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Abstract— We propose a simple model that integrates two-
period electricity markets, uncertainty in renewable generation,
and real-time dynamic demand response. A load-serving entity
decides its day-ahead procurement to optimize expected social
welfare a day before energy delivery. At delivery time when
renewable generation is realized, it sets prices to manage de-
mand and purchase additional power on the real-time market,
if necessary, to balance supply and demand. We derive the
optimal day-ahead decision, propose real-time demand response
algorithm, and study the effect of volume and variability of
renewable generation on the social welfare.

I. INTRODUCTION

A. Motivation

There is a large literature on various forms of load side

management in the electricity grid from the classical direct

load control to the more recent real-time pricing [9], [1].

Direct load control in particular has been practised for a long

time and optimization methods have been proposed to min-

imize generation cost e.g. [8], [11], [5], maximize utility’s

profit e.g. [19], or minimize deviation from users’ desired

consumptions e.g. [7], [21]. Almost all demand response

programs today target large industrial or commercial users,

or, in the case of residential users, a small number of them,

for two, among others, important reasons. First, demand side

management is invoked rarely to mostly cope with a large

correlated demand spike due to weather or a supply shortfall

due to faults, e.g., during a few hottest days in summer.

Second, the lack of ubiquitous two-way communication in

the current infrastructure prevents the participation of a large

number of diverse users with heterogeneous and time-varying

consumption requirements. Both reasons favor a simple and

static mechanism involving a few large users that is sufficient

to deal with the occasional need for load control, but both

reasons are changing.

Renewable sources can fluctuate rapidly and by large

amounts. As their penetration continues to grow, the need

for regulation services and operating reserves will increase,

e.g., [17], [4], [18]. This can be provided by additional peaker

units, at a higher cost, or supplemented by real-time demand

response [15], [23], [22], [4], [25]. We believe that demand

response will not only be invoked to shave peaks, but will

increasingly be called upon to improve security and reduce

reserves by adapting elastic loads to intermittent and random

renewable generation [20]. Indeed, [4], [2], [24] advocates

the creation of a distribution/retail market to encourage

greater load side participation as an alternative source for fast
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reserves. Such application however will require a much faster

and more dynamic demand response than practised today.

This will be enabled in the coming decades by the large-scale

deployment of a sensing, control, and two-way communica-

tion infrastructure, including the flexible AC transmission

systems, the GPS-synchronized phasor measurement units,

and the advanced metering infrastructure, that is currently

underway around the world [12].

Demand response in such context must allow the par-

ticipation of a large number of users, and be dynamic

and distributed. Such dynamic adaptation is being practised

everyday on the Internet in the form of congestion control.

Although the grid and the Internet are different in their engi-

neering, economic, and regulatory structures, the precedence

on the Internet lends hope to a much bigger scale and more

dynamic and distributed demand response architecture and

its benefit to grid operation. Ultimately it will be cheaper to

use photons than electrons to deal with a power shortage.

Our goal is to design algorithms for such a system.

B. Summary

Specifically we consider a set of users that are served by

a single load-serving entity (LSE). The LSE may represent

a regulated monopoly like most utility companies in the

United States today, or a non-profit cooperative that serves a

community of end users. Its purpose is (possibly regulated) to

promote the overall system welfare. The LSE procures elec-

tricity on the wholesale electricity markets (e.g., day-ahead,

real-time balancing, and ancillary services) and renewable

sources and sells it on the retail market to end users. Each

user, on the other hand, has a set of appliances (electric

vehicle, air conditioner, lighting, battery, etc.) which can

adapt their demand. The user’s energy management system

is to decide how much power to consume in each period

of a day (i.e., demand response). The LSE is to make en-

ergy procurement decisions, including how much capacity it

should procure a day ahead and, when the random renewable

energy is realized at real time, how much balancing power to

purchase on the spot market to meet the aggregate demand.

The overall goal is to maximize the social welfare.

Our model captures three important features:

• Uncertainty. Part of the electricity supply is from

renewable sources such as wind and solar, and thus

uncertain.

• Supply and demand. LSE’s supply decisions and the

users’ consumption decisions must be jointly optimized.

• Two timescale. The LSE must procure capacity on the

day-ahead wholesale market while user consumptions
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should be adapted in real time to mitigate supply

uncertainty.

Hence the key is the coordination of day-ahead procurement

and real-time demand response over two timescales in the

presence of supply uncertainty. Moreover, the optimal deci-

sions must be computed jointly by the LSE and the users as

the necessary information is distributed among them. This

paper focuses on the design of such distributed algorithms

to maximize social welfare, and the impact of uncertainty on

the optimal welfare.

C. Other related work

A large literature exists on demand response. Besides those

cited above, more recent works are surveyed in [6]. The

models that are closest to ours, developed independently,

are [4], [10]. All our models include random renewable

generation, consider both day-ahead and real-time markets,

and allow demand response, but our objectives and system

operations are quite different. [4] advocates the establishment

of a retail market where users (e.g., PHEVs) can buy power

from or sell reserves, in the form of demand response

capability, to their LSE. The model in [10] includes non-

elastic users that are price non-responsive, and elastic users

that can either leave the system or defer their consumptions

when the electricity price is high. The goal is to maximize

LSE’s profit over day-ahead procurement, day-ahead prices

for non-elastic users, and real-time prices for elastic users.

II. MODEL AND PROBLEM FORMULATION

Consider a set N of N users that are served by a single

load-serving entity (LSE). We use a discrete-time model with

a finite horizon that models a day. Each day is divided into

T periods, indexed by t ∈ T = {1, 2, · · · , T}. The duration

of a period can be 5, 15, or 60 mins, corresponding to the

time resolution at which energy dispatch or demand response

decisions are made.

A. Model

Without loss of generality, we assume each user i ∈ N
operates a single appliance (or i may index appliances rather

than users) so we don’t need another subscript to index

appliances. Let qi(t) denote its energy consumption in period

t ∈ T , and qi the vector (qi(t),∀t) over the whole day. An

appliance i is characterized by:

• a utility function Ui(qi(t); t) that quantifies the utility

that user i obtains from using appliance i and consum-

ing qi(t) amount of energy in period t;
• a set of consumption constraints. For example,

q
i
(t) ≤ qi(t) ≤ qi(t),∀t (1)

∑

t

qi(t) ≥ Qi (2)

i.e., the consumption in each period is in a certain

range, and the total consumption must exceed Qi. If

the appliance cannot use electricity in some period t,
then we define q

i
(t) = qi(t) = 0.

Note that we can define different utility functions and con-

sumption constraints to model a wide range of appliances.

This is further discussed in Section II-B and [6]. This paper

adopts the above version only to simplify exposition.

The LSE procures power for delivery in each period t, in

two steps. First, one day in advance, it procures “day-ahead”

capacities Pd(t) for each period t, which incur capacity

costs cd(Pd(t); t). This allows the LSE to use up to Pd(t)
amount of energy in period t of the following day, from

the day-ahead capacity it has reserved. Let Po(t) ≤ Pd(t)
denote the amount of the day-ahead energy that the LSE

actually uses the following day and co(Po(t); t) denote its

cost (in addition to the capacity cost cd). The renewable

energy in each period t is a non-negative random variable

Pr(t) and it costs cr(Pr(t); t). Note that we do NOT assume

that Pr(t)’s are independent across t. Instead, temporal

correlation of Pr(t)’s is allowed. It is desirable to use as

much renewable power as possible. For notational simplicity

only, we assume cr(Pr; t) ≡ 0 for all Pr ≥ 0 and all

t. At time t− (real time), the random variable Pr(t) is

realized and used to satisfy demand. (If Pr(t) >
∑

i qi(t),
we assume that the extra renewable energy can be “dumped”.

For example, the blade angle of the wind turbines can

be adjusted to reduce generation.) The LSE satisfies any

excess demand [
∑

i qi(t) − Pr(t)]+ by using energy Po(t),
up to the day-ahead capacity Pd(t) procured in advance. If

there is still excess demand, the LSE procures the balance

Pb(t) from the real-time energy market, which incurs a cost

cb(Pb(t); t). Hence the demands qi(t) ≥ 0 and the supplies

(Pd(t), Pr(t), Po(t), Pb(t)) ≥ 0 must satisfy:

∑

i

qi(t) ≤ Pr(t) + Po(t) + Pb(t)

Po(t) ≤ Pd(t)

We make the following assumptions:

A1: For each t, the utility functions Ui(qi) are concave

increasing and continuously differentiable, and the cost

functions cd(·; t), co(·; t) and cb(·; t) are convex in-

creasing and continuously differentiable, with cd(0; t) =
co(0; t) = cb(0; t) = 0.

A2: For each t, c′b(0; t) > c′o(Po; t),∀Po ≥ 0, i.e., the

marginal cost of balancing energy is strictly higher than

the marginal cost of day-ahead energy.

For example, if the constant unit price of Pb(t) is higher

than that of Po(t), then assumption A2 is satisfied. We also

assume that q
i
≥ 0 for all i and Q ≥ 0.

The real-time decisions (Po(t), Pb(t)) are made by the

LSE so as to minimize the total cost, as follows. Given the

demand vector q(t) := (qi(t),∀i), let Q(t) :=
∑

i qi(t) be

the total demand and ∆(Q(t)) := Q(t) − Pr(t) the excess

demand, in excess of the renewable generation Pr(t). Note

that ∆(Q(t)) is a random variable in and before period

t − 1, but its realization is known to the LSE at time t−.

Assumption A2 implies that the LSE will use the balancing

power only after the day-ahead power is exhausted, i.e.,

Pb(t) > 0 only if ∆(Q(t)) > Pd(t). Hence, given the
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excess demand ∆(Q(t)) and the day-ahead capacity Pd(t),
the LSE’s decision in period t that minimizes its total energy

cost is:

P ∗
o (t) = [∆(Q(t))]

Pd(t)
0

P ∗
b (t) = [∆(Q(t)) − Pd(t)]+

The total supply cost that the LSE incurs is then a function

only of Pd(t) and Q(t):

c(Q(t), Pd(t);Pr(t), t) = cd(Pd(t); t) +

co

(

[∆(Q(t))]
Pd(t)
0 ; t

)

+ cb

(

[∆(Q(t)) − Pd(t)]+ ; t
)

(3)

i.e., the total cost consists of the capacity cost cd, the cost

co of day-ahead energy, and the cost cb of the real-time

balancing energy.

B. Generalizations

Both the user and the supply models can be generalized

[6]. Our results here can be extended to these more general

models but we adopt the version above to simplify exposi-

tion. For example, instead of (1) and (2), the consumption

constraints can take the form of a general linear inequality:

Aiqi ≤ ηi

The utility functions Ui can be functions of the vectors

qi := (qi(t),∀t) instead of qi(t) for each t, i.e., they are

not necessarily separable in t. This generalized user model

is quite flexible. In [6], by unifying several models in the

literature, we show how various types of appliances [such as

HVAC (heat, ventilation, air conditioner), refrigerator, and

plug-in hybrid electric vehicles, batteries] can be modeled

by these general utility functions and linear inequalities. For

batteries the lower bound q
i

may be negative. Furthermore

each user can have multiple appliances, not just one.

For example, for the class of appliances that control the

temperature, such as the air conditioner and refrigerator, the

utility function should depend on how far is the controlled

temperature differs from the desired temperature. The con-

trolled temperature in slot t, in turn, could depend on the

temperature in the previous slot, the electricity consumption

in slot t, and the outside temperature. Reference [6] shows

that with this formulation, the utility function is not separable

in t, and the consumption constraints are still linear, but

different from (1) and (2). As another example, the utility of

an electric vehicle may only depend on the total consumption

(i.e., total charge), but not the consumption in each slot as

in section II-A.

On the supply side, assumption A2 can be relaxed. In that

case the LSE chooses (P ∗
o (t), P ∗

b (t)) at time t− that solves

the problem:

cs(∆(Q(t)), Pd(t); t) := min
Po(t),Pb(t)

{co(Po(t); t) + cb(Pb(t); t)

| Pb(t) ≥ 0, Po(t) + Pb(t) ≥ ∆(Q(t)), Pd(t) ≥ Po(t) ≥ 0}

with ∆(Q(t)) = Q(t) − Pr(t). The total cost is then

c(Q(t), Pd(t);Pr(t), t) := cd(Pd(t); t)+cs(∆(Q(t)), Pd(t); t).

C. Objective: welfare maximization

Recall that q := (q(t), t ∈ T ) and Q(t) :=
∑

i qi(t). The

social welfare of the day is the standard user utility minus

supply cost:

W (q, Pd;Pr) :=
∑

i

T
∑

t=1

Ui(qi(t); t) −

T
∑

t=1

c(Q(t), Pd(t);Pr(t), t) (4)

where Pd := (Pd(t), t ∈ T ) and Pr := (Pr(t), t ∈
T ). Recall that the LSE’s objective is not to maximize

its profit through selling electricity, but rather to maximize

the expected social welfare. Note that the maximization of

E[W (q, Pd;Pr)] is over day-ahead procurement Pd and real-

time consumption q in the presence of random renewable

generation Pr(t). It is critical that, in the presence of uncer-

tainty, q(t) should be decided after Pr(t) have been realized

at times t− (i.e., real-time demand response). Pd however

must be decided a day ahead before Pr(t) are realized.

Therefore, the day-ahead procurement and the real-time

demand response must be coordinated over two timescales

to maximize the expected welfare. In this paper, we will

propose distributed algorithms to achieve or approximate the

maximal expected welfare.

III. THE CASE WITHOUT TIME CORRELATION

To gain some intuition, we first consider the simpler case

without the constraint (2) that couples the consumption deci-

sions q(t) across time. In this case, maximizing the expected

social welfare of the day reduces to separately maximizing

the expected social welfare for each time period. This is

equivalent to the case of T = 1. Welfare maximization for

each period is (we drop t from the notation):

max
Pd≥0

{

−cd(Pd) + E max
q∈[q,q]

W1(q;Pd, Pr)

}

(5)

where the real-time welfare, given decision Pd and realiza-

tion of Pr, is:

W1(q;Pd, Pr) :=
∑

i

Ui(qi) − co

(

[∆(Q)]Pd

0

)

−cb ([∆(Q) − Pd]+) (6)

The expectation E in (5) is taken with respect to Pr. The

order of maximizations and expectation in (5) reflects the fact

that the decision Pd must be made a day ahead based on the

distribution of Pr, but the consumption decisions q should

be made in real time after Pr is realized. Given Pd and a

realization of Pr, W1(q;Pd, Pr) is a deterministic function

of q. Hence our problem decomposes into two subproblems:

1) Real-time demand response: optimize real-time wel-

fare W1 over consumptions q given Pd, Pr:

W̃ (Pd;Pr) := max
q∈[q,q]

W1(q;Pd, Pr). (7)
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2) Day-ahead capacity procurement: maximize expected

welfare over Pd:

max
Pd≥0

{ −cd(Pd) + E[W̃ (Pd;Pr)] }. (8)

We now consider each subproblem in turn. For real-time

demand response, problem (7) is equivalent to

W̃ (Pd;Pr) = max
q,yo,yb

{
∑

i

Ui(qi) − co(yo) − cb(yb)}

s.t. q
i
≤ qi ≤ q̄i,∀i; yo, yb ≥ 0,

yo ≤ Pd,

Pr + yo + yb ≥
∑

i

qi. (9)

Associate dual variables µ1 and µ2 with the last two

constraints. Then a partial Lagrangian is

L(q, yo, yb;µ1, µ2)

=
∑

i

Ui(qi) − co(yo) − cb(yb) + µ1(Pd − yo)

+µ2(Pr + yo + yb −
∑

i

qi). (10)

So, a primal-dual algorithm to solve problem (9) is Algo-

rithm 1. We make the following technical assumption.

A3: First, all utility functions Ui satisfies |U ′
i(qi(t); t)| <

V < ∞,∀qi(t) ∈ [q
i
(t), q̄i(t)],∀t. Second,

there exists Pmax ≥
∑

i q̄i(t) such that

c′d(Pmax), c′o(Pmax), c′b(Pmax) < B < ∞. This

implies that one can support the maximal possible

demand
∑

i q̄i(t) using only day-ahead energy or

real-time energy with finite marginal cost.

Algorithm 1: Given Pd and Pr, compute real-time con-

sumption

Initially, every user lets q0
i ∈ [q

i
, q̄i]. The LSE lets µ0

1 =

µ0
2 = 0, and y0

o = y0
b = 0. In iteration k = 0, 1, 2, . . . , do

the following.

1) Each user i computes qk+1
i , and report it to the LSE

through a communication network:

qk+1
i =

(

qk
i + βk · [U ′

i(q
k
i ) − µk

2 ]
)q̄i

q
i

where βk > 0 is the step size. That is, the “price”

posed to the users is µk
2 .

2) The LSE computes µk+1
1 , µk+1

2 , yk+1
o , yk+1

b :

µk+1
1 = [µk

1 + βk(yk
o − Pd)]+,

µk+1
2 = [µk

2 + βk(
∑

i

qk
i − Pr − yk

o − yk
b )]+,

yk+1
o = [yk

o + βk(−c′o(y
k
o ) − µk

1 + µk
2)]Pmax

0 ,

yk+1
b = [yk

b + βk(−c′b(y
k
b ) + µk

2)]Pmax

0

where B and Pmax are defined in Assumption A3. The

LSE reports µk+1
2 to the users.

With proper step sizes (e.g., βk = 1/(k + 1)) and under

assumptions A1˜A3, Algorithm 1 converges to the set of

optimal solutions and dual variables. More formally, we have

the following.

Proposition 1: Let B be the set of saddle points

(q∗, y∗
o , y∗

b ;µ∗
1, µ

∗
2) of L(q, yo, yb;µ1, µ2). If the step sizes

satisfy
∑

k βk = ∞ and
∑

k(βk)2 < ∞ (e.g.,

βk = 1/(k + 1)) and assumptions A1˜A3 hold,

then (qk, yk
o , yk

b ;µk
1 , µk

2) converges to the set B (i.e.,

limk→∞ minw∈B ||(qk, yk
o , yk

b ;µk
1 , µk

2)−w||2 = 0). By conti-

nuity , we have W1(q
k;Pd, Pr) → maxq∈[q,q] W1(q;Pd, Pr).

Proof: The proof is similar to Theorem 3.1 in [26].

Proposition 2: (i) W̃ (Pd;Pr) is concave in Pd.

(ii) Given Pd and Pr, let µ∗
1 be an optimal dual variable

associated with the constraint yo ≤ Pd in (9). Then, with Pr

fixed, µ∗
1 is a subgradient of W̃ (Pd;Pr) at the point Pd.

Proof: For (i), since W̃ (Pd;Pr) is the optimal value

of the convex optimization problem (9), it is concave in Pd

[3]. For (ii), note that Pd is associated with the dual variable

µ1 only. So, the result follows from the standard sensitivity

analysis [3] in convex optimization (see Eq. (5.57) in [3]).

Now, for day-ahead capacity procurement, the LSE decides

Pd to maximize social welfare (i.e., solves problem (8)). A

subgradient of the objective function in (8) is E(µ∗
1)−c

′

d(Pd)
(where µ∗

1 depends on Pd, Pr). So, a stochastic subgradient

algorithm is as follows. Algorithm 2 is run one day in

advance by simulating the system (i.e., drawing samples of

Pr).

Algorithm 2: Day-ahead energy

1) Initially, let P 0
d = 0.

2) For m = 0, 1, 2, . . . , independently generate a sample

of Pr (denoted by Pm
r ), and run Algorithm 1 to find

µ∗
1, and denote it by µ∗m

1 . Then, compute

Pm+1
d = {Pm

d + αm[µ∗m
1 − c

′

d(P
m
d )]}Pmax

0

where αm = 1/(m + 1) is the step size.

Similar to Theorem 3.1 in [26], one can show that Pm
d

converges to the set of optimal solutions with probability

1.

IV. THE CASE WITH TIME CORRELATION

Now we consider the case with the time correlation

constraint (2). Other constraints in, for example, [6], can

be treated similarly. With time correlations, the optimal real-

time demand response policy is the solution of a dynamic

program [13]. In general, the dynamic program is hard to

solve explicitly. We propose the following online algorithm.

The algorithm is optimal in certain cases and is an approxi-

mate algorithm otherwise [13].

Algorithm 3: Real-time demand response with uncertain

renewable energy

We use P ∗
d to denote the choice of day-ahead energy and

q∗(t) := (q∗i (t),∀i), t = 1, 2, . . . , T to denote the choice of

demand in slot t under Algorithm 3.

1) One day ahead, determine the day-ahead energy

P ∗
d (t), t = 1, 2, . . . , T as follows. Use a distributed
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algorithm (similar to Algorithm 1) to solve the (deter-

ministic) optimization problem

maxq,Pd≥0 W (q, Pd; P̄r)

s.t. (1), (2) (11)

where W is the welfare function defined in (4), q =
(qi(t),∀i, t), and P̄r = E(Pr) with Pr = (Pr(t),∀t ∈
T ). In other words, we maximize the social welfare

assuming that the renewable energy is fixed at P̄r. Let

the solution of (11) be (q̃, P̃d). Use P̃d as the day-ahead

energy, i.e., let P ∗
d = P̃d.

2) Let t = 1.

3) In period t, determine the consumption of each user

in this period as follows. Note that at this time

{Pr(τ), 0 ≤ τ ≤ t} have been observed by the LSE.

So, the conditional distribution of {Pr(τ), τ > t} is

known. Denote P̄ t
r := E(Pr|Pr(τ),∀τ ≤ t).

Use a distributed algorithm (similar to Algorithm 1) to

solve the following problem:

maxq W (q, P ∗
d ; P̄ t

r )

s.t. (1), (2)

qi(τ) = q∗i (τ),∀τ < t,∀i (12)

where q∗i (τ), τ < t is the consumption of user i in slot

τ < t that is already decided in the earlier slot τ . That

is, we maximize the social welfare, given the decisions

already made before slot t (i.e., P ∗
d and q∗i (τ),∀τ <

t,∀i) and the current Pr(t), and assuming that future

renewable energy is fixed at P̄ t
r (τ), τ > t.

Let the solution of (12) be q̃t. Use q̃t(t) as the

consumption in slot t, i.e., let q∗(t) = q̃t(t). Finally,

choose P ∗
o (t) = [

∑

i q∗i (t)−Pr(t)]
P∗

d
(t)

0 , and the real-

time energy as P ∗
b (t) = [

∑

i q∗i (t)− Pr(t)− P ∗
d (t)]+.

4) If t < T , increment t and repeat step 3.

V. IMPACT OF RENEWABLE ENERGY ON THE SOCIAL

WELFARE

An important element in our model is the uncertain

renewable energy. In the future, the penetration of renewable

energy and its impact are expected to increase. In this

section, we investigate how the statistics of the renewable

energy affects the achievable social welfare in our model. For

simplicity, we consider the case without time correlation, so

we can focus on one time slot. (The results can be extended

to the case with time correlation [13].) Assume that the

renewable energy in one time slot is parametrized by a ≥ 0
and b ≥ 0 as follows.

Pr(a, b) := a · µr + b · Vr ≥ 0.

where µr > 0 is a constant, and Vr is a zero-mean random

variable. So, a and b indicate the mean and variance, respec-

tively, of the renewable energy. In particular, E[Pr(a, b)] =
aµr, and var[Pr(a, b)] = b2E[V 2

r ].
Let J∗(a, b) be the maximal expected welfare when the

renewable energy is Pr(a, b). We have the following results.
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Fig. 1: Target demand profiles of the users

Proposition 3: (i) If b ≥ 0 is fixed, J∗(a, b) is non-

decreasing with a ≥ 0.

(ii) If a ≥ 0 is fixed, J∗(a, b) is non-increasing with b ≥ 0.

(iii) Assume that µr + Vr ≥ 0, so that Pr(s, s) = s ·
(µr +Vr) ≥ 0,∀s ≥ 0. Then J∗(s, s) is non-decreasing with

s ≥ 0.

Remark: In other words, the maximal expected welfare

increases with the mean, decreases with the variance, and

increases with the scale of Pr (e.g., the farm size).

Proof: See [14].

VI. NUMERICAL RESULTS

The setup is as follows. Let T = 24, representing 24

hours. The first time period is 8-9am, the second is 9-

10am, and so on. The utility function of user i is Ui(qi) =
∑T

t=1 Ui(qi(t); t) = −
∑T

t=1[qi(t) − yi(t)]
2 where yi(t) is

user i’s target consumption in slot t. That is, the further his

actual demand profile {qi(t)} deviates from the target, the

less is his utility. Fig. 1 shows the target demand profiles

of N = 4 users in our simulation. The unit of energy is

kWh. For each time period, assume that the cost functions

are cd(P ) = (P 2 + P )/2, co(P ) = P/2, and cb(P ) =
P 2/2 + 5P .1

Assume that Pr(t) is uniformly distributed between 0 and

2P̄r(t) > 0, so that its mean is E(Pr(t)) = P̄r(t). Also,

Pr(t)’s are independent across t. The values of (P̄r(t),∀t)
are (2, 3, 4, 5, 5, 6, 6, 7, 6, 5, 4, 3, 2, 2, 3, 4, 4, 4, 4, 3, 3,

2, 2, 2).

A. Without time correlation

In the case without time correlation, we impose no con-

straint on the total consumption of each user i. (The only

constraint is that qi(t) ≥ 0.) This can model the scenario

where users are willing to shed load instead of shifting load.

We run Algorithm 2 for each time period. Fig. 2 (a) shows

that the computed value of Pd(6), the day-ahead energy of

period 6, converges. For other t’s, Pd(t)’s converges simi-

larly. The expected social welfare under the converged Pd(t)
is given in Fig. 2 (b), compared to the case without demand

response (where the users consume the target demands and

the LSE optimizes Pd(t).)

1Reference [16] developed a model of electricity generation with piece-
wise quadratic cost functions.
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B. With time correlation

In this case, we further impose the constraint that
∑

t qi(t) ≥
∑

i yi(t). That is, user i can shift his demand

from one time period to another, but his total consumption
∑

t qi(t) must be at least
∑

i yi(t).
Due to the limit of space, the simulation results are

presented in the companion paper [13]. The results show the

features of the solution given by Algorithm 3. Specifically,

the users tend to opportunistically use the available renew-

able energy, and at the same time flatten their consumption

over time. Also, Algorithm 3 performs well (in terms of

the expected social welfare achieved) compared to optimal

solution, even when the penetration of renewable energy is

high.

VII. CONCLUSION

This paper has investigated multi-period energy procure-

ment and demand responses in the presence of uncertain

supply of renewable energy. Specifically, we have provided

decentralized algorithms with two-way communication for

the load-serving entity and the users, aiming to maximize

social welfare. We have studied the performance of the

algorithms through both analysis and simulations. We have

provided insight on the effect of clean, but random renewable

energy on the social welfare.

This paper has focused on one type of utility functions and

consumption constraints. In the future, we will incorporate

other types of appliances as well, such as those modeled in

[6]. Our algorithms can be easily extended to that case. The

challenges lie in understanding the performance of Algorithm

3 in more general settings, and possibly designing more

efficient algorithms. Also, we are interested in considering

the case with distributed renewable generations on the user

side, which will become more common in the future, and

investigate how that changes the structure of optimal energy

procurement and demand response strategies.
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