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Abstract— In this paper, the class of subspace system
identification algorithms is used to derive a new identifi-
cation algorithm for 2-D causal, recursive, and separable-
in-denominator (CRSD) state space systems in the Roesser
model form. The algorithm take a given deterministic input-
output pair of 2-D signals and computes the system order
(n) and system parameter matrices {A,B,C,D}. Since the
CRSD model can be treated as two 1-D systems, the proposed
algorithm first separates the vertical component from the
state and output equations and then formulates an equivalent
set of 1-D horizontal subspace equations. The solution to
the horizontal subspace identification subproblem contains
all the information necessary to compute the system order
and parameter matrices, including those from the vertical
subsystem.

I. INTRODUCTION

Two-dimensional systems refer to those described by
two independent variables, whether they are time/space or
space/space. They usually appear, for example, in image
processing [10], 2-D control systems [21], iterative learning
control [12], in texture synthesis and classification [3],
and the discretization of partial differential equations [2].

Discrete 2-D systems can be represented by either transfer
function models using the 2-D z-transform, or by using
state space models. A number of 2-D state space models
can be found in the literature, such as those proposed
Roesser [15], Attasi [1], Fornasini and Marchesini [4], and
Kurek [9]. It is now accepted that the Roesser model [15]
can represent most 2-D causal systems of interest [2], [8],
and hence in this paper, this model will be adopted.

It is well recognized that the study of 2-D systems is
much more challenging than 1-D systems, as there are
many results for 1-D systems that have no counterpart in
2-D systems [6]. However, a subclass of 2-D state space
models which has many features similar to 1-D systems
is the causal, recursive, and separable-in-denominator
(CRSD) system. The corresponding transfer function for
this model has a denominator that can be factored into
two polynomials, and each is a function of only one shift
operator. The CRSD Roesser model has the advantage
that it can be treated as two 1-D systems. Furthermore,
it can approximate a general (i.e., nonseparable) transfer
function at the expense of a higher dimensional state space
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dimension.
Lashgari, et al. [10] showed that a CRSD model can

be characterized by two 1-D systems and proposed a
method for the approximation of a general 2-D filter
by a CRSD model which uses traditional 1-D Hankel-
based approximation methods. Xiao, et al. [20] defined
the extended impulse response Gramians and used these
to identify a 2-D balanced CRSD model from the impulse
response data. Similarly, Treasure, et al. [16] defined a pair
of horizontal/vertical impulse response Hankel matrices
and from these identified a 2-D balanced realization.

In the area of system identification theory, subspace
methods [7], [17], [18] have shown to have marked advan-
tages from an implementation point of view. The extension
of subspace system identification methods to 2-D state
space systems is, therefore, of significant interest. However,
due to the coupled structure of the horizontal and vertical
states in 2-D systems, the applicability of subspace system
identification methods to 2-D systems has been very limited
[5], [13]. Ramos [13] was the first to apply the intersection
subspace method of [11] to the identification of 2-D
CRSD systems from given input-output data. Unlike the
algorithms of [16], [20], this algorithm finds a 2-D balanced
realization directly from the input-output data. However,
one drawback is that only one column of the 2-D output
data is used in the identification procedure, which may
lead to inaccurate results when using a real data set. That
is, some of the vertical dynamics prevalent in the system
may not be properly captured. Unlike in [13], the proposed
approach uses all the input-output data in the identification
process, thus leading to a more mathematically sound
algorithm in terms of asymptotic properties. To the authors
knowledge, the only known work that has been able to
solve the general 2-D state space system identification
problem is [19], and it is based on a neural network
approach.

In this paper, the problem of subspace system identi-
fication of the CRSD model is revisited along the lines
of [7], [13], [17], [18], and an algorithm that makes use
of all the input-output data is introduced. In this new
framework we adopt notions of current subspace system
identification methods, which are expected to shed light on
solving the general 2-D state space system identification
problem. The rest of the paper is organized as follows.
In Section 2 the problem is briefly introduced. In Section
3 the 2-D subspace system identification algorithm is
presented for the CRSD model. In Section 4 we use the
proposed algorithm to identify a 2-D SISO system. Finally,
conclusions are drawn in Section 5.

II. PROBLEM FORMULATION

Consider the 2-D CRSD Roesser model given by

xh
r+1,s = A1x

h
r,s +A2x

v
r,s +B1ur,s (1)

xv
r,s+1 = A4x

v
r,s +B2ur,s (2)

yr,s = C1x
h
r,s + C2x

v
r,s +Dur,s, (3)

for r ∈ [0, N ] and s ∈ [0,M ]. In the above model the
vertical states (xv

r,s) are decoupled from the horizontal
states (xh

r,s), a property that will be exploited in the
derivation of the algorithms. The problem is now stated
as follows:

Definition 1: 2-D CRSD System Identification Problem:
Given a pair of 2-D input-output data signals {ur,s, yr,s},
for r ∈ [0, N ] and s ∈ [0,M ], find the system order n =
nh + nv and system matrices A ∈ IRn×n,B ∈ IRn×m,
C ∈ IRℓ×n, and D ∈ IRℓ×m, where

A ,
[

A1 A2

0nv×nh
A4

]
nh

nv
nh nv

B ,
[

B1

B2

]
nh

nv
m

C ,
[
C1 C2

]
ℓ

nh nv

D ,
[
D

]
ℓ ,

m

(4)

with 0n1×n2 being a zero matrix of size (n1 × n2). Here
ur,s ∈ IRm, yr,s ∈ IRℓ, xh

r,s ∈ IRnh , and xv
r,s ∈ IRnv are,

respectively, the input, output, local horizontal state, and
local vertical state vectors at the spatial location {r, s} of
a finite field D.

A. Horizontal Data Processing
Let us now define the past and future state matrices for

k = 0, 1, . . . ,M and N = 2i+ j − 2 as follows:

Xh
p (k) ,

[
xh
0,k xh

1,k · · · xh
j−1,k

]
(5)

Xh
f (k) ,

[
xh
i,k xh

i+1,k · · · xh
i+j−1,k

]
(6)

Xv
p (k) ,


xv
0,k xv

1,k · · · xv
j−1,k

xv
1,k xv

2,k · · · xv
j,k

...
...

. . .
...

xv
i−1,k xv

i,k · · · xv
i+j−2,k

 (7)

Xv
f (k) ,


xv
i,k xv

i+1,k · · · xv
i+j−1,k

xv
i+1,k xv

i+2,k · · · xv
i+j,k

...
...

. . .
...

xv
2i−1,k xv

2i,k · · · xv
2i+j−2,k

,(8)

where throughout the sequel, subscripts p and f denote
past and future, respectively, superscripts h and v denote
horizontal and vertical, respectively, and i and j are fixed
integer constants such that j ≫ max(mi, ℓi) and ℓi ≫ nh.
Likewise, we define the past and future input-output data
matrices for k = 0, 1, . . . ,M and N = 2i+j−2 as follows:

Uh
p (k) ,


u0,k u1,k · · · uj−1,k

u1,k u2,k · · · uj,k

...
...

. . .
...

ui−1,k ui,k · · · ui+j−2,k

 (9)

Y h
p (k) ,


y0,k y1,k · · · yj−1,k

y1,k y2,k · · · yj,k
...

...
. . .

...
yi−1,k yi,k · · · yi+j−2,k

 (10)
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Uh
f (k) ,


ui,k ui+1,k · · · ui+j−1,k

ui+1,k ui+2,k · · · ui+j,k

...
...

. . .
...

u2i−1,k u2i,k · · · u2i+j−2,k

(11)

Y h
f (k) ,


yi,k yi+1,k · · · yi+j−1,k

yi+1,k yi+2,k · · · yi+j,k

...
...

. . .
...

y2i−1,k y2i,k · · · y2i+j−2,k

.(12)

These last four matrices, when evaluated at k =
0, 1, . . . ,M , represent the data to be used in the algorithms.

B. Computing the Vertical States

In order to decouple the vertical states from the horizon-
tal system, we need to solve (2) recursively. That is,

xv
r,s = A4x

v
r,s−1 +B2ur,s−1

= As
4x

v
r,0 +

s∑
i=1

Ai−1
4 B2ur,s−i. (13)

Since (7) and (8) are Hankel matrices, we need to convert
(13) to a Hankel type matrix equation. For this we need
to define the complete past and future vertical state and
input matrices, along with certain vertical controllability-
like matrices. First we need to introduce the following
simplifying dimensions m̄ , m(M+1) and ȷ̄ , j(M+1).
These will be used extensively from this point forward.

Xv
p ,

[
Xv

p (0) Xv
p (1) · · · Xv

p (M)
]

(14)

Xv
f ,

[
Xv

f (0) Xv
f (1) · · · Xv

f (M)
]

(15)

Uh
p ,


Uh
p (0) Uh

p (1) · · · Uh
p (M)

Uh
p (0) · · · Uh

p (M − 1)
. . .

...
Uh
p (0)

(16)

Uh
f ,


Uh
f (0) Uh

f (1) · · · Uh
f (M)

Uh
f (0) · · · Uh

f (M − 1)
. . .

...
Uh
f (0)

(17)

Cv ,
[

iB2 i(A4B2) · · · i(A
M−1
4 B2)

]
∆xv

p(0)
,

[
Xv

p (0) iA4X
v
p (0) · · · iA

M
4 Xv

p (0)
]

∆xv
f (0)

,
[
Xv

f (0) iA4X
v
f (0) · · · iA

M
4 Xv

f (0)
]
,

where iB2 = (Ii ⊗ B2), i(A
k
4B2) = (Ii ⊗ Ak

4B2),
iA

k
4 = (Ii ⊗ Ak

4), Ii denotes an (i × i) identity ma-
trix, and ⊗ denotes the Kronecker matrix product. It
can now be shown that the vertical states satisfy a pair
of Hankel matrix equations similar to (13), i.e., Xv

p =

∆xv
p(0)

+
[
0nvi×mi Cv

]
Uh

p and Xv
f = ∆xv

f (0)
+[

0nvi×mi Cv
]
Uh

f . If we now assume that Xv
p (0) =

Xv
f (0) = 0nvi×j , then ∆xv

p(0)
= 0nvi×ȷ̄ and ∆xv

f (0)
=

0nvi×ȷ̄. This means we can assign the vertical state de-
pendence through the inputs, thus completely removing
any vertical state variable dependence from the horizontal

model. This will become apparent in the formation of
equations (34) – (36). We then obtain the final expressions
for Xv

p and Xv
f as

Xv
p =

[
0nvi×mi Cv

]
Uh

p (18)

Xv
f =

[
0nvi×mi Cv

]
Uh

f . (19)

C. Horizontal Subspace Equations

Since we have found expressions for Xv
p and Xv

f in
terms of the input data, for the purpose of horizontal data
processing we can work with the equivalent horizontal
subsystem

xh
r+1,s = A1x

h
r,s +A2x

v
r,s +B1ur,s (20)

yr,s = C1x
h
r,s + C2x

v
r,s +Dur,s, (21)

for r = 0, 1, . . . , N and s = 0, 1, . . . ,M . Let us now define
the complete past and future horizontal state and output
data matrices as

Xh
p ,

[
Xh

p (0) Xh
p (1) · · · Xh

p (M)
]

(22)

Xh
f ,

[
Xh

f (0) Xh
f (1) · · · Xh

f (M)
]

(23)

Y h
p ,

[
Y h
p (0) Y h

p (1) · · · Y h
p (M)

]
(24)

Y h
f ,

[
Y h
f (0) Y h

f (1) · · · Y h
f (M)

]
. (25)

Likewise, we define the horizontal observability matrix Γh
i

and controllability-like matrices Φhv
i and Ch

i as

Γh
i ,

[
CT

1 (C1A1)
T · · · (C1A

i−1
1 )T

]T
(26)

Φhv
i ,

[
Ai−1

1 A2 Ai−2
1 A2 · · · A2

]
(27)

Ch
i ,

[
Ai−1

1 B1 Ai−2
1 B1 · · · B1

]
. (28)

Finally, we define the lower block triangular Toeplitz
matrices Ghv

T and Hh
T as

Ghv
T ,


C2

C1A2 C2

...
...

. . .
C1A

i−2
1 A2 C1A

i−3
1 A2 · · · C2

(29)

Hh
T ,


D

C1B1 D
...

...
. . .

C1A
i−2
1 B1 C1A

i−3
1 B1 · · · D

.(30)

One can now show that the following equations are satisfied
for k = 0, 1, . . . ,M

Y h
p (k) = Γh

i X
h
p (k) +Ghv

T Xv
p (k) +Hh

TU
h
p (k) (31)

Y h
f (k) = Γh

i X
h
f (k) +Ghv

T Xv
f (k) +Hh

TU
h
f (k) (32)

Xh
f (k) = Ai

1X
h
p (k) + Φhv

i Xv
p (k) + Ch

i U
h
p (k). (33)
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Now using (16), (18), (22), and (24) to write (31) simul-
taneously for all k = 0, 1, . . . ,M , we obtain

Y h
p = Γh

i X
h
p +Ghv

T Xv
p +Hh

TU
h
p(1 : mi, :)

= Γh
i X

h
p +Ghv

T

[
0nvi×mi Cv

]
Uh

p

+
[
Hh

T 0ℓi×Mmi

]
Uh

p

= Γh
i X

h
p +

[
Hh

T Ghv
T Cv

]︸ ︷︷ ︸
Hh

i

Uh
p ,

where we used the MATLAB1 notation M(1 : mi, :)
to denote the first mi rows of M and all its columns.
Operating similarly on Y h

f , this time using (17), (19),
(23), and (25) to write (32) simultaneously for all k =
0, 1, . . . ,M , we obtain Y h

f = Γh
i X

h
f + Hh

i U
h
f . Finally,

operating on Xh
f , using (16), (18), and (22) to write (33)

simultaneously for all k = 0, 1, . . . ,M , we obtain

Xh
f = Ai

1X
h
p +Φhv

i Xv
p + Ch

i U
h
p(1 : mi, :)

= Ai
1X

h
p +Φhv

i

[
0nvi×mi Cv

]
Uh

p

+
[
Ch
i 0nvi×Mmi

]
Uh

p

= Ai
1X

h
p +

[
Ch
i Φhv

i Cv
]︸ ︷︷ ︸

∆h
i

Uh
p

= Ai
1X

h
p +∆h

i U
h
p .

From the above results we obtain the following subspace
equations in the horizontal direction:

Y h
p = Γh

i X
h
p +Hh

i U
h
p (34)

Y h
f = Γh

i X
h
f +Hh

i U
h
f (35)

Xh
f = Ai

1X
h
p +∆h

i U
h
p . (36)

D. Assumptions

The 2-D subspace system identification algorithms de-
veloped here depend on two fundamental rank conditions
from which the horizontal and vertical system orders can
be determined. The main assumptions leading to these
fundamental rank conditions are now presented.
A1. All system modes are sufficiently excited. That is,

rank{Xh
p} = rank{Xh

f} = nh.
A2. The input matrices Uh

p and Uh
f are persistently ex-

citing of order i. That is, rank{Uh
p} = rank{Uh

f} =
m̄i, where i > nh. Furthermore, the concatenation of
both input matrices is persistently exciting of order

2i. That is, rank
{[

Uh
p

Uh
f

]}
= 2m̄i.

A3. There is no linear feedback from the states to the in-
puts. That is, spanrow{Xh

p} ∩ spanrow{Uh
p} = {0}

and spanrow{Xh
f} ∩ spanrow{Uh

f} = {0}, where
spanrow{M} denotes the row span of M . Because
of the fact that Xh

f is a function of Uh
p and Xh

p , we
also need spanrow{Xh

p}∩spanrow{Uh
f} = {0}, see

[7].

1MATLAB is a trademark of The Mathworks, Inc.

A4. A1 is a stable matrix and rank{Γh
i } = nh and

rank{∆h
i } = nh.

A5. A4 is a stable matrix and rank{Γv
i } = nv and

rank{Cv
M} = nv , where

Γv
i ,

[
CT

2 (C2A4)
T · · · (C2A

i−1
4 )T

]T
(37)

Cv
M ,

[
B2 A4B2 · · · AM−1

4 B2

]
. (38)

E. Main Rank and Dimension Results

We now informally present the main rank and dimension
results that will lead to determining the system order, nh

(see [14] for details).

R1. The rank of W h
p =

[
Uh

p

Y h
p

]
and W h

f =

[
Uh

f

Y h
f

]
are both equal to m̄i+ nh.

R2. The rank of W h =

[
W h

p

W h
f

]
is 2m̄i+ nh.

R3. spanrow{Xh
f} = spanrow

{
W h

p

}
∩

spanrow
{
W h

f

}
.

R4. The dim
(
W h

p ∩W h
f

)
= nh.

III. THE 2-D N4SID ALGORITHM FOR CRSD MODELS

This algorithm is a 2-D extension of the 1-D time domain
algorithm presented in [17], named N4SID, which stands
for Numerical algorithms for State Space Subspace System
IDentification.

The heart of the N4SID algorithm is an LQ decomposi-
tion of a concatenated past/future Hankel data matrix as

Uh
f

W h
p

Y h
f

 =


L11 × ×

L21 L22 ×

L31 L32 L33


︸ ︷︷ ︸

L



QT
1

QT
2

QT
3


︸ ︷︷ ︸

QT

,(39)

where L is a square lower block triangular matrix whose
block dimensions can be easily obtained by inspection and
Q is an orthogonal matrix. We should point out that when
the system is deterministic as is the case here, then L33 =
0ℓi×ℓi [7].

1) Compute Y h
f/Uh

f

W h
p = Oh

i , the oblique projection

of the row space of Y h
f along the row space of the

future inputs Uh
f on the row space of the past W h

p

input-output data, as defined in [17], i.e.,

Oh
i = Y h

f/Uh

f

W h
p

= Γh
i T

−1
h · ThX

h
f

= L32L
†
22W

h
p . (40)

2) Compute the SVD of Oh
i , obtain the horizontal

system order nh from the nonzero singular values
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of Oh
i . Compute Γ̄h

i , and the parameter matrices
{Ā1, C̄1}.

Oh
i =

[
Uh U⊥

h

] [ Sh ×
× ×

] [
V T
h

(V ⊥
h )T

]
= UhS

1
2

h · S
1
2

h V
T
h

where Γ̄h
i = Γh

i T
−1
h = UhS

1
2

h , (Γ̄h
i )

⊥ = U⊥
h ,

nh is the number of nonzero singular values of Oh
i ,

and Sh = diag{sh1 , sh2 , . . . , shnh
} ∈ IRnh×nh . We can

compute {Ā1, C̄1} from

C̄1 = first ℓ rows of Γ̄h
i (41)

Ā1 =
(
Γ̄h
i

)†
b

(
Γ̄h
i

)
t
, (42)

where
(
Γ̄h
i

)
b

is the Γ̄h
i matrix with the bottom ℓ rows

deleted and
(
Γ̄h
i

)
t

has the top ℓ rows deleted.
3) Compute Hh

i , extract Hh
T , and compute {B̄1, D̄}.

One can show that Hh
i can be obtained from

Hh
i =

[
Hh

T Ghv
T Cv

]
= (L31 − L32L

†
22L21)L

−1
11 ,

from which we can calculate the individual blocks
Hh

T and Ghv
T Cv . Now we need the orthogonal com-

plement of Γ̄h
i , which was defined to be (Γ̄h

i )
⊥ =

U⊥
h . Thus, we can use it to compute

M = [
(
Γ̄h
i

)⊥
]T

[
Y h

f −Ghv
T CvUh

f (mi+ 1 : m̄i, :)
]

×
[
Uh

f (1 : mi, :)
]†

and L = [
(
Γ̄h
i

)⊥
]T , to obtain M = LHh

T . Let us
further define L =

[
L0 L1 · · · Li−1

]
and

M =
[
M0 M1 · · · Mi−1

]
, where Lk ∈

IR(ℓi−nh)×ℓ and Mk ∈ IR(ℓi−nh)×m, for k =
0, 1, . . . , i−1. Then by enforcing the lower triangular
Toeplitz matrix property of Hh

T , one can show that
M = LHh

T can be rearranged into [7], [17], [18]


M0

M1

...
Mi−1

 =


L0 L1 · · · Li−2 Li−1

L1 L2 · · · Li−1 ×
L2 L3 · · · × ×
...

... · · ·
...

...
Li−1 × · · · × ×


×
[

Iℓ 0ℓ×nh

0ℓ(i−1)×ℓ Γ̄h
i−1

]
·
[

D̄
B̄1

]
,

where Γ̄h
i−1 is the Γ̄h

i matrix with the bottom C̄1Ā
i−1
1

block deleted. This last equation is linear in {B̄1, D̄}
and can be solved in the least squares sense.

4) Extract Ghv
T Cv from Hh

i . Observing the matrix
Ghv

T Cv ∈ IRℓi×mMi, whose block columns can
be defined as Ghv

T Cv ,
[
G1 G2 · · · GM

]
,

where each Gk ∈ IRℓi×mi block, for k =
1, 2, . . . ,M , is a lower triangular Toeplitz matrix.

Thus, we can extract the first m columns of each
Gk and form the matrix G as,

G =
[
G1(:, 1 : m) . . . GM (:, 1 : m)

]
=

[
hv
1 hv

2 hv
3 · · · hv

M

Fhv
i−1,M

]
=

[
hv
1 hv

2 hv
3 · · · hv

M

Γh
i−1 ·A2 · Cv

M

]
,

where from the first ℓ rows of G we obtain the
vertical Markov parameters hv

i = C2A
i−1
4 B2, for

i = 1, 2, . . . ,M , Γh
i−1 is the Γh

i matrix with the
bottom ℓ rows deleted, and Fhv

i−1,M , Γh
i−1 ·A2 ·Cv

M .
We can now use the vertical Markov parameters to
construct the vertical Hankel matrix

Hv
i,M ,


hv
1 hv

2 · · · hv
M−i+1 · · · · hv

M

hv
2 hv

3 · · · hv
M−i+2 · · ·

hv
3 hv

4 · · · hv
M−i+3 ··

...
...

. . .
... ·

hv
i hv

i+1 · · · hv
M


=

[
Uv U⊥

v

] [ Sv ×
× ×

] [
V T
v

(V ⊥
v )T

]
= UvS

1
2
v︸ ︷︷ ︸

Γ̄v
i

·S
1
2
v V

T
v︸ ︷︷ ︸

C̄v
M

,

where the singular value matrix, Sv , contains exactly
nv nonzero singular values, from which the vertical
system order nv can be obtained. Let

Γ̄v
i =

[
C̄2(

Γ̄v
i

)
b
Ā4

]
(43)

C̄v
M =

[
B̄2 Ā4B̄2 · · · ĀM−1

4 B̄2

]
,(44)

where
(
Γ̄v
i

)
t

denotes the Γ̄v
i matrix with the first

ℓ rows deleted and
(
Γ̄v
i

)
b

denotes the Γ̄v
i matrix

with the bottom ℓ rows deleted. The computation of
{Ā2, Ā4, B̄2, C̄2} follows from

C̄2 = first ℓ rows of Γ̄v
i (45)

Ā4 =
(
Γ̄v
i

)†
b

(
Γ̄v
i

)
t

(46)

Ā2 =
(
Γ̄h
i−1

)† Fhv
i−1,M

(
C̄v
M

)† (47)
B̄2 = first m columns of C̄v

M , (48)

where Fhv
i−1,M is extracted from the bottom (ℓ(i −

1)×mM) sub matrix of G.
5) End N4SID Algorithm.

IV. SIMULATION EXAMPLE

We consider a 2-D CRSD model with true parameters

A =


−0.258 −0.499 −0.258 0.396 0.123
−0.452 0.294 −0.061 −0.045 0.285
−0.073 0.082 −0.085 0.339 −0.061

0 0 0 −0.117 −0.180
0 0 0 0.125 0.326


B =

[
0.100 0.127 −0.231 −1.063 −0.124

]T
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C =
[
1.457 1.713 0.682 0.315 2.570

]
D =

[
−0.263

]
.

The size of the input-output data fields were N = M = 50
and the tuning parameters corresponded to i = 10 and
j = 32. Finally, m = ℓ = 1, the system orders were nh = 3
and nv = 2, thus n = nh+nv = 5. The size of the Hankel
matrix was W h ∈ IR1040×1632. Note also that j = 32 >
i = 10 and ℓi = 10 > nh = 3. The horizontal system order
was determined from rank{Oh

i } = nh = 3. Likewise, the
vertical system order was obtained from rank{Hv

i,M} =
rank{Γ̄v

i } = rank{C̄v
M} = nv = 2. Finally, the identified

system matrices for the N4SID algorithm were

Ā =


−0.102 0.321 −0.018 −1.757 −0.440
0.321 0.149 0.442 3.601 1.629

−0.018 0.442 −0.096 −3.064 −1.039
0 0 0 0.126 −0.049
0 0 0 −0.524 0.082


B̄ =

[
0.454 0.013 −0.008 1.158 0.079

]T
C̄ =

[
0.454 0.013 −0.008 −0.602 0.525

]
D̄ =

[
−0.263

]
.

As a check, we computed the Markov parameters of the
system and all agreed with the true values, thus indicating
that the N4SID algorithm computed the correct parameters.
The eigenvalues of the A and Ā matrices were computed
for the N4SID algorithm and are shown in Table 1 below.

Table 1. Eigenvalues of the A and Ā matrices.

k 1 2 3 4 5
λk(A) 0.579 -0.546 -0.083 0.267 -0.058
λk(A) 0.579 -0.546 -0.083 0.267 -0.058

Further details of this and other algorithms for the 2-D
CRSD model can be found in [14].

V. CONCLUSION

In this paper we have presented a 2-D subspace system
identification approach for CRSD models in the Roesser
form. The main contribution of the paper is the formulation
of the subspace equations utilizing all the data. This
served as the basis for introducing the N4SID algorithm,
which makes use of all the data available, contrary to
the algorithm of [13], which uses only one column of
the output data. Although the algorithm of [13] is less
computationally intensive than the one proposed here, it
will not give accurate results when using real data. The
proposed algorithm is formulated in a completely new
framework, which is more in line with the subspace family
of algorithms available in the literature.
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