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Abstract— Predictive-control methods have been recently em-
ployed for demand-response control of building and district-
level HVAC systems. Such approaches rely on models and
parameter estimates to meet comfort constraints and to achieve
the theoretical system-efficiency gains. In this paper we present
a methodology that establishes achievable targets for control-
model parameter estimation errors based on closed-loop perfor-
mance sensitivity. The control algorithm is designed as a Model
Predictive Controller (MPC) that uses perturbed building-
model parameters. We perform simulations to estimate the
dependency of energy cost and constraint infringement time on
the magnitude of these perturbations. The simulation results
are used to define targets for the parameter estimation errors,
which in turn are applied to specify the character of excitation
and model structure used for identification. We design a
parameter estimator and perform Monte-Carlo simulations for
a model that includes sensor noise and load uncertainty. The
distribution of the estimation errors are used to demonstrate
that the established targets are met.

I. INTRODUCTION

Building heating and cooling systems consume 12% of
total US energy. These systems have received renewed in-
terest from the research community driven by the significant
impact that modern design techniques can have as energy
prices continue to rise [1]. The challenges in improving
their performance dramatically are: unavailability of data due
to inadequate instrumentation and/or data communication
between systems; complexity of heterogeneous spatially-
distributed systems that are installed in districts and cam-
puses; large uncertainties in exogenous factors such as usage,
weather; legacy controllers which use local measurements
and are re-tuned by operators.

The recent availability of heterogeneous building climate
sensors and the capabilities of modern building automation
systems overcome the above-mentioned barriers and facili-
tate the application of system identification and optimal con-
trol design techniques for minimizing energy consumption
while meeting thermal comfort constraints. These control
algorithms can ensure that the energy savings estimated
during the design phase persistent over the building lifecycle.
The performance of advanced control algorithms depends
on the estimation accuracy of the control-model parameters
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whose knowledge is critical for disturbance rejection with
minimum energy consumption. Sensor measurement noise
and unmeasured disturbances lead to parameter estimation
errors. When bounds on these errors are established earlier
in the design phase they can guide the selection of the sensor
architecture and estimation technique.

In this paper, we focus on estimating the parameters
associated with a building thermal model and develop a
methodology for evaluating the impact of parameter estima-
tion errors on closed-loop performance of a selected control
design. The model is formulated as a thermal network whose
nodes consist of temperature values at different locations in
a building. To estimate the sensitivity of the closed-loop
performance metrics with respect to the thermal network
parameters, we design an MPC algorithm based on perturbed
plant model parameters and run various simulation scenarios.
Using these simulation results, we establish (i) the critical
parameters based on their closed-loop performance impact
and (ii) a correspondence between estimation errors and
performance metrics that ultimately can be used to select ac-
ceptable estimation error bounds. For parameter estimation,
we implement several known batch and recursive estimation
algorithms (e.g. Finite-Time method, Least Squares vari-
ants). To determine if the selected parameter-estimate quality
thresholds are met, realistic probability distributions of the
estimation errors are generated by Monte-Carlo simulations
where the parameter estimation algorithm is subjected to
measurement noise and load uncertainty. This ensures that
the simulation-based performance criteria are met when the
controller is designed with the estimated model parameters.

Experimental excitation signal design and model struc-
ture selection are two important user variables of system
identification and here they are tied to the eventual closed-
loop properties of the system when controlled via MPC
and feedback linearization. Identified parameter variability is
affected by the excitation signal and by the parametrization
structure and dimension. This variability is transferred to
the closed-loop system in a non-obvious fashion, but is
measurable via the sensitivity of the closed-loop performance
at the nominal parameter value. This sensitivity is evaluated
via simulation.

Building internal spaces have been modeled as thermal
networks in a number of papers including [8], [9], [10], [11],
[16]. The RC network analogy allows one to conveniently
model the temperatures in state-space form that can be used
for control [10], load estimation [8], [9], [12], and parameter
estimation using techniques such as Least Squares [11].
Alternative modeling approaches include neural networks
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[15] and black-box [17]. The energy savings potential of
different control strategies (e.g. rule-based and MPC) for
different building types have also been evaluated in [18],
[19]. The cited efforts use parameters calculated directly
from buildings’ architectural construction properties and do
not consider the potential impact of parameter estimation er-
rors on the closed-loop performance and comfort constraints
infringement.

We focus on an HVAC application where the plant, mod-
eled in Section II, consists of a commercial building area
served by a multi-zone HVAC unit. In Section III, we design
an MPC algorithm using a control model that is structurally
identical to the plant model but has perturbed parameters.
We then simulate the closed-loop system and evaluate the
impact of the perturbations on energy cost. We regard the
temperature constraints as soft constraints and instead of
designing a robust controller we choose to also evaluate the
impact of perturbations on the constraint infringement time.
In Section IV we use variants of the Least Squares algorithm
to estimate the parameters. Here we also simulate the impact
of random sensor measurements and load uncertainties.

II. PLANT AND ESTIMATION MODEL DEVELOPMENT

In this section, we introduce the state-space models which
describe the temperature dynamics in selected spaces of a
building. We focus on demand-control applications where
the HVAC heat exchangers’ supply water flow rate and
temperature are controlled in order to meet the requested
demand. For this application, the control variables are supply
air flow and temperatures to several spaces to meet the
demand set through the temperature reference signal. This
work focuses on minimizing supplied thermal energy and
does not models the efficiencies of the heat exchangers.

The model is a multi-input (thermal energy supplied to
multiple zones) and multi-output (temperatures) network
whose nodes represent temperature values of entities which
are assumed to be isothermal (walls, rooms, zones). The
network parameters are directly linked to the time constants
associated with the heat transfer from the HVAC unit,
adjacent zones, and external, uncontrolled spaces.

Throughout the paper we use the following nomenclature1:
• Inputs: ṁsa,Si and Tsa,Si denote the mass flow rate and

temperature of air, respectively, supplied to space Si;
ṁsa denotes the total mass flow rate of the supply air;

• Temperature disturbances: TE = [Tgr,Si , Tcei,Si , TSu,i ],
where the first two temperatures correspond to ground
and ceiling surface in space Si, and TSu,i is the air
temperature of space Su,i, illustrated in Fig. 1, whose
supply energy is provided by an external source;

• Load disturbances: QSi,int represents the overall load
in space Si and consists of heat gains from occupants,
lighting, equipment, and convective gains from adjacent
spaces; we denote the vector of all space loads as QS,int

1The subscripts have the following interpretation: sa - supply air; a -
air; w - wall; gr - ground; cei - ceiling; int - internal; c and u are used to
identify spaces where the supply energy is controlled and not controlled,
respectively.

Fig. 1. Selected modeling area layout.

• Dynamical states: TSc,i is air temperature in space Sc,i
where the supplied energy is generated by a controllable
source; Tw,Si,S j represents the wall-film surface temper-
ature of the wall between spaces Si and S j, on the
inner surface of space Si (order of subscripts indicates
the space on whose inner surface the temperature is
defined);

• Parameters (assumed temperature independent): hw, hgr
and hceil are the surface-film heat-transfer coefficients
per unit area associated with wall, ground and ceiling
surfaces (assumed to be uniform in all spaces Si); Rw
and Cw denote the thermal resistance and capacitance
per unit area associated with each wall (assumed to
be the same for all walls); CSi is the overall thermal
capacitance associated with space Si;

• Constants: area of the wall, ground and ceiling surfaces:
Aw,Si,S j, Acei,Si, Agr,Si; specific heat constant of air Cpa;
ma,Si is the air mass in space Si;.

We model the temperature dynamics in multiple rooms via
building thermal network models which are derived under the
following standard assumptions ([4], [2]):
A1. All wall properties are assumed to be homogenous with

constant thermal conductivity values.
A2. Each surface temperature is assumed to be uniform over

the surface it is defined on.
A3. The space air is assumed to be well mixed and the

space temperature is assumed to be uniform in the entire
space.

In addition we make the following simplifying assumptions:
A4. The latent load is not captured by the models presented

in this work.
A5. The solar radiation heat gains are negligible; the selected

internal area does not have any external walls.
A6. The mass flow rate of the air supplied to space Si, ṁsa,Si ,

is a constant portion of the total supply mass flow rate
ṁsa. (This is motivated by the particular design of the
HVAC unit considered in this work.)

Thermal network models have been traditionally used ([2])
for modeling the heat transfer within building spaces. These
models are used in building-design oriented software envi-
ronments, such as EnergyPlus [13] and TRNSYS [14], and
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Fig. 2. Electrical circuit representation of the thermal network for space
Si.

are based on direct analogies with electrical circuits. For
an area layout illustrated in Fig. 1, we use a two-capacitor-
three-resistance-circuit equivalent thermal network, depicted
in Fig. 2, to model the internal temperature dynamics. Using
the assumptions A2 and A3, the application of the sensible-
load-balance equation relates the dynamics of the space air
temperature TSi to the supply mass flow rate ṁsa,Si , supply
temperature Tsa,Si and inner wall surface temperatures Tw,Si,S j

as follows:

CSi

dTSi
dt = ṁsa,SiCpa(Tsa,Si −TSi)+∑ j

(Tw,Si ,S j−TSi )

Rw,Si, j

+
(Tceil,Si ,S j−TSi )

Rceil,Si
+

(Tgr,Si−TSi )

Rgr,Si
+QSi,int

(1)

where S j are all the adjacent spaces, CSi = ma,SiCpa,
Rgr,Si = 1/(hgrAgr,Si), Rceil,Si = 1/(hceilAceil,Si) and Rw,Si, j =
1/(hwASi,S j). For compactness we have dropped the time
argument for the time-varying input and state variables; all
parameters are assumed to be time-invariant.

The temperature dynamics of the inner and outer wall
surface Tw,Si,S j and Tw,S j ,Si respectively, between spaces Si
and S j are described by the following equations:

Cw,Si,S j

dTw,Si ,S j
dt =

(TSi−Tw,Si,S j )

Rw,Si, j
+

(Tw,S j ,Si−Tw,Si ,S j )

Rw,Si ,S j

Cw,Si,S j

dTw,S j ,Si
dt =

(TS j−Tw,S j ,Si )

Rw,Si, j
+

(Tw,Si ,S j−Tw,S j ,Si )

Rw,Si ,S j

(2)

where Cw,Si,S j =CwAw,Si,S j and Rw,Si,S j =
Rw

Aw,Si ,S j
. Applying (1)

and (2) to all the spaces in the area of Fig. 1, the state-space
description of the thermal network model can be written as:

ẋ = F(x,u)+G(x,TE)p+QS,int (3)

where: the state x = [TSi , Tw,Si,S j ] includes all space and wall
surface temperatures; u is the input vector (overall supply

flow ṁsa as explained in assumption A6. and individual
supply temperatures Ṫsa,Si to each space); p is the vector of

unknown parameters, p =
[

hw hgr hcei
hw
Cw

1
RwCw

]T
.

The components of p are re-defined based on the original
parameters in (1) and (2). The new parameters are expressed
in this fashion in order to develop a model (3) that is linear
with respect to p.

We observe from (1) and (2) that matrix G(x,TE) is
relatively sparse due to the local interdependence of the
temperatures TSi and Tw,Si,S j . In Section IV, we discuss the
effect of this structure on the identifiability of vector p.

The above discussion uses generic space Si; it is possible
that Si is a room or a set of rooms controlled by the same
thermostat (commonly referred to as a zone). When each of
the spaces Si of Fig. 1 represents a room Ri, one assigns a
temperature state to each room TRi and applies the same set of
equations (1) and (2) to describe each room’s dynamics. We
call this room-level model and we denote its corresponding
form (3) as MR([TR, TW ], [u, TE , QR,int ], pR) that has air and
surface temperatures as states in the rooms and on their wall
surfaces. We use model MR in Section III for MPC design
and sensitivity analysis and in Section IV for parameter
estimation.

III. CLOSED-LOOP PERFORMANCE SENSITIVITY TO
PARAMETER ESTIMATION ERROR

In this section we present the overall approach for assess-
ing the impact of the estimation quality of the parameter
vector p on the system’s closed-loop performance. Our goal
is to determine acceptable ranges for the estimation errors.
As with any estimation problem, the challenges are not
only in determining the first and second-order statistics of
the parameter estimation errors, but also in quantifying the
impact of sensor noise on the estimate and the impact of
the estimation accuracy on the closed-loop performance. The
correspondence between estimation errors and performance
metrics ultimately helps in selecting a desired estimation
error threshold, and therefore establishing performance cri-
teria for the estimation algorithm. In turn, the parameter
estimation performance is affected by the user’s choice of the
excitation signal design during the data-collection phase and
by the model structure selection. Ultimately, this sensitivity
analysis provides guidance as to whether the current settings
for estimation suffice to yield a suitably accurate model for
the control purpose.

To generate a quantitative correspondence between the
estimation errors and the closed-loop performance we take
the following steps:

1) For designing the control algorithm, we use the same
plant model MR for control, but the parameters are
offset by different values that mimic possible esti-
mation errors δ p. Hence the control model becomes
MR([TR, TW ], [u, TE , QR,int ], pR + δ p) as illustrated in
Fig. 3.

2) We design the MPC in subsection III-A as an opti-
mization algorithm with time-varying constraints on
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TR, input constraints on u, and time-varying energy
prices. We also assume knowledge of the disturbances
TE and QR,int .

3) In subsection III-B, we simulate the closed-loop per-
formance for a set of perturbations δ p and for each
value we compute the optimal value of the total energy
cost. Constraint violation severity is also logged, since
temperatures which are driven to their upper limits
during peak-priced electricity hours are now liable, in
the presence of unpredictable large values of δQ, to
exceed their limits in the time between MPC input
updates.

4) Using the data from the previous step we fit a lin-
ear mapping (in a Least Squares sense) between the
energy cost and the parameters supplied to the MPC
algorithm. We use this map to identify the most critical
parameters and generate estimation error targets.

Fig. 3. Block diagram representation of MPC algorithm in closed-loop
with room model MR.

A. Model Predictive Control of Thermal Network
In this section we design a Model Predictive

Control algorithm using the zone-level model
MR([TR, TW ], [u, TE , QR,int ], pR) and we use it to determine
the sensitivity of the optimal cost with respect to parameter
pR. We formulate the receding-horizon constrained problem
and discuss the simulation results for the cases when
disturbances TE , uncontrolled-spaces temperatures, and
internal loads QR,int are not known exactly. We choose to
use a standard MPC formulation rather than a so-called
Robust MPC [5] since this requires constrained optimization
of feedback policies, which is difficult when coupled with
feedback linearization.

We use feedback-linearization [6] to redefine the control
inputs as ui = Cpaṁsa,Ri(Tsa,Ri − TRi) which represent the
thermal energy supplied to each room Ri. With this new input
the model MR, based on the (1), can be re-written as

d
dt T = A(p)T +B(p)u+D(p)TE +QR,int (4)

where T is the vector of all room and wall temperatures TRi

and Tw,Si,S j , u is the vector of all supplied energies2 ui. In

2We use the same notation for the control input as in Section II where
the input consisted of ṁsa and Tsa,Si .

controlling the system (4) we want to minimize the total sup-
plied energy cost. We denote the energy price α(t)( $

J ) where
the time-dependence captures the cost variation between high
and low time periods. The cost function is:

J(MR([TR, TW ], [u, TE , QR,int ], pR)) =
∫ t f

t0 [∑i α(t)ui]dt
(5)

where the model used as the argument represents the control
model as illustrated in Fig. 3. We impose input constraints
and, to simplify the problem we assume that only cooling
energy is required:

umin ≤ ui(t)≤ 0, ∀t ∈ [t0, t f ]. (6)

where umin is the minimum energy value (maximum cooling
energy) that can be supplied to each zone Ri. By using
feedback linearization the optimization problem can be for-
mulated as a Linear Programming (LP) problem. In practice,
hard constraints on ṁsa and Tsa,Ri are present in which case
one would have a non-convex optimization problem in order
to handle them directly. In addition to input constraints, we
have zone space temperature constraints imposed by practical
implementations. During occupied hours the temperature is
constrained to be within a range centered around a thermostat
setting, whereas during unoccupied hours, these constraints
are relaxed to minimize energy consumption. The constraints
are illustrated by the dashed line in Fig. 4(d) and they can
be written as:

TR,min(t)≤ TRi(t)≤ TR,max(t), ∀t ∈ [t0, t f ]. (7)

where we assume the same lower and upper bounds in all
zones area are known a priori.

The receding horizon optimization problem is formulated
with the system, cost, input and state constraints as defined
above. The problem is cast as an LP problem by discretizing3

the system (4) and solving at each step k an optimization
problem with variables [uk|k, · · · ,uk+N|k]; at time each time
step k we apply only the input uk|k and then iterate at time
k + 1. For the control model we use as the plant model
with perturbed parameters MR([TR, TW ], [u, TE , QR,int ], pR +
δ p) and apply the generated optimal control inputs to
the plant model MR,([TR, TW ], [u, TE +δTE , QR,int +δQ], pR).
The temperature δTW and load δQ disturbances, combined
with time elapsed between two consecutive control updates,
may result in constraints infringement; i.e. the set

CT
4
= {t : TR,i(t)< TR,min(t) or TR,i(t)> TR,max(t)} (8)

has non-zero measure. This is also the case when the control
model parameter perturbations δ p = 0. One could design a
robust MPC which could use the upper bounds for ‖δTE‖
and ‖δQ‖ and therefore use the model MR([TR, TW ], [u, TE +
δTE , QR,int +δQ], pR +δ p) to guarantee that the constraints
(7) are met at all discrete steps k. However, we regard
the constraints (7) as soft constraints–they are selected as
a band centered around a thermostat setting–and we choose

3We use the same notation for the discrete system variables and cost as
for the continuous-time system
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instead to allow such infringements. For easier reference we
denote the optimal cost (associated with the indicated control
model):

J?(MR,TE ,QR,int , pR) =
minuJ(MR([TR, TW ], [u, TE , QR,int ], pR).

(9)

We also denote the set CT (MR,TE ,QR,int , pR) to be the set in
(8) associated with the optimal solution corresponding to the
control model MR([TR, TW ], [u, TE , QR,int ], pR) and building
model MR([TR, TW ], [u, TE +δTE , QR,int +δQ], pR). Likewise
we defined the set CT (MR,TE ,QR,int , pR + δ p) to be the set
as in (8) associated with the optimal solution corresponding
with the control model MR([TR, TW ], [u, TE , QR,int ], pR +δ p)
and the same building model.

B. Sensitivity Analysis

In this section we estimate the sensitivity of the optimal
cost J?(MR,TE ,QR,int , pR) with respect to parameter pR. The
goal is to determine estimation error targets for the parameter
pR. We first use the MPC algorithm developed in the previous
section to generate a set of pairs (pi,J?i ) based on simulation
results. Then we construct a linear map Ĵ? = Ĵ?(p) and use
it to determine the most critical parameters.

We perturb each of the parameters p(i) and generate a set
of parameter vectors P = {p1, p2, ...}, with pi = pR + δ pi;
P represents a set of values that the estimation algorithm
could potentially generate. The corresponding set of optimal
costs {J?1 ,J?2 , ...} is generated for each value of the parameter,
J?i = J?(MR,TE ,QR,int , pi), by simulating the MPC algorithm
in closed-loop with the plant model MR,([TR, TW ], [u, TE +
δTE , QR,int + δQ], pR) as illustrated in Fig. 3. We use the
values (pi,J?i ) to generate the affine map Ĵ?(p)

Ĵ?(p) = c0 + cwhw + cgrhgr + cceihcei

+chC
hw
Cw

+ cRC
1

RwCw

(10)

where all coefficients c are calculated based on Least Squares
approximation. The average percent error of the optimal cost
approximation is less than 2%. The coefficients represent
the sensitivity of the approximated cost with respect to the
various parameters. Based on the relative values of these
coefficients we conclude that hgr and hceil are the most
critical parameters (their coefficients are at least an order of
magnitude higher than the rest of the coefficients). Figure
5 illustrates the dependency of closed-loop energy cost
J?(MR,TE ,QR,int , pR +δ p) and constraint infringement time
CT (MR,TE ,QR,int , pR + δ p) on δhgr and δhcei. For a quali-
tative analysis of the influence of these two parameters on
the two performance metrics we plot two optimal solutions in
4(c) and 4(d). We plot the optimal solutions for the case when
the control model uses unperturbed parameters (red line)
and perturbed parameters (blue line), with δhgr = 0.25hgr,
δhcei =−0.25hcei (corresponds to point (75%,125%) in Fig.
5). In both cases the building model is simulated with
unknown disturbance components δTE and δQR selected as
normally distributed random variables. For easier reference,
we denote the optimal solutions as (x?

δh=0,u?
δh=0,J?

δh=0) and
(x?

δh6=0,u?
δh6=0,J?

δh6=0), respectively. Based on these plots we

observe that J?
δh6=0 < J?

δh=0 and this can be intuitively ex-
plained by comparing the two solutions on interval [45,60]h
(48h is the midnight of the second day of simulations). The
discrepancies between the two solutions can be explained by
analyzing the effect of TE on the two control models, com-
bined with their time constant changes. As δhgr increases,
the control model uses larger cooling energy values u?

δh 6=0
earlier in order to meet the lower bound constraints that
increases at 56h. We observe that x?

δh=0(56h) is closer to the
lower bound constraint than x?

δh6=0(56h). Because it predicts
a larger energy transfer from the ground (Tgr < TRi ), x?

δh 6=0
uses less energy but infringes on the upper bound constraints
on longer time intervals, hence |CT | (the measure of this
set) associated with x?

δh6=0 is larger than |CT | associated with
x?

δh=0. The perturbation δhcei has the opposite effect on two
metrics since Tcei > TRi .

Using the two sensitivity plots one can define levels of
parameter errors that are both acceptable and achievable. We
select this error target to be 10% which corresponds to a
maximum 5% increase in energy cost and a maximum 100%
increase in constraint violation time (most of the time the
temperature increases by less than 0.5 (◦C) beyond TR,max(t)).
The illustrated sensitivity magnitudes depend on the selected
disturbance levels of this study.

IV. PARAMETER ESTIMATION

In this section we use the estimation model
MR([TR, TW ], [u, TE , QR,int ], pR) to estimate the parameter

(a) Internal loads(W): actual (solid) and nominal (dashed) (x-axis:time (h)).

(b) Exogenous temperatures (◦C): ceiling(blue), corridor (green) and
ground (black) (x-axis:time (h)).

(c) Supplied thermal power (W): u?
δh=0 (red) and u?

δh 6=0 (blue) (x-axis:time
(h)).

(d) Space temperatures (◦C): x?
δh=0 (red) and x?

δh 6=0 (blue) for one room
(x-axis:time (h)).

Fig. 4. Plots of optimal inputs and states when control model parameters
are the same as or different from model parameters.
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(a) Energy cost changes with respect to hgr
and hceil .

(b) Constraint infringement time with respect to hg and hceil .

Fig. 5. Energy cost and constraint infringement metric variation with
critical building model parameters; colored regions correspond to noted cost
differences relative to the case when control model parameters are identical
to plant model parameters.

vector pR in the presence of sensor noise measurement and
load disturbance, as illustrated in Fig. 6. Here we present
the simulation results that are obtained with the Recursive

Fig. 6. Block diagram representation of the estimation algorithm and
building model with simulated measurement noise and disturbances.

Fig. 7. Error distribution plots for parameter vector θ components based
on Monte Carlo simulation results with sensor noise and load uncertainty
(y-axis: count).

Least Squares algorithm. Other estimation approaches can
be used such as : Finite-Time Method [7], variants of Least
Squares (forgetting factors) [3]. We apply Recursive Least
Squares to the discretized system of (3)

xk+1 = xk +Fd(xk,uk)+Gd(xk,TE,k)pR +QS,int,k (11)

for k ∈ {0, · · · ,N−1}, and note that the identifiability of the
parameter pR depends on the invertibility properties of the
following matrix:

[Gd(x0,TE,0) · · · Gd(xN−1,TE,N−1)]
·[Gd(x0,TE,0) · · · Gd(xN−1,TE,N−1)]

T (12)

We make an additional assumption:
A7. For the simulation results xk = [TR,k, TW,k], the condition

number of the matrix in (12) is minimum.
The relatively sparse structure of matrix Gd , mentioned in
Section II, does not guarantee persistence of excitations,
and therefore does not guarantee a unique solution for the
estimate p̂R. In particular, the estimates of the most critical
parameters ĥgr and ĥcei are not unique. This can be explained
based on the original continuous-time equation (1), where
the sum (hgr +hcei) multiplies each TRi , and each individual
parameter multiplies one of the disturbances TE . To illus-
trate the applicability of the proposed framework we apply
the recursive least squares algorithm to simulation results
generated during unoccupied time intervals and assume that
the nominal load QR,int is a constant that we also estimate.
With the new notations yk = xk+1 − xk − Fd(xk,uk) and
Gd,k = Gd(xk,TE,k), the estimates are generated recursively
as follows [3]:

p̂R,k = p̂R,k−1 +Kk(yk−Gd,k p̂R,k−1) (13)

with the gain and state covariance matrices

Kk = Pk−1Gd,k(I +Gd,kPk−1GT
d,k)
−1

Pk = (I−KkGd,k)Pk−1.
(14)

We assume the sensor measurement noise to be normally
distributed with zero mean and standard deviations to be the
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same as in [2]: space temperature noise δTR,i is ±0.14(◦C);
supply temperature noise δTsa,Ri is ±0.14(◦C); supply air
flow rate noise δ ṁsa,Ri is ±0.0142(kg/s). The uncertain
component of the load δQRi was assumed to be a normally
distributed random variable. With noise and load distur-
bances realized using these models, we conducted 2000
simulations and generated estimates whose error distributions
are plotted in Fig. 7. Due to space limitations we do not
include the time series simulation results. One notes that the
two critical parameter’s distributions have the largest mean
(in absolute value), an expected consequence of the non-
identifiability property as explained above. From the same
plots, we also observe that the maximum estimation error for
the critical parameters hgr and hceil with the selected noise
and uncertainties is less than the 10% target established in
Section III.

V. CONCLUSIONS AND FUTURE WORK

A method for determining estimation-error targets for the
parameters of a thermal network model of a building has
been developed. These estimation error targets are estab-
lished based on the sensitivity of closed-loop performance
in the presence of control-model parameter errors. For these
simulations we implemented an MPC algorithm that uses
perturbed control model parameters, nominal values of loads,
time-varying constraints and utility rates. After the estimation
bounds were selected, we implemented standard estimation
techniques to generate parameter values using the given
model structure from (3) and its discretization (11) and
excitation signal satisfying A.7. We conducted Monte-Carlo
simulations with random sensor noise and load uncertainties
and the results demonstrate that the estimation targets are
met for the selected disturbance magnitudes subject to the
persistence of excitation requirement.

The method presented in this paper can be extended to
include bounds for parameter, state and load estimation errors
based on their impact on closed-loop performance. Full-scale
building data is now being used for parameter estimation
and model validation. We plan on continuing this work also
for the cases when not only the parameter vector but also
the control model is different (reduced order) from the plant
model.
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