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Abstract— This paper deals with the problem of model
identification in continuous-time using subspace techniques.
More precisely, a recently presented continuous-time predictor-
based subspace identification algorithm which relies on a system
transformation using the Laguerre basis is considered and a
recursive counterpart is developed.

I. INTRODUCTION

Subspace Model Identification (SMI) algorithms provide

an extremely useful approach to deal with the estimation

of discrete-time state space models for MIMO systems.

The problem of developing dedicated SMI methods for the

identification of continuous-time systems has been studied

in a number of contributions, see, e.g., [1], [2], [3], where a

detailed overview of this research area is provided, In par-

ticular, in the cited papers a continuous-time version of the

Predictor-Based Subspace IDentification (PBSID) algorithm

(see [4]) is provided, based on the adoption of orthonormal

basis functions as originally proposed in [16], [14].

Similarly, the problem of recursive subspace model iden-

tification (RSMI) in discrete-time has been an active area of

research in recent years (see, e.g., [18], [6], [7], [11], [17],

[12]). Most RSMI algorithms are inspired by offline versions

of SMI techniques and therefore rely on the availability of

efficient updating methods for the numerical linear algebra

algorithms used in batch SMI. While the above cited papers

are concerned with the derivation of recursive versions

for the MOESP class of SMI algorithms, more recently,

two recursive implementations for the discrete-time PBSID

algorithm have been proposed, in [8], [5].

Recursive implementation is particularly important in con-

nection to continuous-time subspace methods in view of

the significant computational burden associated with their

implementation. In this respect, the recursive implementation

of the continuous-time version of PO-MOESP first proposed

in [16], [14] has been presented in [10], together with a novel

set of orthonormal, Laguerre-like basis functions with the

specific feature of being compactly supported. In view of the

above discussion, the aim of this paper is to propose a novel

algorithm for RSMI in continuous-time, building on related

results presented in [1], [2], [3] for the continuous-time

counterpart of the PBSID method and on the recent advances

in recursive identification presented in the above cited papers.

More precisely, a recursive version of the algorithm in [1],
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[2], [3] is presented, and a comparison between conventional

and compactly supported basis functions is carried out and

discussed.

The paper is organised as follows. In Section II the

problem statement is given and some definitions are pro-

vided. Section III provides a summary of the approach based

on Laguerre projections used to convert continuous-time

problems to equivalent discrete-time ones; subsequently, in

Section IV the batch algorithm is first briefly summarised and

the proposed recursive counterpart is presented. Finally, some

simulation results are presented in Section V to illustrate the

performance of the proposed method.

II. PROBLEM STATEMENT AND PRELIMINARIES

Consider the linear, time-invariant continuous-time system

dx(t) = Ax(t)dt + Bu(t)dt + dw(t), x(0) = x0

dz(t) = Cx(t)dt + Du(t)dt + dv(t) (1)

y(t)dt = dz(t)

where x ∈ Rn, u ∈ Rm and y ∈ Rp are, respectively, the

state, input and output vectors and w ∈ Rn and v ∈ Rp

are the process and the measurement noise, respectively,

modelled as Wiener processes with incremental covariance

given by

E

{[
dw(t)
dv(t)

] [
dw(t)
dv(t)

]T
}

=

[
Q S

ST R

]
dt.

The system matrices A, B, C and D, of appropriate dimen-

sions, are such that (A, C) is observable and (A, [B, Q1/2])
is controllable. Assume that a dataset {u(ti), y(ti)}, i ∈
[1, N ] of sampled input/output data (possibly associated with

a non equidistant sequence of sampling instants) obtained

from system (1) is available. Then, the problem is to provide

a recursive estimator of the state space matrices A, B, C

and D (up to a similarity transformation) on the basis of the

available data.

In the following Sections a number of definitions will be

used, which are summarised hereafter for the sake of clarity.

See, e.g., [19], [9], [13] for further details.

Let L2(0,∞) denote the space of square integrable and

Lebesgue measurable functions of time 0 < t < ∞, with

the inner product defined as < f, g >=
∫ ∞

0
f(t)g(t)dt, for

f, g ∈ L2(0,∞); the space H2 is the closed subspace of

L2(iR) with functions analytic in the open right half plane,

with norm

‖U‖2
2 = sup

σ>0

1

2π

∫ ∞

−∞

|U(σ+jω)|2dω =
1

2π

∫ ∞

−∞

|U(jω)|2dω.

(2)

2011 50th IEEE Conference on Decision and Control and
European Control Conference (CDC-ECC)
Orlando, FL, USA, December 12-15, 2011

978-1-61284-799-3/11/$26.00 ©2011 IEEE 6469



In view of Parseval’s relation, the spaces L2(0,∞) and H2

are related by the isometric isomorphism defined by the

bilateral Fourier transform, so if U ∈ H2, the inverse Fourier

transform u = F−1[U ] is in L2(0,∞) and ‖U‖2 = ‖u‖2.

A scalar transfer function w(s) is called inner if it is a

bounded analytic function in the open right half plane (i.e.,

w(jω) ∈ H∞), such that |w(jω)| = 1 or w∼(jω)w(jω) = 1
almost everywhere on the imaginary axis, where w∼(jω) =
wT (−jω) is the para-conjugate (i.e., w is an all-pass trans-

fer function). We further denote by Λw the multiplication

operator L2(0,∞) 7→ L2(0,∞) defined as

Λwu(t) = F−1[wF [u(t)]]. (3)

In the following the focus will be on the first order inner

function

w(s) =
s − a

s + a
, (4)

a > 0, together with the associated realisation

w(s) =
cwbw

s − aw
+ dw, (5)

where aw = −a, bw = −
√

2a, cw =
√

2a, dw = 1. Then,

it can be shown that w(s)H2 is a proper closed subspace

of H2, the orthogonal complement of which is denoted as

S = H2 ⊖ w(s)H2, that

L0(s) =
cw

s + a
=

√
2a

s + a
(6)

is a basis of the (one-dimensional) subspace S and that the

set
{
L0, wL0, . . . , w

kL0, . . .
}

(7)

is an orthonormal basis of H2, i.e., H2 =
⊕∞

k=0
wkS.

Equivalently, letting ℓ0 = F−1[L0], the set

{
ℓ0, Λwℓ0, . . . ,Λ

k
wℓ0, . . .

}
(8)

is an orthonormal basis of L2(0,∞), i.e., L2(0,∞) =⊕∞

k=0
Λk

wS.

The transfer function of the k-th (order k + 1) Laguerre

filter is then defined as

Lk(s) = wk(s)L0(s) =
√

2a
(s − a)k

(s + a)k+1
. (9)

III. FROM CONTINUOUS-TIME TO DISCRETE-TIME USING

LAGUERRE PROJECTIONS

The continuous-time algorithms discussed in this paper

are based on the results first presented in [16], [14], [13],

and further expanded in [10], [15], which allow to obtain a

discrete-time equivalent model starting from the continuous-

time system (1), along the following lines.

A. Laguerre projections

First note that under the assumptions stated in Section II,

(1) can be written in innovation form as

dx(t) = Ax(t)dt + Bu(t)dt + Kde(t)

dz(t) = Cx(t)dt + Du(t)dt + de(t) (10)

y(t)dt = dz(t),

and it is possible to apply the results of [16], [14] to derive

a discrete-time equivalent model, as follows. Consider the

first order inner function w(s) and apply to the input u, the

output y and the innovation e of (10) the transformations

ũ(k) =

∫ ∞

0

Λk
wℓ0(t)u(t)dt

ỹ(k) =

∫ ∞

0

Λk
wℓ0(t)y(t)dt (11)

ẽ(k) =

∫ ∞

0

Λk
wℓ0(t)de(t),

where ũ(k) ∈ Rm, ẽ(k) ∈ Rp and ỹ(k) ∈ Rp. Then (see

[16], [14] for details) the transformed system has the state

space representation

ξ(k + 1) = Aoξ(k) + Boũ(k) + Koẽ(k), ξ(0) = 0

ỹ(k) = Coξ(k) + Doũ(k) + ẽ(k) (12)

where the state space matrices are given by

Ao = (A − aI)−1(A + aI)

Bo =
√

2a(A − aI)−1B (13)

Co = −
√

2aC(A − aI)−1

Do = D − C(A − aI)−1B.

B. Signal transformation with finitely-supported filter ker-

nels

As remarked in [10] the above described projections based

on Laguerre basis functions can only be computed in an

approximate sense as the indefinite integrals in (11) need

to be truncated to finite intervals. In order to circumvent

this difficulty, a novel set of basis functions, for which it

can be proved that they are compactly supported, has been

proposed in the same paper, where it has been shown that for

suitably chosen scalars α0, α1, . . ., αρ (see [10] for details)

the functions

ℓ̃k(t) =

ρ∑

i=0

αiΛ
k
wℓ0(t − iτ) (14)

can be used to define the system transformations

ũ(k) =

∫ ∞

0

ℓ̃k(t)u(t)dt

ỹ(k) =

∫ ∞

0

ℓ̃k(t)y(t)dt (15)

ẽ(k) =

∫ ∞

0

ℓ̃k(t)de(t),

with the property that the signals obtained with the transfor-

mations (15) satisfy the discrete-time system (12) for suitably
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chosen initial states. The support of the functions is compact

if ρ > k.

IV. CONTINUOUS-TIME RECURSIVE PREDICTOR-BASED

SUBSPACE MODEL IDENTIFICATION

In this Section a summary of the batch continuous-time

PBSID algorithm proposed in [1], [3] is provided, and its

recursive implemention is discussed, both using Laguerre ba-

sis functions according to Section III-A and their compactly

supported counterparts described in III-B.

A. Batch estimation

Starting from system (10), in this Section a sketch of the

derivation of a PBSID-like approach to the estimation of the

state space matrices Ao, Bo, Co, Do, Ko is presented. Con-

sidering the sequence of sampling instants ti, i = 1, . . . , N ,

the input u, the output y and the innovation e of (10) are

subjected to the transformations

ũi(k) =

∫ ∞

0

(Λk
wℓ0(τ))u(ti + τ)dτ

ẽi(k) =

∫ ∞

0

(Λk
wℓ0(τ))de(ti + τ) (16)

ỹi(k) =

∫ ∞

0

(Λk
wℓ0(τ))y(ti + τ)dτ

(or to the equivalent ones derived from (15)), where ũi(k) ∈
Rm, ẽi(k) ∈ Rp and ỹi(k) ∈ Rp. Then (see [16], [14]

for details) the transformed system has the state space

representation

ξi(k + 1) = Aoξi(k) + Boũi(k) + Koẽi(k), ξi(0) = x(ti)

ỹi(k) = Coξi(k) + Doũi(k) + ẽi(k) (17)

where the state space matrices are given by (13).

Letting now

z̃i(k) =
[
ũT

i (k) ỹT
i (k)

]T

and

Āo = Ao − KoCo

B̄o = Bo − KoDo

B̃o =
[
B̄o Ko

]
,

system (17) can be written as

ξi(k + 1) = Āoξi(k) + B̃oz̃i(k), ξi(0) = x(ti)

ỹi(k) = Coξi(k) + Doũi(k) + ẽi(k), (18)

to which the PBSIDopt algorithm can be applied to compute

estimates of the state space matrices Ao, Bo, Co, Do, Ko.

To this purpose note that iterating p− 1 times the projection

operation (i.e., propagating p− 1 forward in the index k the

first of equations (18), where p is the so-called past window

length) one gets

ξi(k + 2) = Ā2
oξi(k) +

[
ĀoB̃o B̃o

] [
z̃i(k)

z̃i(k + 1)

]

... (19)

ξi(k + p) = Āp
oξi(k) + KpZ

0,p−1

i

where

Kp =
[
Āp−1

o B̃0 . . . B̃o

]
(20)

is the extended controllability matrix of the system in the

transformed domain and

Z
0,p−1

i =




z̃i(k)
...

z̃i(k + p − 1)


 .

Under the considered assumptions, Āo has all the eigenvalues

inside the open unit circle, so the term Āp
oξi(k) is negligible

for sufficiently large values of p and we have that

ξi(k + p) ≃ KpZ
0,p−1

i .

As a consequence, the input-output behaviour of the system

is approximately given by

ỹi(k + p) ≃ CoKpZ
0,p−1

i + Doũi(k + p) + ẽi(k + p)

... (21)

ỹi(k + p + f) ≃ CoKpZ
f,p+f−1

i + Doũi(k + p + f)+

+ ẽi(k + p + f),

so that introducing the vector notation

Y
p,f
i =

[
ỹi(k + p) ỹi(k + p + 1) . . . ỹi(k + p + f)

]

U
p,f
i =

[
ũi(k + p) ũi(k + p + 1) . . . ũi(k + p + f)

]

E
p,f
i =

[
ẽi(k + p) ẽi(k + p + 1) . . . ẽi(k + p + f)

]

Ξp,f
i =

[
ξi(k + p) ξi(k + p + 1) . . . ξi(k + p + f)

]

Z̄
p,f
i =

[
Z

0,p−1

i Z
1,p
i . . . Z

f,p+f−1

i

]
(22)

equations (19) and (21) can be rewritten as

Ξp,f
i ≃ KpZ̄

p,f
i

Y
p,f
i ≃ CoKpZ̄

p,f
i + DoU

p,f
i + E

p,f
i . (23)

Considering now the entire dataset for i = 1, . . . , N , the data

matrices become

Y p,f = [ỹ1(k + p) . . . ỹN (k + p) . . .

ỹ1(k + p + f) . . . ỹN (k + p + f)], (24)

and similarly for U
p,f
i , E

p,f
i , Ξp,f

i and Z̄
p,f
i . The data

equations (23), in turn, are given by

Ξp,f ≃ KpZ̄p,f

Y p,f ≃ CoKpZ̄p,f + DoU
p,f + Ep,f . (25)

From this point on, the algorithm can be developed along the

lines of the discrete-time PBSIDopt method, i.e., by carrying

out the following steps. Considering p = f , estimates for

the matrices CoKp and Do are first computed by solving the

least-squares problem

min
CoK

p,Do

‖Y p,p − CoKpZ̄p,p − DoU
p,p‖F . (26)
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Defining now the extended observability matrix Γp as

Γp =




Co

CoĀo

...

CoĀ
p−1
o


 (27)

and noting that the product of Γp and Kp can be written as

ΓpKp ≃




CoĀ
p−1B̃o . . . CoB̃o

0 . . . CoĀB̃o

...

0 . . . CoĀ
p−1B̃o


 , (28)

such product can be computed using the estimate ĈoKp of

CoKp obtained by solving the least squares problem (26).

Recalling now that

Ξp,p ≃ KpZ̄p,p (29)

it also holds that

ΓpΞp,p ≃ ΓpKpZ̄p,p. (30)

Therefore, computing the singular value decomposition

ΓpKpZ̄p,p = UΣV T (31)

an estimate of the state sequence can be obtained as

Ξ̂p,p = Σ1/2
n V T

n = Σ−1/2
n UT

n ΓpKpZ̄p,p, (32)

from which, in turn, an estimate of Co can be computed by

solving the least squares problem

min
Co

‖Y p,p − D̂oU
p,p − CoΞ̂

p,p‖F . (33)

The final steps consist of the estimation of the innovation

data matrix Ep,p

Ep,p = Y p,p − ĈoΞ̂
p,p − D̂oU

p,p (34)

and of the entire set of the state space matrices for the system

in the transformed domain, which can be obtained by solving

the least squares problem

min
Ao,Bo,Ko

‖Ξ̂p+1,p − AoΞ̂
p,p−1 − BoU

p,p−1 − KoE
p,p−1‖F .

(35)

B. Recursive estimation

In discrete-time RSMI schemes the recursion is imple-

mented directly with respect to the new discrete input-output

sample acquired at the current sampling time. When dealing

with the corresponding continuous-time counterpart the first

step to be carried out is the (approximate) computation of

the projections (16) (or of the equivalent ones derived from

(15)). In this respect, since the index k in the transformed

system represents the order of the basis function on which

the data has been projected, while the index i is related to

the sampling instants ti, the arrival of a new input-output

sample leads to the addition of a new time instant at which

the projections (16) have to be computed, which leads, in

turn, to a new column to be added to the data matrices

defined according to (24). In order to compute the projections

(16) when dealing with the conventional (i.e., with infinite

support) Laguerre filters, the following approximation is

introduced:

ũi(k) =

∫ ∞

0

Λk
wℓ0(τ)u(ti + τ)dτ

=

∫ ∞

ti

Λk
wℓ0(τ − ti)u(τ)dτ =

≃
∫ tF +ti

ti

Λk
wℓ0(τ − ti)u(τ)dτ, (36)

where tF is the instant where the impulse response of the

filter of maximum order can be considered approximately

equal to zero. In other words

tF =arg max
t

t (37)

s.t. ‖Λ2p−1
w ℓ0(t)| ≥ ǫ, (38)

where ǫ is a sufficiently small number. On the other hand,

the approximation can be avoided by modifying the basis

functions as described in Section III-B. In particular, the

modified functions have compact support if ρ > k, therefore

in the following it will be assumed that ρ > p + f .

As far as the actual implementation of the recursive

algorithm is concerned, the following steps have to be im-

plemented (along the lines of the general template proposed

in [5] and of the algorithm in [8]):

• Recursive update of the solution of the least squares

problem (26), using a conventional RLS scheme.

• Update of the estimate of the state sequence, i.e., of the

state estimate given by (32). In this respect, note that

this is the most critical step in the implementation, as

one has to ensure that the recursive state estimates are

expressed in a consistent state space basis. One way of

guaranteeing this is given by, e.g., the scheme proposed

in [8], which is based on the so-called propagator

method for the recursive update of the state sequence

(see also [12] for details).

• Recursive estimate of the state space matrices of the

system, i.e., update of the solution of the least squares

problems (33) and (35), again by means of RLS.

The overall recursive algorithm is summarised in Table I.

V. SIMULATION EXAMPLES

In this Section some simulation results obtained with the

application of the proposed algorithms (recursive PBSID

both with conventional and modified Laguerre bases) and of

the algorithm in [10] to data generated by systems operating

both in open-loop and in closed-loop are presented and

discussed.
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A. Open-loop case

The considered example is the SISO continuous-time

system given by the state space matrices

A =




−0.5 a1 0
−a1 −0.5 0
0 0 a2



 B =




1.5
1.8
1.6



 (39)

C =
[
1.5 1.3 1.6

]
D = 0; (40)

where a1 and a2 are initially equal to 10 and −2 respectively

and change to 15 and −5 after 150 s. The simulated data

has been collected by applying to the input of the system

a piece-wise constant signal with base period Tp = 0.01 s,

for a duration of 300 s. The input level is chosen randomly

according to a Gaussian distribution with zero mean and unit

variance. White Gaussian noise of increasing variance has

been added to the output in order to assess the influence

of decreasing signal-to-noise ratio on the quality of the

computed estimates. For the input and output variables the

sampling interval ∆t = 0.001 s has been considered. The

pole of the Laguerre filters has been chosen as a = 10,

while different choices have been made concerning the

implementation of the projection operators associated with

the system transformations. In the case of the conventional

Laguerre basis, windows of 2.6 s have been used, while

for the modified basis a shorter window of 0.8 s only (in

view of the compact support) has been employed. Figures

1-2 illustrate the estimation errors of the real and imaginary

parts of the system eigenvalues as computed by running the

algorithm in [10] (black line) and the one proposed herein,

both using conventional Laguerre bases (pale gray line) and

finitely supported ones (dark gray line), for two different

values of the signal-to-noise ration at the output. Apart from

occasional overshoots in transients, which are likely to be

reduced by a more refined implementation, it appears that

algorithms based on the modified Laguerre basis can provide

good performance while requiring a shorter time window for

the integration, which leads to a potentially faster operation.

B. Closed-loop case

In the second example the same system is considered, but

data are now collected during closed-loop operation, subject

to the control law u = Ky, K = 1. Again, Figures 3-

4 illustrate the estimation errors of the real and imaginary

parts of the system eigenvalues as computed by running the

algorithm in [10] (black line) and the one proposed herein,

both using conventional Laguerre bases (pale gray line) and

finitely supported ones (dark gray line), for two different

values of the signal-to-noise ration at the output. Similar

comments as in the open-loop case apply to the results

obtained in this situation.

VI. CONCLUDING REMARKS

The problem of recursive continuous-time subspace model

identification has been considered and an updating scheme

for a batch algorithm based on Laguerre projections of the

input-output variables followed by a PBSID identification
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Algorithm RPBSIDo

For ti with i = 1, ...,N

1) Compute ũi(k) and ỹi(k) for k = 0, ..,2p using (36).
2) Build the matrices Y

p,p

i
, U

p,p

i
and Z̄

p,p

i
according to (22).

3) Update the recursive least-squares version of the problem (26) obtaining CoK
p and Do.

4) According to (28) an estimate of ΓpKp is obtained using CoK
p.

5) Obtain an estimate of the state sequence from the recursive estimate of ΓpKp along the lines of [8].
6) Update the recursive least-squares version of the problem (33) obtaining Co.
7) Compute E

p,p

i
with (34).

8) Update the recursive least-squares version of the problem (35) obtaining Ao, Bo and Ko.
9) Use the matrix relations (13) to obtain A, B, C and D.

end

TABLE I

SUMMARY OF THE RPBSIDo ALGORITHM.
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Fig. 4. Real and imaginary part of the estimated eigenvalues - closed loop

experiments -
σ2

v

σ2
y

= 0.5.

step has been proposed. In particular, the role of classical and

compactly supported Laguerre basis functions has been con-

sidered. Simulation results show that the proposed schemes

are viable and can be therefore applied to either relieve the

computational burden and memory storage requirements of

the corresponding batch algorithms when dealing with large

scale and/or fast sampling problems or to compute on-line

updates of the system matrices for slowly varying systems.
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