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Abstract—The paper discusses the problem of lane
departure avoidance for a vehicle. A corrective mech-
anism imposes its control action whenever the vehicle
is no longer inside a nominal region centered along
the middle of the lane. Set theoretic methods are
used in order to design this control action and to
guarantee global stability. Additionally, for the same
lane departure avoidance system, a fault tolerant
control mechanism is proposed in order to discard
faulty sensors in a redundant measurement setting,
thus guaranteeing stability even in the presence of
faults.

I. Introduction
Lane departure avoidance represents a topic of interest

in today’s automotive control applications. It concerns
a class of systems intrinsically more complex than fully
automation components as the one described in [1] since
their aim is to design a switched control mechanism. That
is, the control is provided either by the driver in normal
conditions either through an assistance mechanism which
takes control in abnormal condition and/or when the
driver is deemed inattentive or incapacitated. Due to
intermittent switching and interaction with the driver,
the complexity of the scheme is greatly increased. We
note previous results in this area, e.g., [2] and [3] which
propose as actuator for vehicle lateral control a DC
motor mounted on the steering column, whereas in [4]
a differential braking approach is advocated. Notably, in
[5] a combination of the two aforementioned methods is
provided.

Another topic of wide interest which emerged in the
last decades as a main challenge in control is the de-
tection and isolation of faults and the subsequent fault
tolerant control (FTC) of applications. The presence
of faults in closed-loop control systems creates severe
practical challenges with potentially disastrous conse-
quences (e.g., processes in chemical plants or aviation
catastrophes). As a result, various FTC schemes are
deployed to counteract faults affecting the subsystems of
a plant: using information provided by a fault detection
and isolation (FDI) block, a reconfiguration mechanism
(RC) reconfigures the control action in order to minimize
or discard the influence of the fault occurrences [6].

The lane departure avoidance system is an assistance
system which aims to negate faults on the part of the
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driver (such as lapses in attention or temporary inca-
pacity). It is then natural to complete the scheme by
adding a fault tolerant control layer which detects and
counteracts faults in the physical components of the
scheme (and in particular in the sensors since they are
the components most prone to faults). Several similar
approaches exist in the literature: [7] discusses fault
detection and reconfiguration mechanisms for lateral
control in automated highway systems; [8] shows that, in
the event of a sensor (from a bank of redundant sensors)
fault, the system keeps tracking the lane.

As a novelty, in the present paper we propose the
use of a set theoretic framework for both control and
fault detection. Polyhedral sets will be used to guarantee
stability in the absence of faults and to implement a
simplified model of control switching with the help of the
redundant information provided by a bank of sensors.
The goal is that whenever the vehicle dynamics exit a
nominal region, the corrective mechanism will be able to
return the state to its nominal region without violating
given safety bounds.

The fault tolerant layer considers and manages the
possibility of faults in the bank of sensors which are used
to recuperate the system state. We design a FDI mech-
anism by comparing the expected mathematical model
with the actual results under a set theoretic framework
based on previous results presented in [9] and [10]. Sets
which describe the healthy and faulty behavior of a fault
sensitive signal are computed and the fault detection re-
duces to set membership testings for the aforementioned
signal. Note that the use of sets, although not unique
(see for example [11]), differs from other approaches
by the use of invariance notions which simplifies the
computations and offers stability guarantees under mild
conditions: by exact fault detection, a sensor under fault
can always be detected and the information it provides
is discarded from the reconfiguration mechanism.

Notation

For a vector or a set denoted as x the notations,
x, x−, x+ denote, respectively, the current, previous and
successor values x(k), x(k − 1) and x(k + 1) for some
integer k > 0. The Minkowski sum of two sets, A and
B is denoted as A ⊕ B = {x : x = a+ b, a ∈ A, b ∈ B},
whereas, the Pontryagin difference is denoted as A	B =
{a : a+ b ∈ A, a ∈ A, b ∈ B}. We define for further use
the bounding set B (α) = {x : |x| ≤ α} parameterized
after the elementwise positive vector α.
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II. Vehicle lateral dynamics

For the design of the vehicle lateral control, a fourth-
order discrete linear “bicycle model” ([12]) has been
used1:

x+ = Ax+Bu+Bρρref (1)

where x =
[
β r yL ψL

]T denotes the state with β
the sideslip angle, r the yaw rate, yL the lateral offset and
ψL the relative yaw angle. Input u is the steering angle
of the front wheels and ρref denotes the road curvature
(considered here as a disturbance).
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Fig. 1: Vehicle lane model

Matrices Ac ∈ Rn×n, Bc ∈ Rn×m and Bc,ρ ∈ Rn×mρ
which describe the continuous counterpart of system (1)
are given as follows:

Ac =


a11 a12 0 0
a21 a22 0 0
0 1 0 0
v ls v 0

 , Bc =


b1
b2
0
0

 , Bc,ρ =


0
0
−v
0


where the parameters used above depend on vehicle
characteristics and can be retrieved from [13].

The system (Ac, Bc, Bc,ρ) is discretized into (A,B,Bρ)
through a fixed step h = 2.5ms.

A. Sensors and estimators dynamics
For measuring purposes we associate to the vehicle a

bank of sensors Si, i = 1, . . . , N . The sensors are as-
sumed to be static (i.e., with very fast dynamics relative
to the vehicle dynamics) and to satisfy, under healthy
functioning:

yi = Cix+ ηi (2)

with yi ∈ Rpi the sensor output, Ci ∈ Rpi×n the output
matrix and ηi ∈ Rpi the bounded measurement noise2

belonging to a compact set.

1To simplify the problem, the system was linearized by consid-
ering small angles and a constant velocity.

2For the following numerical examples the manipulated sets will
be considered to be polyhedral for their numerical reliability.

The information provided independently by each sen-
sor, together with the system known input, are used to
construct N state estimators:

x̂+
i = Ax̂i +Bu+ Li(yi − Cix̂i), (3)

with matrices Li chosen such that A − LiCi have their
eigenvalues strictly inside the unit circle.

The estimation errors are defined as

x̃i , x− x̂i, i = 1, . . . , N (4)

and using (2), (3) and (4) we can write

nx̃+
i =

(
A− LiCi

)
x̃i +Bρρref − Liηi. (5)

III. Control mechanism
A. Preliminaries

The control objective for the vehicle is to remain inside
a predefined strip with respect to the center of the lane.
These limits are described by the constraints imposed
to the values yl and yr, the offsets of the left, respec-
tively the right, side of the vehicle. These values can
be expressed as a linear (see footnote 1) combination of
components of the state, yL and ψL and the parameters
lf and ls:

yl = yL+(lf − ls)ψL+ a

2 , yr = yL+(lf − ls)ψL−
a

2 . (6)

For further use, by exploiting (6) we define the polyhe-
dral region R(λ) ⊂ R4:

R(λ) =
{
x :

∣∣[0 0 lf − ls 1
]
x
∣∣ ≤ 2λ− a

2

}
(7)

parameterized after a positive scalar λ which constrains
yl and yr to be inside a predefined strip of ±λ width.

We are now able to describe the nominal and safety
regions of interest. By considering the nominal set as
defined by a strip of ±d width around the center of the
lane and nominal bounds xN on the state we obtain the
following set description of the nominal region:

S = R(d) ∩ B (xN ) . (8)

Whenever the vehicle violates these constraints, a control
action is provided by a corrective mechanism which aims
to steer the vehicle inside the aforementioned bounds
whilst in the same time respecting safety constraints (it
must contain the offsets yl, yr inside a span of ±L/2
around the center of the lane and respect safety bounds
xS upon the state). The set describing the admissible
state is given as follows:

S̄ = R(L/2) ∩ B (xS) . (9)

Ideally, for a known value of the state, the control
action is provided by the following switch mechanism:

u =
{
ud, x ∈ S
ua, x ∈ S̄ \ S

(10)
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where inputs ud and ua denote the input provided by the
driver, respectively by the corrective mechanism.

However, the system state is not directly accessible
and as such, the sensor estimations (3) have to be
used to construct an artificial estimate x∗. This may be
realized by selecting one of the available estimations or
by considering a convex combination of them. This in
turn permits to rewrite (10) as

u =
{
ud, x̂∗ ∈ S∗

ua, x̂∗ ∈ S̄∗ \ S∗
(11)

with notation

S∗ = S ⊕
⋃
i∈I

S̃i, S̄
∗ = S̄ 	

⋃
i∈I

S̃i. (12)

Note that sets S, S̄ used (10) are replaced with sets
S∗, S̄∗ in (11) to counterbalance the influence of the
measurement noises. This allows for the driver to control
the steering as long as there exists the possibility that
the state is still in S and, additionally, for the assisting
mechanism, to guarantee that the state remains at all
times inside S̄.

B. Control strategies
The sensor selection scheme considered in this paper

selects a sensor-estimator pair at each sampling time
upon an optimization based procedure

x̂∗ = arg min
x̂i

x̂Ti Px̂i, i = 1, . . . , N (13)

with P > 0, solution of the Lyapunov equation P =
(A−BK)′P (A−BK) +Q for a given feedback gain K
and a given matrix Q > 0.

The control action provided by the corrective mecha-
nism is obtained from ua = Kx̂∗. Using (3), (4) and (13)
and supposing that, at a given time instant, the minimum
is achieved at the subindex ` ∈ {1, . . . , N} one rewrite
the control law as:

ua = K (x− x̃l) (14)

which, together with (1), gives the closed loop system

x+ = (A+BK)x−BKx̃l +Bρρref . (15)

For further use let recall some basic notions of set
invariance.

Definition 1 (RPI set). The set Ω ⊂ Rn is a robust
positively invariant (RPI) set of dynamics x+ = Ψx+ δ
with δ ∈ ∆ if and only if ΨΩ⊕∆ ⊆ Ω. �

The minimal robust positive invariant (mRPI) set is
defined as the RPI set contained in any closed RPI set
and the maximal robust positively invariant (MRPI) is
defined as the maximal RPI set contained in a given
bounding set.

As seen from the switch mechanism in (11), whenever
the state is no longer included in the nominal region S,
a corrective mechanism takes control and provides an

action which aims to keep the state inside the safety
region S̄ and eventually to steer it inside the nominal
region. These requirements can be formally presented as:

S∗,+ ⊆ ΩM (16)
Ωm ⊆ S∗ (17)

where S∗,+ denotes the successor value of set S∗ mapped
through dynamics (1) (S∗,+ = AS∗⊕BU⊕BρPref ) and
ΩM , Ωm denote the MRPI, respectively the mRPI sets
of dynamics (15).
The corrective mechanism is activated only when the

state “jumped” outside the nominal region S∗. As long
as this one step reachable set S∗,+ respects condition
(16) we can guarantee that all the future states will
remain in S̄∗ (by the very definition of the MRPI set
ΩM ). Condition (17) guarantees that the state will return
inside the nominal region S∗ in a finite time.

C. Numerical considerations

Usually, the mRPI set cannot be explicitly determined.
There are however various techniques in the literature
which provide RPI approximations. An interesting ap-
proach is provided in [14] where ultimate bounding in-
variant sets are used. For MRPI sets, there exist iterative
algorithms which guarantee a solution in a finite number
of steps, see [15].

The feasibility of relations (16), (17) as a function of
the control law given in (14) can be addressed by convex
optimization arguments. For example, using ellipsoidal
approximations of Ωm, ΩM we are able to analyze the
existence of a feedback gain K as discussed in [16].

For a greater flexibility, the control law (14) can be
generalized to a piecewise affine function. This will lead
to a larger set ΩM , respectively a smaller set Ωm which in
turn means that we have greater leeway in choosing the
nominal region (8). The control law will be then obtained
as the result of an optimization problem under a receding
horizon.

IV. Fault tolerant control scheme

In this section we describe the components of a
FTC mechanism which interact as a whole and present
the necessary conditions for exact fault detection. A
schematic view is given in Fig. 2 where the FTC compo-
nents are added to the closed loop dynamics of system
(15) (sensors Si, estimators Fi and feedback gain K
appear explicitly).

A. Fault description

The faults considered here are abrupt total3 sensor
output outages. The failure is then represented by the

3The reasoning can be readily extended for the case of partial
outages but we rest in the framework of total outages for the sake
of simplicity.
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Fig. 2: Multisensor fault tolerant control scheme

following switch in the structure of the observation equa-
tion:

yi = Cix+ ηi
FAULT−−−−−−−−−⇀↽−−−−−−−−−

RECOV ERY
yi = 0 · x+ ηFi . (18)

The noise affecting the observation channel during the
fault, ηFi , may be different from the one during the
healthy functioning, ηi. All the noises and disturbances
affecting plant and sensors are considered to be bounded.
As such, ρ ∈ Pref and ηi ∈ Ni, ηFi ∈ NF

i for i = 1, . . . , N
with Φ ⊂ R4 and Ni, NF

i ⊂ R bounded polyhedral sets.

B. Fault detection and isolation
A residual signal ([17]) is by construction sensitive to

fault occurrences and with a manageable dependence
upon the measurement noises. In our framework we
consider the best choice to be the sensor output itself.

For a set theoretic decision the residuals will be char-
acterized by either “healthy” or “faulty” polyhedral sets.
The fault detection reduces then to the study of the
relationship between sets Y Hi and Y Fi of all the possible
values under healthy, respectively faulty, functioning of
signal yi:

Y Hi = CiX ⊕Ni, Y Fi = NF
i (19)

where X denotes a set of admissible system states. These
sets can be described offline and the actual FDI is a fast
online set membership evaluation which differentiates
between the healthy/faulty functioning for the ith sensor
as long as the following assumption holds:
Assumption 1 (Discernability). The reference set X,
dynamics and physical characteristics defining sets Ni
and NF

i are such that the “separation” condition

Y Hi ∩ Y Fi = ∅. (20)

is verified. �

As seen from relation (20), exact fault detection and
isolation are possible under certain boundedness assump-
tions for noises and plant state. Usually, the noise bounds
are fixed and the only part left to deal with is X.
Therefore, a maximal set (usually nonconvex), which

contains all the values of the state for which (20) is
validated is given as follows:

Xo =
⋂
i∈I

{
x : {Cix} ⊕Ni ∩NF

i = ∅
}
. (21)

In the aforementioned scheme, the detection and iso-
lation of faulty sensors and the use of their estimations
for constructing the control action (14) are required only
over the region S̄∗ \ S∗,+. Using (21) we can conclude
that condition

S̄∗ \ S∗,+ ⊆ Xo (22)

together with conditions (16) and (17) suffice for a
complete FTC scheme with global stability guarantees.

C. Control reconfiguration
Considering a functioning FDI mechanism we can

now partition the sensors into the healthy subset IH ,
respectively the faulty subset IF :
• IH , all the sensors acknowledged healthy (i.e. with

healthy functioning (2) and estimation error (4)
inside its invariant set):

IH =
{
i ∈ I−H : yi ∈ Y Hi

}
∪{

i ∈ I−F : x̃i ∈ S̃i, yi ∈ Y Hi
}

• IF , all the sensors acknowledged faulty (i.e. with
faulty functioning (18) or with estimation error (4)
outside its invariant set):

IR = I \ IH

such that I = IH ∪ IF and IH ∩ IF = ∅ with
the assumption that IH is not empty along the closed
loop functioning (in order to guarantee the existence of
reliable information for feedback).
Remark 1. Note that as long as condition (22) holds,
the subset IH contains only healthy sensors thus making
the FDI mechanism exact. The analysis of inclusion of
unknown values x̃i into set S̃i is required only when a
sensor previously fallen regains its healthy functioning.
Extensive details are to be found in [18]. �

2248



Using the above partitioning, we recast the control law
(13) as follows:

x̂∗ = arg min
x̂i

x̂Ti Px̂i, i ∈ IH (23)

which will allow for the FTC scheme to negate any
harmful effects of a sensor fault.

V. Illustrative example
A. Test environment and numerical data

For the illustrative example depicted here we take the
numerical values given in [13]. The vehicle dynamics are
considered for a constant velocity of 20m/s.

The bounds xN and xS upon the state for the nom-
inal and safety case, respectively, are given in Table I.
Further, typical values for the nominal and safety strips

β r ψL yL

nominal case 2◦ 5◦/s 5◦ 0.5m
safety case 6◦ 15◦/s 10◦ 1m

TABLE I: State bounds for nominal and safety case.

around the center of the lane are given by 2d = 2m
and 2d̄ = 3.5m. We consider that ρref is bounded by
Pref = B(0.1m−1), with 0.01m−1 corresponding to a
radius of 100m (lateral acceleration at 20m/s is 0.4g).
The steering angle is bounded by U = B(10◦) and we
apply the feedback gain

K =
[
−0.2079 −0.0699 −0.7696 −0.0489

]
.

Throughout the paper it was implicitly assumed that
the sensors are observable. Due to the state dynamics,
this property is verified only for sensors which mea-
sure (at least) the state components yL and ΨL. In
our practical setting, realist sensors are: i) estimations
through computer vision algorithms and ii) GPS RTK
(Real Time Kinetic) systems with the following physical
characteristics (output matrix, noise bounds in healthy,
respectively faulty case):

C1 =
[
0 0 1 0
0 0 0 1

]
,N1 = B(

[
0.10m
0.5◦

]
), NF

1 = B(
[
0.10m
0.5◦

]
)

C2 =
[
0 0 1 0
0 0 0 1

]
,N2 = B(

[
0.05m
0.25◦

]
), NF

2 = B(
[
0.05m
0.25◦

]
).

Note that the illustrative example is academic since at
the present, GPS RTK systems (which require additional
road infrastructure) are found only in experimental fa-
cilities and not in every day use.

For both of the sensors we take a gain matrix L1 =
L2 = L such that the poles of the closed loop estimator
system (3) are

[
0.9 0.1 0.01 0.2

]
. We are now able

to depict the sets of interest mentioned throughout the
paper. In Fig. 3 (a) we show S, S∗ (blue solid and dashed
lines, respectively), S̄, S̄∗ (red solid and dashed lines,
respectively) and S∗,+ (magenta dotted line). We observe
here that condition S∗,+ ⊂ S̄∗, which is a prerequisite for
conditions (16) and (17), holds. In Fig. 3 (b) we show the

maximal and minimal RPI sets ΩM (solid magenta line),
respectively Ωm (dashed magenta line) together with the
complement of the admissible reference set, X̄o (dotted
blue line).
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Fig. 3: Sets of interest.

We observe that the gain matrix K in conjunction
with the aforementioned constraints leads to sets which
respect conditions (16), (17) and (22) thus making the
problem feasible from the point of view of control and
fault tolerance.

B. System simulations
For a practical application we consider a road with

curvature profile given in Fig. 4 and take two segments
(as highlighted in the figure) upon which we run the
simulations. The first segment corresponds to a curved
section of the road, whereas the second describes a
straight line.

0 20 40 60 80 100 120 140
−3

−2

−1

0

1

2

3

4
·10−2

time[s]

ρ
re
f
[m
−

1 ]

0 20 40 60 80
−1

−0.5

0

0.5

1 ·10−2

0 20 40 60 80
−1

−0.5

0

0.5

1 ·10−2

Fig. 4: Profile of road curvature with curved and straight
segments of the road detailed.

In the first simulation we analyze a curved portion of
the road of maximum curvature ρref = 0.009m−1. We
presume that the inattentive driver drives straight ig-
noring the curvature. Consequently, the nominal bounds
of region S∗ are violated and the corrective mechanism
assumes control. As it can be seen in Fig. 5 the corrective
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control action steers the vehicle inside the nominal region
without tresspasing the safety region as seen in Fig. 5
(b). Moreover, the steering angle, as shown in Fig. 5
(a) lies between −1◦ . . . 2.25◦, well below the bounds of
−10◦ . . . 10◦.
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Fig. 5: Simulation for the curved road segment.

The same simulation is carried for the second segment
of road which covers a straight line. Here the innatentive
driver starts to drift, until, as in the previous case, the
constraints are broken and the corrective mechanism
proposes a corrective control action. In Fig. 6 (b) we see
the offsets of the front wheels and in Fig. 6 (a) the values
of the steering angle.
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Fig. 6: Simulation for the straight road segment.

Note that both simulation reflect the “proof of con-
cept” nature of the discussion. For example, once the
driver exits the nominal region, the corrective mech-
anism takes control until the state is returned inside
the nominal region. In practice this is unacceptable as
it renders the driver powerless even if s/he is again
attentive. Additionally, if the state of inattention of the
driver is prolonged, we may have a “chattering” at the
boundary of region S∗ where the corrective mechanism
cedes control only to regain it after a few instants of
time. A more realist implementation would require for
example the use of an alarm signal which makes the
driver attentive once the nominal region is trespassed.

VI. Conclusions
The present paper detailed a discrete time lane control

mechanism. Global stability guarantees where analyzed

with the help of set invariance notions. Additionally, a
fault tolerant control scheme was implemented in order
to detect and accomodate abrupt faults in the measuring
sensors.

The authors would like to thank B. Lusetti for sharing
the numerical characterization of the level noises in the
sensors used in the scheme.
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