounded,

i.e. the system is ISS stable with input δ1, δ2. Since system

ΣNL1 is strictly passive from the input δ1 to the output φ2 (e1),
with storage function V

(
e, θ̃

)
= 1

2
φ2

1 (e1)+
1
2
|ρ∗| θ̃ T Γ−1θ̃ , it

follows that the trayectories of the error equation

Σ1 :

{
ė1 = −k1|ρ∗|φ1 (e1)+ρ∗wT (t,e, θ̃ )θ̃ +A11e1 + δ1

˙̃
θ = −Γφ2 (e1)w(t,e, θ̃ )sign(ρ∗)+ δ2

(III.14)

Σ2 :
{

ė2 = A22e2 +A21e1 (III.15)

converge asymptotically to the equilibrium point(
e1,e

T
2 , θ̃

T
)
= 0, with e1 and θ̃ converging in finite

time and e2 converging exponentially, when δ1 = 0 and

δ2 = 0. Furthermore, for bounded δ1 and δ2 the variables e1,

e2 and θ̃ remain bounded, i.e. the cascade system Σ1 −Σ2 is

ISS stable with input δ1, δ2. �

IV. EXAMPLE

In order to compare the controllers with only linear terms

and with the extra nonlinear terms proposed in this paper, we

consider the second order plant (used as example in [13])

yp =
kp(s+ b0)

s2 + a1s+ a0

up . (IV.1)

The values for the unknown constants used in the simulation

are kp = 1, b0 = 1, a1 =−3 and a0 = 2, and the sign of kp > 0

is known. The reference model is given by

ym =
1

s+ 1
r . (IV.2)

A nominal controller is given by [13], [2]

ẇ1 =−2w1 + up, w1(0) = 0

ẇ2 =−2w2 + yp, w2(0) = 0

up = θ1w1 +θ2w2 +θ3yp + c0r ,
(IV.3)

where θ = [θ1 ,θ2 ,θ3 ,c0]
T

, w = [w1 ,w2 ,yp ,r]
T

, and the

nominal parameter values are θ ∗ = [θ ∗
1 ,θ

∗
2 ,θ

∗
3 ,c

∗
0]

T =

[0 ,6 ,−5 ,1]T . Three simulation scenarios will be presented.

A. Persistence of Excitation conditions, without perturbations

For the simulations the reference signal r has been selected

as r = 5cos(t) + 10cos(5t), that is sufficiently rich for the

system, so that the regressor w is persistently exciting. The

classical (linear) MRAC is given by (II.8-II.10), where Γ has

been set as the identity matrix of dimension 4. The proposed

(nonlinear) MRAC is given by (II.11-II.13), where the gains

have been set to k1 = 10, µ1 = 1 and µ2 = 1. Fig. 2 shows the

output reference given by the model ym (continuous line) and

the plant’s output yp (dotted line) with the classical MRAC

scheme, whereas Fig. 3 the same results for the proposed

(nonlinear) MRAC scheme. The corresponding control vari-

able up is shown in Fig. 4. From these figures it is clear that

the proposed (nonlinear) controller is much faster than the

classical one, with a smaller control effort! Furthermore, the

parameter convergence, shown in Fig. 5, is also reached in a

finite time and much faster than the classical algorithm.

0 5 10 15 20 25
−6

−4

−2

0

2

4

6

8

 Time (sec)

y
m

a
n
d

y
p

 

 Model reference output

Plant output

Fig. 2. Model ym (continuous line) and the Plant’s output yp (dotted line) with
the classical MRAC scheme with reference signal r = 5cos (t)+10cos (5t).
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Fig. 3. Model ym (continuous line) and the Plant’s output yp (dotted line) with
the nonlinear MRAC scheme with reference signal r = 5cos (t)+10cos (5t).
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Fig. 4. Control variable up for the classical MRAC (continuous line) and the
proposed NL MRAC (dotted line) with reference r = 5cos (t)+10cos (5t).

B. Persistence of Excitation conditions, with perturbations

It was shown in the proof of the Theorem, that the proposed

MRAC (nonlinear) algorithm (II.11-II.13) is robust against ad-

ditive perturbations in the control input and in the parameters,

due for example to slowly time varying parameters. In order

to illustrate these features a simulation with a perturbation

p(t) = 5sin(6t), entering at the control input of the plant, has

been done. Fig. 6 shows the tracking error e1 = yp − ym for

the classical (continuous line) and the proposed (dotted line)
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A
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Nominal value

Fig. 5. Parameter convergence to the real values with reference signal r =
5sin (t)+10sin (5t). A) θ ∗

1 = 0, B) θ ∗
2 = 6, C) θ ∗

3 =−5 and D) c∗0 = 1

MRAC schemes. It is clear that the additional nonlinear terms

of the proposed algorithm lead to a much smaller tracking

error. Moreover, the parameter estimation (shown in Fig. 7)

is faster and better for the proposed algorithm than for the

classical one. It is interesting to note that for the nonlinear

algorithm the parameter estimation oscillates around the true

value, while the linear estimation error has a bias.
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Fig. 6. Tracking error e1 = yp −ym for the classical (continuous line) and the
proposed (dotted line) MRAC schemes with reference signal r = 5cos (t)+
10cos (5t), with perturbation p(t) = 5sin (6t).
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Fig. 7. Parameter convergence to the real values with reference signal r =
5sin (t)+10sin (5t), and perturbation p(t) = 5sin (6t). A) θ ∗

1 = 0, B) θ ∗
2 = 6,

C) θ ∗
3 =−5 and D) c∗0 = 1.

Plant output with noise: Fig. 8 shows the tracking error

when a measurement noise of approx. 5% of plant’s output

is added. Note that the the nonlinear MRAC still converges

faster than the linear one, and the noise effect in steady state

is similar for both controllers.

C. Lack of Persistence of Excitation conditions

It is well-known that the properties of the MRAC are weaker

when the Persistence of Excitation conditions are not satisfied.

For a constant reference signal r (t) = 6, Fig. 9 shows the

output reference given by the model ym (continuous line)

and the plant’s output yp (dotted line) with the classical

MRAC scheme, while Fig. 10 shows the same results for

the proposed (nonlinear) MRAC scheme. The corresponding
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Fig. 8. Tracking error e1 = yp − ym for the classical (up) and the proposed
(down) MRAC schemes with a maximum amplitude noise of 0.25 added to
the plant’s output.

control variable up is shown in Fig. 11. It is remarkable that

again the convergence of the proposed nonlinear MRAC is

much faster in this case, with a much smaller control effort.
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Fig. 9. Model ym (continuous line) and the Plant’s output yp (dotted line)
with the classical MRAC scheme with constant reference signal r = 6.
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Fig. 10. Model ym (continuous line) and the Plant’s output yp (dotted line)
with the nonlinear MRAC scheme with reference signal r = 6.

V. CONCLUSIONS

It has been shown that a modification of the Adjustment

Mechanism of the classical Direct MRAC, by adding Super-

Twisting-Like nonlinearities, is able to achieve finite-time

convergence and improved robustness properties. A Lyapunov-

based approach was used to prove these properties. Some

simulations have shown that the proposed algorithm provides

the MRAC a much faster convergence of the tracking error,

and (when possible) of the parameter errors. More importantly,

this improved convergence is obtained with less control action

and with improved robustness properties of the control loop.
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Fig. 11. Control variable up for the classical MRAC (continuous line) and
the proposed nonlinear MRAC (dotted line) with reference signal r = 6.

For simplicity of the presentation, in this paper we have

restricted ourselves to a very simple reference model without

zeros. It is possible however, to extend the analysis to the more

general case of an SPR reference model with zero dynamics. A

promising research direction is to extend the presented idea to

linear systems with arbitrary relative degree, and for nonlinear

systems.
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