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Abstract— We study distributed consensus algorithms in frac-
tal networks where agents are subject to external disturbances.
We characterize the coherence of these networks in terms of an
H2 norm of the system that captures how closely agents track
the consensus value. We show that, in first-order systems, the
coherence measure is closely related to the global mean first
passage time of a simple random walk. We can therefore draw
directly from the literature on random walks in fractal graphs
to derive asymptotic expressions for the coherence in terms of
the network size and dimension. We then show how techniques
employed in the random walks setting can be extended to
analyze the coherence of second-order consensus algorithms
in fractal graphs with tree-like structures, and we present
asymptotic results for these second-order systems.

I. INTRODUCTION

Distributed consensus algorithms are important tools in
the domains of multi-agent systems and the vehicle pla-
tooning problem [1], [2], [3] as a means by which agents
can reach and maintain agreement on quantities such as
velocity, heading, and inter-vehicle spacing using only local
communication. In these settings, in addition to verifying
the correctness of distributed consensus algorithms, it is also
important to consider how robust these algorithms are to
external disturbances.

Several recent works have studied the robustness of dis-
tributed consensus algorithms for systems with first-order
and second-order dynamics in terms of an H2 norm. This
norm is a quantification of the network coherence; it captures
how well a network can maintain its formation in the face
of stochastic external disturbances. For the first-order case,
it has been shown that the H2 norm can be characterized by
the trace of the pseudo-inverse of the Laplacian matrix [4],
[5], [6], [7]. This value has important meaning not just in
consensus systems, but in electrical networks [8], [9], random
walks [10], and molecular connectivity [11]. For systems
with second-order dynamics, the H2 norm is also determined
by the spectrum of the Laplacian. However, we are unaware
of any analogous concepts in other fields.

Our recent work [5], [7] gave scalings for the H2 norm
of first and second order consensus algorithms in torus
and lattice networks in terms of the number of nodes and
the network dimension. These results showed that there is
a marked difference in coherence between first-order and
second-order systems and also between networks of different
dimensions. For example, in a one-dimensional ring network
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with first-order dynamics, the per-node variance of the de-
viation from consensus scales linearly in the number nodes,
while in the two-dimensional torus, the per-node variance
scales logarithmically in the number of nodes.

In this work, we explore the robustness of consensus al-
gorithms in networks with dimensions between one and two.
Namely, we study the coherence of consensus algorithms in
self-similar, fractal graphs. For first-order systems, we are
able to draw directly from literature on random walks on
fractal networks to show that, in a network with N nodes,
the per-node variance scales as N1/df where df is the fractal
dimension of the network. For networks with second-order
consensus dynamics, we are unaware of any such analysis for
general fractal graphs. For fractals with tree-like structures,
we show how techniques used for the analysis of random
walks [12], [13] can be extended to analyze the coherence of
second-order consensus systems, and we present asymptotic
results for the per-node variance in terms of the network size
and spectral dimension.

The remainder of this paper is organized as follows. In
Section II, we present the system models for first-order
and second-order consensus dynamics and give a formal
definition of network coherence for each setting. We also
present several properties from other domains that are math-
ematically similar to network coherence. In Section III, we
describe the fractal graph models, and in Section IV we
present analytical results on the scalings of the first-order and
second-order coherence measures in fractal graphs. Finally,
we conclude in Section V.

II. NETWORK COHERENCE

We consider simple, first-order and second-order con-
sensus algorithms over an undirected, connected network
modeled by a graph G with N nodes and M edges. Our
objective is to quantify the robustness of these algorithms to
stochastic perturbations at the nodes using a quantity that we
call network coherence. In the first-order setting, each node
has a single state, and in the second order setting, each node
has two states corresponding to position and velocity. This
difference leads to different expressions for coherence and
therefore different asymptotic scalings, as we show in the
sequel.

A. Coherence in Networks with First-Order Dynamics

In the first-order consensus problem, the state of the
system, the value at each node, is a vector x ∈ RN . Each
node state is subject to stochastic disturbances, and the
objective is for nodes to maintain consensus at the average
of their states.
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Let L be the Laplacian of the graph, defined by L :=
D −A, where D is diagonal matrix of node degrees and A
is the adjacency matrix of G. The dynamics of the system
are defined as follows,

ẋ = −Lx+ w, (1)

where w is an N -vector of zero-mean, white noise processes.
In the absence of the noise processes, the system converges

asymptotically to consensus at the the average of the initial
states. With the additive noise term, the nodes do not con-
verge to consensus, but instead, node values fluctuate around
the average of the current node states. Network coherence
captures the variance of these fluctuations.

Definition 2.1: The first-order network coherence is de-
fined as the mean, steady-state variance of the deviation from
the average of all node values,

H(1) :=
1
N

N∑
i=1

lim
t→∞

E

xi(t)− 1
N

N∑
j=1

xj(t)

 .

Let P be the projection operator P = I − 1
N 11∗, where

1 is the N -vector of all ones. We define the output of the
system (1) to be

y = Px. (2)

H(1) relates to the H2 norm of the system defined by (1)
and (2) as follows,

H(1) =
1
N

tr
(∫ ∞

0

e−L
∗tPe−Ltdt

)
.

It has been shown that H(1) is s completely determined by
the spectrum of L [4], [5], [7], [6]. Let the eigenvalues of L
be 0 = λ1 < λ2 ≤ . . . ≤ λN . Then, the network coherence
of the first-order system is given by

H(1) =
1

2N

N∑
i=2

1
λi
. (3)

B. Coherence in Networks with Second-Order Dynamics

In the vehicle formation problem, there are N vehicles,
each with a position and a velocity. The objective is for
each vehicle to travel at a constant target velocity while
maintaining a fixed, pre-specified distance between itself and
each of its neighbors. The state of the second-order system
consists of a position vector x and a velocity vector v. The
states are measured relative to the target velocity v and
position x(t). The system dynamics are given by[

ẋ
v̇

]
=
[

0 I
−L −L

] [
x
v

]
+
[

0
I

]
w, (4)

where w is a 2N -vector of zero-mean white noise processes.
Note that the stochastic disturbances enter only in the veloc-
ity terms.

The network coherence of the second-order system is
defined in terms of the the node positions only, and it
captures how closely the vehicle formation follows the target
trajectory in steady-state.

Definition 2.2: The second-order network coherence is
the mean, steady-state variance of the deviation of each
vehicle’s position error from the average of all vehicle
position errors.

Let the output for the system (4) be

y =
[
P 0

] [ x
v

]
, (5)

As in the consensus case, the variance is given by the H2

norm of the system defined by (4) and (5). This value is also
completely determined by the eigenvalues of the Laplacian
matrix [5], [7], and is given by

H(2) =
1

2N

N∑
i=2

1
λ2
i

.

C. Related Concepts

The eigenvalues of the Laplacian are linked to the topology
of the network, and therefore, it is not surprising that these
eigenvalues play a role in many graph problems. In fact, the
sum

S :=
N∑
i=2

1
λi

that appears in the expression for first order coherence (3)
is an important quantity, not just in the study of consensus
algorithms, but in several other fields. We can leverage work
in these fields to develop analytic expressions for network co-
herence for different graph topologies. We first review these
related properties, and in the following sections, we present
analysis for the asymptotic behavior of network coherence
measures in several classes of self-similar networks.

1) Effective Resistance in an Electrical Network: The
graph G represents an electrical network where each edge
is a unit resistor. The resistance distance rij between two
nodes i and j is the potential distance between them when a
one ampere current source is connected from node j to node
i. The total effective resistance of the network, also called the
Kirchoff index [8], [9], is the sum of the resistance distances
over all pairs of nodes in the graph,

R :=
∑
i,j∈V
i 6=j

rij .

It has been shown that the total effective resistance depends
on the spectrum of the Laplacian matrix as follows (for proof,
see [14]),

R = 2N
N∑
i=2

1
λi
.

2) Global Mean First Passage Time of a Random Walk:
In a simple random walk on a graph G, the probability of
moving from one state to the next is 1

∆ where ∆ is the out-
degree of the current state. The first passage time fij (also
called the hitting time) is the average number of steps it takes
for a random walk starting at node i to reach node j for the
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first time. The global mean first passage time is the average
first passage time over all pairs of nodes

F =
1

N(N − 1)

∑
i,j∈V
i6=j

fij .

It has been shown that, for a connected graph, the the
following relationship exists between the mean first passage
time between nodes i and j and the resistance distance [10],

fij + fji = 2Mrij ,

where M is the number of edges in the graph. The global
mean first passage time is therefore related to the total
effective resistance as follows,

F =
M

N(N − 1)

∑
i,j∈V
i 6=j

rij =
2M
N − 1

N∑
i=2

1
λi
.

If the graph is a tree, then M = N −1, and the global mean
first passage time is simply

F = 2
N∑
i=2

1
λi
.

3) Quasi-Wiener Index: The Wiener index was proposed
by Harry Wiener in 1947 as a measure of molecular con-
nectivity [15]. The graph G represents a molecule, where
nodes are atoms and edges are chemical bonds. The distance
between two atoms is the length (number of edges) of the
shortest path between them. The Wiener index is the sum
of the distances between all pairs of non-hydrogen atoms. If
the molecular graph is acyclic, this value is exactly [11],

W =
N∑
i=2

1
λi
,

where N is the number of non-hydrogen atoms. If the
graph contains cycles, the right-hand side of the equation
is no longer equal to the sum of lengths of the shortest
paths. However, this quantity is still utilized in mathematical
chemistry and is called the quasi-Wiener index [16].

III. SELF-SIMILAR GRAPHS

Ideally, one would like to find an analytical expression for
the network coherence values, but in general, it is a difficult
problem to analyze the spectrum of the Laplacian. However,
for graphs with special structure, one can sometimes find a
closed form for either these eigenvalues, or the sum of their
inverses. For example, for d-dimensional torus and lattice
networks, it has been shown that the network coherence of
systems with first-order dynamics scales as

H(1) ≈

 N d = 1
log(N) d = 2
1 d ≥ 3.

This result has appeared in the contexts of global mean
first passage time [17] and effective resistance [18]. With
respect to consensus algorithms, our recent works [5], [7],

also present this result, and in addition, show that this
is the best achievable asymptotic behavior for any local
controller. This same work gives the asymptotic scalings of
network coherence for consensus algorithms with second-
order dynamics,

H(2) ≈


N3 d = 1
N d = 2
N1/3 d = 3
log(N) d = 4
1 d ≥ 5.

A natural question that arises is how to analyze coherence
scalings for other types of graphs. In order to study the rela-
tionship between coherence and the size of the network, we
require that the network can grow in a prescribed manner. A
good candidate is the class of self-similar graphs. Informally,
a self-similar graph is one which exhibits the same structure
at every scale.

Self-similar graphs can be characterized by the number
of nodes and the graph dimension. However, there is not
a single agreed-upon notion of dimension that encapsulates
all properties of the graph. In this work, we consider the
following two dimension definitions.

Definition 3.1: Let N(r) be the minimum number of balls
of radius r required to cover the graph (where distance
is defined by the length of the shortest path). The fractal
dimension (also called the Hausdorff dimension) of the graph
G is

df := − lim
ε→0

log(N(ε))
log(ε)

,

where log(·) denotes the natural logarithm function.
Definition 3.2: Let ρ(x) be the eigenvalue counting func-

tion of L, i.e. ρ(x) is the number of eigenvalues of L
that have magnitude less than or equal to x. The spectral
dimension of the graph G is [19]

ds := 2 lim
x→∞

log(ρ(x))
log(x)

.

Torus and lattice graphs are both self-similar graphs, and
their fractal and spectral dimensions are equivalent to the
natural dimension definition, e.g. a 2-dimensional torus has
df = ds = 2. In this work, we consider two classes of
fractal graphs, tree-like fractals and Viscek fractals These
graphs have spectral dimension between 1 and 2, and their
fractal and spectral dimensions are related as follows [20],

ds = (2df )/(df + 1).

We describe the construction of these graphs below.
Tree-Like Fractals: We employ the model for tree-like

fractals that was presented in [12]. Each family of graphs
is parameterized by a positive integer k. The graphs are
constructed in an iterative manner, and each iteration yields
a new graph generation. The process begins with a graph
that consists of two nodes connected by a single edge. This
graph corresponds to the generation g = 0. Given a graph
of generation g, the graph of generation g + 1 is formed by
replacing each edge with a path of length 2, i.e for each
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Fig. 1. First four generations of the tree-like fractal for k = 2.
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Fig. 2. First three generations of the Vicsek fractal for f = 4.

pair of nodes i and j connected by an edge (i, j) in Gg ,
we replace (i, j) by two edges (i, k) and (k, j) where k is
a new node (not existing in graph g). k additional nodes are
then attached to every new node. The process is illustrated
in Fig. 1 for k = 2. This model encompasses several well-
know fractal graphs, including the T-graph (k = 2) [21] and
the Peano basin fractal (k = 1) [22]. These graphs have fractal
dimension df = log(k + 2)/ log(2) and spectral dimension
ds = 2 log(k + 2)/ log(2(k + 2)).

Vicsek Fractals: The second class of graphs studied in this
work is the generalized Vicsek fractal [23], [24]. This graph
is also constructed in an iterative manner. The generation
0 graph is a star graph with f + 1 nodes. The graph in
generation g+1 is generated from generation g by making f
copies of the generation g graph and arranging them around
the generation g graph. These copies are connected to the
center graph by adding edges from the f corners of the center
graph, each linking to a corner of a copy. An illustration of
this process is shown in Fig. 2 for f = 4. The generalized
Vicsek fractal has fractal dimension df = log(f+1)/ log(3)
and spectral dimension ds = 2 log(f + 1)/ log(3f + 3).

IV. COHERENCE IN FRACTAL NETWORKS

In this section, we explore the coherence of fractal graphs
described in the previous section. These graphs have been
investigated in the context of random walks [24], [13], [12],
and we can directly apply results in this area to formulate

1See [12]. 2 See [12]. 3 See [13], [24].

expressions for the coherence in self-similar fractal graphs
with first-order dynamics. We note that, for the tree-like and
Vicsek fractal graphs, M ∼ N and therefore, H(1) ∼ 1

N F .
The first order-coherence for a self-similar (tree-like) frac-

tal graph with spectral dimension ds and fractal dimension df
is H(1) ∼ N (2/ds−1 = N1/df . A list of example graphs with
their spectral dimension, fractal dimension, and scaling for
H(1) is given in Table I. We note that the T-Graph has fractal
dimension 2, the same as a 2-dimensional torus. However, in
the torus, first order coherence scales as log(N) as opposed
to
√
N for the T-Graph. This illustrates that it is the spectral

dimension, not the fractal dimension, that determines the
asymptotic behavior of network coherence.

As we unaware of any analogs in other domains to the
the coherence for second order systems, we cannot look to
existing works for solutions to this problem. In remainder of
this section, we show how techniques used to analyze random
walks in tree-like fractal networks can be extended to ana-
lyze the coherence second-order systems. With these these
extensions, we derive analytical expressions for the network
coherence in terms of the network size and dimension.

Coherence in Tree-Like Fractals: In their recent work, Lin
et al. [12] give an analytic expression for the global mean first
passage time in tree-like fractals, derived from a recursive
expression for the characteristic polynomial of the associated
Laplacian matrix. We briefly review their technique and then
show how to extend this analysis to determine the coherence
of systems with second-order dynamics

Let Pg denote the characteristic polynomial for the Lapla-
cian of the graph of generation g (denoted Lg),

Pg(λ) = det(Lg − λIg).

The roots of Pg are the eigenvalues of Lg . As we are only
interested in the non-zero eigenvalues of Lg , we instead
consider the polynomial

P ′g(λ) =
1
λ
Pg(λ),

and note that

Sg =
N∑
i=2

1
λi(Lg)

=
N−1∑
i=1

1
λ′i(Lg)

,

where λ′i(Lg), i = 1 . . . N − 1 are the N − 1 roots of P ′(g).
Let p(i)

g denotes the coefficient of the term λi, such that

P ′g(λ) =
N−1∑
i=0

p(i)
g λi = pN−1

g

N−1∏
i=1

(λ− λ′i(Lg)). (6)

Applying Viète’s formulae, the following equality is estab-
lished,

Ng∑
i=1

1
λi(g)

= −p
(1)
g

p
(0)
g

. (7)

Therefore, to find the sum Sg , one only needs to derive the
coefficients p(1)

g and p(0)
g .

To determine these coefficients, one first derives a re-
cursion for P ′g . Let Qg be the characteristic polynomial
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TABLE I
EXAMPLES OF SELF-SIMILAR FRACTAL GRAPHS AND THEIR DIMENSIONS AND COHERENCE MEASURES.

Network Fractal Dimension Spectral Dimension H(1)

Peano Basin Fractal1 (tree-like fractal with k = 1) log(3)
log(2)

2 log(3)
log(6)

N log(2)/ log(3)

T-Graph2 (tree-like fractal with k = 2) 2 2/3
√

N

Generalized Vicesk Fractal Vf
3 log(f+1)

log(3)
2 log(f+1)
log(3f+3)

N log(3)/ log(f+1)

of the (N − 1) × (N − 1) submatrix of Lg formed by
removing a single column and row corresponding to an
outermost node. Let Rg be the characteristic polynomial of
the (N −2)× (N −2) submatrix of Lg formed by removing
columns and rows corresponding to two outermost nodes.
The following equation captures the relationship between the
characteristic polynomials of the graphs of generation g+ 1
and g.

P ′g+1(λ) =(k + 2)[Qg(λ)]k+1P ′g(λ) + (k + 1) [Qg(λ)]k+2

Qg+1(λ) = [Qg(λ)]k+2 + (k + 1)λRg(λ) [Qg(λ)]k+1

+ (k + 1)λRg(λ)[Qg(λ)]kP ′g(λ)

Rg+1(λ) =2Rg(λ)[Qg(λ)]k+1 + (m+ 1)[Rg(λ)]2[Qg(λ)]m

+ kλ [Rg(λ)]2 [Qg(λ)]k−1
P ′g(λ).

From these equations, Lin et al. [12] derive recursions for
the coefficients p(0)

g , q(0)
g , and r(0)

g , and the coefficients p(1)
g

and q
(1)
g . They then solve these recursions arriving at the

following expression for the asymptotic order of the global
mean first passage time,

Fg ∼ N1+log(2)/ log(k+2)
g = N2/ds

g .

where ds is the spectral dimension of the network. Therefore,
the first-order coherence for tree-like fractals is

H(1)
g =

1
Ng

(
−p

(1)
g

p
(0)
g

)
∼ N

log(2)
log(k+2)
g = N (2/ds)−1

g = N
1/df
g .

Using equation (6) and Viète’s formulae, we can also
express H(2) in terms of the coefficients of P ′(λ) as follows,

Ng∑
i=1

1
(λi(g))2 =

(
p

(1)
g

p
(0)
g

)2

+
p

(2)
g

p
(1)
g

(8)

In order to solve for p(2)
g , we need the recursion equations

for p(2)
g , q

(2)
g , and r(1)

g , which are as follows,

r
(1)
g+1 =2[q(0)

g ]k+1r(1)
g + 2(k + 1)r(0)

g [q(0)
g ]kq(1)

g

+ (k + 1)[r(0)
g ]2[q(0)

g ]k + k[r(0)
g ]2[q(0)

g ]k−1p(0)
g

q
(2)
g+1 =(k + 2)q(2)

g + (k + 2)(k + 1)q(1)
g + (k + 1)r(1)

g

+ (k + 1)2r(0)
g q(1)

g + (k + 1)p(0)
g r(1)

g

+ k(k + 1)r(0)
g p(0)

g q(1)
g + r(0)

g p(1)
g

p
(2)
g+1 =(k + 2)[q(0)

g ]k+1p(2)
g

+ (k + 1)(k + 2)[q(0)
g ]kq(2)

g p(0)
g

+ (k + 2)(k + 1)m[q(0)
g ]k−1[q(1)

g ]2p(0)
g

+ (k + 1)(k + 2)[q(0)
g ]k+1q(2)

g

+ (k + 2)(k + 1)m[q(0)
g ]k[q(1)

g ]2.

Again, we are only interested in the asymptotic behavior of
H(2), and so we only need to derive the highest order term
of p(2)

g . The details of this derivation are straightforward and
are omitted for brevity. The order of p(2)

g is

p(2)
g ∼ 22g (k + 2)3g

.

Combining this result with the equation for p(1)
g , we arrive

at the following theorem.
Theorem 4.1: For the class of tree-like fractals with

second-order noisy consensus dynamics as defined by (4),
the mean steady-state variance of the deviation from average
is

H(2)
g ∼ N1+log(2)/ log(k+2)

g = N (4/ds)−1
g = N

1+(2/df )
g ,

where Ng is the number of nodes in the generation g graph.
Coherence in Vicsek Fractals: It has been shown that the

following relationship exists between the eigenvalues of the
generation g+1 graph and the eigenvalues of the generation
g graph [24],

λ
(i)
g+1

(
λ

(i)
g+1 − 3

)(
λ

(i)
g+1 − f − 1

)
= λ(i)

g (9)

Each eigenvalue from graph of generation g generates three
eigenvalues for graph of generation g + 1.

One can use the above expression to solve for the eigenval-
ues of the Vicsek fractal explicitly, but, it is not clear how
to derive a closed form expression for each λ

(i)
g . In their

recent work, Zhang et al. [13], show that, one can obtain a
closed expression for Sg without solving for the individual
eigenvalues. We briefly review this technique here.

Let λ(i,1)
g+1 , λ(i,2)

g+1 , and λ(i,3)
g+1 be the three roots of equation

(9), Then, applying Viète’s formulas, one can obtain the
following recursive expression for the sum of the inverses
of these roots

1

λ
(i,1)
g+1

+
1

λ
(i,2)
g+1

+
1

λ
(i,3)
g+1

=
3(f + 1)

λ
(i)
g

. (10)
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Summing over all eigenvalues, and taking special care with
degenerate eigenvalues, one obtains the following

Sg =
(f − 2)(f + 1)g−1(3g − 1)

2
+

3g(f + 1)g − 1
3f + 2

.

The number of nodes in the graph of generation g is Ng =
(f + 1)g , and 3g = N

log(3)/ log(f+1)
g . Therefore, the global

mean first passage time is

Fg ∼ N1+log(3)/log(f+1)
g = N2/ds

g .

where ds is the spectral dimension of the network. The net-
work coherence for Vicsek fractals with first-order consensus
dynamics immediately follows,

H(1)
g ∼ N log(3)/ log(f+1)

g = N (2/ds)−1
g = N

1/df
g .

As in the work by Zhang et al. [13], we apply Viète’s
formulas to equation (9), but this time to obtain a sum over
the squares of the inverses of the Laplacian eigenvalues,

1[
λ

(i,1)
g+1

]2 +
1[

λ
(i,1)
g+1

]2 +
1[

λ
(i,1)
g+1

]2 =
(3(f + 1))2[

λ
(i)
g

]2 − 2(f + 4)

λ
(i)
g

.

Using this result to sum over all eigenvalues yields a term
of order

32g(f + 1)2g = N2+2 log(3)/ log(f+1)
g .

From this result, we obtain at the following theorem for H(2).
Theorem 4.2: For generalized Vicsek fractal graphs with

second-order noisy consensus dynamics as defined by (4),
the mean steady-state variance of the deviation from average
is

H(2)
g ∼ N1+2 log(3)/ log(f+1)

g = N (4/ds)−1
g = N

1+(2/df )
g ,

where Ng is the number of nodes in the generation g graph.

V. CONCLUSION

We have investigated the per node variance of the deviation
from consensus as a measure of network coherence in fractal
networks with first-order and second-order noisy consensus
dynamics. We have shown that, in first-order systems, the
coherence measure is closely related to the effective resis-
tance of an electrical network, the global mean first passage
time of a simple random walk, and the quasi-Wiener index
for chemical networks. Drawing directly from literature on
random walks in fractal graphs, we presented asymptotic
expressions for the first-order coherence in terms of the
network size and dimension. We then extended these results
to second-order consensus algorithms in fractal graphs with
tree-like structures, and we have shown that the second-
order coherence grows as N1+(2/df ), where df is the fractal
dimension of the network. A question for future study is
whether this result can be generalized to other classes of
fractal graphs.
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