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Abstract— In this work we consider the modelling of a
modular aerial robot obtained by rigidly interconnecting a
certain number of ducted-fan aircraft. It is shown how different
geometric configurations lead to different dynamical properties
of the overall system which can be exploited to improve
the achievable closed-loop performances in certain scenarios.
Suitable constrained control allocation problems are formulated
to show how the modular system performs in presence of
possible extra payload and of force and torque disturbances that
may derive from the physical interaction with the surrounding
environment.

I. INTRODUCTION

Recent applications of aerial robotics have shown the

capability of miniature unmanned vehicles to accomplish

tasks that require a physical interaction between the vehicle

and the surrounding environment. These kind of operations,

which include cooperative grasping and transportation [11],

cleaning [2], docking [10], and others, represent a new

research direction for both the design and control of aerial

vehicles. The vision, which inspired also the European

Project AIRobots [1], is to allow airborne systems to succeed

in many service robotics operations [14] that are usually

achieved only by robots fixed on the ground.

In this work we address the modelling of a new class of

aerial service robots based on the ducted-fan configuration

[9]. Ducted-fan aerial vehicles, having the propeller protected

by a shroud, are in fact capable to physically interact with

the surrounding environment safely and, for this reason, they

represent a natural aero-mechanical choice for the envisioned

application scenario. This configuration, however, is charac-

terized by some relevant payload and dynamical constraints

that may reduce its effectiveness in certain applications.

First of all, as shown, for instance, in [12], the position of

the payload, and thus the position of the center of mass,

play an important role in determining the stability of the

given configuration since the torques required to govern the

attitude dynamics are produced by applying aerodynamic

forces at a given distance from the center of mass itself.

Moreover, because of under-actuation, the number of degrees

of freedom that can be actually controlled independently may

not be enough in certain situations in which the robot has to

operate (such has narrow environments).
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To overcome these limitations, the idea pursued in this pa-

per is to focus on a modular structure that may be expanded

by rigidly interconnecting two or more basic airframe module

(i.e. ducted-fan airframes).

Modularity has several advantages, and in particular it

allows one to overcome the limitations of each single mod-

ule without re-designing a different vehicle. Goal of this

work is to start investigating how the actuator redundancy,

characterizing a modular vehicle, can be combined with

the geometric properties of the formation to obtain certain

desired dynamical properties, such as robustness to force /

torque external disturbances and payload variations. To this

purpose, we analyze the feasibility of some control allocation

problems (see, among others, [3], [6] and the references

therein).

The idea of aerial systems composed of different modules

is not new in literature. In this respect, it is worth mentioning

the experiments proposed in [13], in which the aerial vehicle

is obtained by autonomously merging a number of very

simple airframe modules, and the cooperative transportation

proposed in [11], in which several quad-rotors are employed

to transport a certain payload forming a rigid modular

system. With respect to the above works, the emphasis here

is to characterize the dynamical properties of the overall

system as functions of the geometric characteristics of the

final modular system.

The paper is organized as follows. Section II derives the

dynamical model of a general ducted-fan modular system.

Section III proposes the control allocation problems that are

used to analyze the dynamical properties of the different

configurations. The latter are presented in Sections IV and

V, by also showing the numerical results obtained for a real

physical prototype. Finally Section VI presents final remarks.

II. THE MODULAR AERIAL VEHICLE

A. Single Module

Forces and torques components generated by each i− th
single module are expressed in the reference body frames

Fbi = {Obi ,
−→
i bi ,

−→
j bi ,

−→
k bi} attached to the center of mass

of each module. As shown in Figure 1 , each body reference

frame is fixed with the z-axis aligned with the propeller spin

axis.

According to [12], each ducted-fan aerial vehicle can be

thought as composed by two main subsystems. The first one

consists of a fixed-pitch propeller driven by an electric motor.

This subsystem has the fundamental role of generating the
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main thrust T required to counteract the gravity force by

inducing an airflow inside the duct. The speed vector of

the induced airflow is assumed to be aligned with the body

z axis. The second subsystem consists of a set of control

vanes which are positioned below the propeller. The vanes

are immersed into the airflow induced by the propeller and

their angular positions are controlled to generate a certain

number of aerodynamic lift and drag forces. Each lift force

L, see [15], is perpendicular to the airflow speed vector and

its magnitude, for small angle of attack values, is given by

L =
1

2
ρcLαSV

2 (1)

in which ρ is the air density, cL the lift coefficient, which

depends on the specific airfoil characteristics, S the airfoil’s

surface, V the speed of the airflow and α the angle of attack

of the vane. The drag forces, by definition, are directed along

the airflow speed vector (i.e. along the body z-axis) and,

since their magnitude is small for reasonably small angles of

attack, they are assumed to be compensated by the propeller

thrust T and then neglected in the analysis carried out in this

work.

For the ducted-fan configuration, the vanes can be divided

into three groups (see [12]). The first two groups are designed

to generate respectively a resultant force contribution Fx
and Fy directed along the body x and y axis. The third

group, using the fact that the lift of two opposite vanes may

produce a pair of antagonist forces, is able to produce a

resultant torque component τz along the body z axis, and

thus to compensate for the propeller torque disturbances.

In particular, recalling (1) and since, according to Froude’s

momentum theory (see [16]), the magnitude of the induced

airflow V is proportional to
√
T , we have

Fx(αx) := kLαxT Fy(αy) := kLαyT
τz(αz) := k′LαzT

(2)

where kL and k′L are constant coefficients collecting all the

aerodynamic parameters, while αx, αy and αz are the angles

of attack of the control vanes in each one of the three above

different groups.

From the above arguments the force-torque (wrench) vec-

tor produced by each ducted-fan module is given by

w := K(T )u (3)

in which u :=
[

T αx αy αz
]T

and K(T ) :=
diag(1, kLT, kLT, k

′
LT ). Let d be the distance, along the

body z axis, between the center of pressure of the aero-

dynamic forces and the center of mass of the vehicle.

Accordingly, forces Fx and Fy produce also two torque

components around the x and y axis of the rigid body. This

fact is exploited in the following section where the resultant

control wrench vector of a generic modular system, including

also the single module case, is derived.

In the following we assume that each module operates

near the hovering condition, namely, the input T is close

to the value Thov = Mm/N > 0 depending on the overall

weight of the modular system Mm and the number N of

equal modules which are interconnected to form the final

desired modular unit. Under the above condition, the matrix

K(T ) relating force-torque vector w and the input u can be

assumed constant and equal to K(T ) ≈ K(Thov).
We will assume that the input T belongs to the set ΩT̄ :=

{T ∈ R : |T − Thov| ≤ T̄}, for some positive T̄ << Thov ,

and that, due to aerodynamical limitations, each angle of

attack αj , j ∈ {x, y, z}, belong to the set Ωᾱ := {α ∈ R :
|α| ≤ ᾱ}. Accordingly, we have

w ∈ Ωw (4)

in which Ωw ⊂ R
4, i ∈ {1, 2, ...N}, denotes the image of

the set ΩT̄ ×Ωᾱ×Ωᾱ×Ωᾱ through the linear map K(Thov).
For further details about the modeling of this class of

systems the reader is referred to [8] and [17] and reference

therein.

B. Modular Configuration

Let us consider a modular system composed of a number

N > 0 of equal ducted-fan modules rigidly connected

together as sketched, for instance, in Figures 2(a), 2(b), 1.

Let the coordinate frame Fbm = {Obm ,
−→
i bm ,

−→
j bm ,

−→
k bm}

be attached to the center of mass of the modular system.

Let the unit vectors
−→
k bi , namely the propellers spin axis of

each module i, i ∈ {1, 2, ...N}, be fixed in order to point

in the same direction, so that the propeller thrust of each

module counteracts the gravity force at hover. Finally, for

all the vehicles in the group in which the body z-axis does

not intersect the center of mass of the formation, let the x-

axis be directed in a way that it intersects the z-axis of the

reference frame Fbm as shown, for instance, in Figures 1

and 2(a), while, for the remaining modules, let the x-axis be

aligned with the one of the frame Fbm , as shown in Figure

2(b). For the above choice of reference frames, the vectors

ℓbii , which denote the position of the center of mass of each

module with respect to the center of mass of the overall

formation expressed in the reference frame Fbi , are given by

ℓbii = [ri, 0, hi]
T

in which, by construction, ri ∈ R≥0 and hi ∈ R denote

respectively the horizontal and vertical displacement of each

UAV in the group, with i ∈ {1, 2, ...N}. Finally, let us denote

the relative orientation between the reference frames Fbi and

the reference frame Fbm by ψi, i ∈ {1, 2, ..., N}. Indeed, ψi
denotes the angle by which the reference frame of each single

module should be rotated around the z-axis in order to align

the x-axis with the one of the frame Fbm .

Since modules are physically separated, the distance be-

tween the center of mass of any two different modules is

positive. Accordingly, if N > 1, the following constraint on

system parameters holds

‖Rψi
ℓbii −Rψj

ℓ
bj
j ‖ > 0 for all i 6= j, i, j ∈ {1, 2, ..., N}

(5)

where

Rψi
:=





cosψi − sinψi 0
sinψi cosψi 0
0 0 1



 .

3585



With the above construction and notation at hand, we are

now able to give a definition of the class of modular system

of interest.

Definition 1 A modular ducted-fan aerial robot M is given

by the 4-tuple (N,Ψ,R,H) where

• N is the number of modules generating a force-torque

vector w ∈ R
4 given by (3) and satisfying (4);

• Ψ := {ψi ∈ R | i = 1, 2, ...N} is the set of the

orientations ψi of each frames Fbi with respect to the

frame Fm;

• R := {ri ∈ R | i = 1, 2, ...N} is the set of horizontal

displacement ri between each module and the center of

gravity of the formation;

• H := {hi ∈ R | i = 1, 2, ...N} is the set of vertical

displacement hi between each module and the center

of gravity of the formation.

Let w :=
[

wT1 , w
T
2 , ..., w

T
N

]T
be the vector of all the

force-torque components wi produced by all the N modules

in the formation. According to (4) we have

w ∈ Ωw, Ωw := {Ωw1
× Ωw2

× ...× ΩwN
} ⊂ R

4N . (6)

The resultant control force and torque vectors fc ∈ R
3 and

τc ∈ R
3 applied by all the modules to the center of mass of

the formation are given by

fc = Bf (Ψ)w (7)

τc = Bτ (Ψ,R,H)w (8)

where

Bf (Ψ) := [Rψ1
Gf , ..., RψN

Gf ],
Bτ (Ψ,R,H) := [Rψ1

Gτ (r1, h1), ..., RψN
Gτ (rN , hN )],

having defined

Gf :=





0 1 0 0
0 0 1 0
−1 0 0 0



 ,

Gτ (ri, hi) :=





0 0 −d+ hi 0
−ri d− hi 0 0
0 0 −ri 1



 .
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Fig. 1. A planar ducted-fan modular aerial robot with N = 2.
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Fig. 2. A planar ducted-fan modular aerial robot with N = 3 and a
modular aerial robot with N = 2 and modules aligned vertically.

C. Vehicle Dynamics

A mathematical model for the modular system can be

derived using the Newton-Euler equations of motion of

a rigid body in the configuration space SE(3) = R
3 ×

SO(3). By considering the inertial coordinate frame Fi =

{Oi,
−→
i i,

−→
j i,

−→
k i} and assuming that the body frame Fbm

has its axis aligned with the principal axis of inertia of the

rigid body, the dynamical model of the modular ducted-fan

aerial robot M with respect to the inertial frame is described

by 1

Mmp̈ = Rfc +Mmge3 + fd
Jmω̇ = −ω × Jmω + τc + τd

(9)

where Mm is the total mass of the system, Jm denotes the

inertia of the vehicle, p = col(x, y, z) is the position of

the center of mass, ω the angular velocity expressed in the

body frame Fbm , R the rotation matrix relating the reference

frames Fbm and Fi, and e3 the unit vector e3 := [0, 0, 1]T .

Moreover fd and τd represent respectively a force and a

torque disturbance applied to the vehicle, caused by the

presence of additional payload or by external forces produced

by the interaction with the environment.

III. CONTROL ALLOCATION

For systems characterized by actuators redundancy the

design of the control law may be simplified by considering

a control allocation problem ( [3], [6], [5]). In particular, for

the modular ducted-fan aerial robot given in Definition 1, it is

worth considering two different control allocation problems

having as a final goal to assign different components of the

wrench vector.

The first one, denoted as fully actuated control allocation

problem (FA-CAP), consists of finding a choice of the

vector of control inputs w in order to produce a final

desired wrench vector w⋆c ∈ R
6. The idea is to obtain a

fully-actuated vehicle in which all the 6 degrees of freedom

of the rigid body dynamics can be controlled separately.

1We define ω× := Skew(ω) where Skew(col(x1, x2, x3)) denotes the
skew-symmetric matrix with the first, second and third row respectively
given by [0,−x3, x2], [x3, 0,−x1] and [−x2, x1, 0].

3586



The problem can be formulated as follows.

Problem FA-CAP: Given w⋆c ∈ R
6, find a value of w ∈ R

4N

such that

BFA(Ψ,R,H)w = w⋆c (10)

having defined

BFA(Ψ,R,H) :=
[

Bf (Ψ)T Bτ (Ψ,R,H)T
]T

. 2

In the second control allocation problem that is considered

here, it is of interest to assign the torque vector and the

force component directed along the body z-axis. The idea

behind this problem is to govern the vehicle by using

vectored-thrust control paradigms - see [7] - for a general

VTOL aerial robot, without necessarily requiring the

system to be fully actuated. The problem is referred to as

vectored-thrust control allocation problem (VT-CAP) and it

is formulated as follow.

Problem VT-CAP: Given T ⋆c ∈ R and τ⋆c ∈ R
3, find a value

of w ∈ R
4N such that

BV T (Ψ,R,H)w =

[

T ⋆c
τ⋆c

]

(11)

in which BV T (Ψ,R,H) is given by the last four rows of

BFA(Ψ,R,H). 2

From basic linear algebra, it follows that sufficient condi-

tions for Problems FA-CAP and VT-CAP to be feasible are

given respectively by

rank(BFA(Ψ,R,H)) = 6 (12)

rank(BV T (Ψ,R,H)) = 4 (13)

As shown in Section IV, conditions (12) and (13) can

be more precisely characterized in term of the number of

modules and the geometric properties employed to build the

modular aerial robot.

In order to design control allocation policies actually

employable on a real physical system, it is also necessary

to take into account the constraint (6) on the control input

vector w. The problems FA-CAP and VT-CAP, with the

additional requirement that the vector w̄ solution to (10)

and, respectively, to (11) fulfills also (6), are denoted by

FA-CCAP and VT-CCAP, respectively.

In order to check the feasibility of the above constrained

control allocation problems, it is of interest to study the set of

attainable forces and moments under any choice of w ∈ Ωω .

In particular we will consider the two compacts sets

Φf := {f ∈ R
3 : f = Bf (Ψ)w, w ∈ Ωw}

Φτ := {τ ∈ R
3 : τ = Bτ (Ψ,R,H)w, w ∈ Ωw} .

(14)

The sets Φf and Φτ are employed to characterize some

fundamental control properties attainable for the closed loop

system. This fact will be investigated in details in Section V.

IV. GEOMETRIC PROPERTIES

The feasibility of Problems FA-CAP and VT-CAP,

characterized by conditions (12) and (13), strongly depends

on the given number of interconnected modules and on the

characteristics of the adopted geometric configuration for

the modular aerial robot. Interestingly enough, the geometric

conditions (12) and (13) also depend on the presence or

not of possible payload attached to the formation. To this

end, in order to more precisely characterize the geometric

constraints of the modular aerial robot, we consider first the

following assumption.

Assumption 1: the position of the center of mass of the

interconnected system is given by the centroid formed by

all the centers of mass of each single module, namely

N
∑

i=1

Rψi
ℓbii =

[

0 0 0
]T

. (15)

2

Assumption 1 clearly holds for the special case in which

no additional payload other than the modules is carried by

the formation. In this special condition it is possible to

characterize the minimum number of modules required to

satisfy conditions (12) and (13).

Proposition 1 Consider a modular system M =
(N,Ψ,R,H) and assume that (15) holds. Then

• for any given N ≥ 1, (13) holds;

• the minimum number of modules for which (12) holds

is given by N = 2;

• for a planar configuration, i.e. hi = 0 for i ∈ 1, 2, ...N ,

the minimum number of modules for which (12) holds

is given by N = 3.

Proof: The first item follows by contradiction showing

that, if (13) is false, then necessarily Assumption 1 cannot

hold true. Define G(ri, hi) := [GTf , G
T
τ (ri, hi)]

T , denote

by GV T (ri, hi) the last four rows of G(ri, hi) and let

R̄ψi
:= diag(Rψi

, Rψi
). Since rank(Rψi

) = 3, we have

rank(BV T ) < 4 if and only rank(GV T (ri, hi)) < 4 for all

i ∈ {1, 2, ...N}. From the definition of Gf and Gτ (ri, hi)
given in subsection II-B, this implies that hi = d for all

i ∈ {1, 2, ...N}. However this fact contradicts Assumption 1

and, in turn, proves the claim in the first item.

To prove the second item, observe that, if N = 1,

then necessarily r1 = h1 = 0 and then rank(BFA) =
rank(G(0, 0)) = 4. For N = 2 let us consider the choice

r1 := r2 := 0, h1 := −h2 := h̄ (16)

which corresponds to a system in which the two modules

are connected on top of each others (see Figure 2(b)).

Observe that (15) is satisfied for any choice of ψi ∈ R,

i ∈ {1, 2}. Finally, assume, without loss of generality, to

have ψ1 = ψ2 = 0. The matrix BFA is then given by

BFA = [G(0, h̄), G(0,−h̄)]. Simple computations show that

rank(B) = 6 for all h̄ 6= 0.
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To prove the third item consider first a planar modular

configuration with N = 2. By construction, to satisfy (15),

we have (see also Figure 1)

r1 := r2 := r̄, h1 := h2 := 0, ψ2 := ψ1 + π . (17)

Pick, without loss of generality, ψ1 = 0. Then BFA =
[G(r̄, 0), R̄πG(r̄, 0)] whose rank is 5 for all r̄ > 0. Finally,

consider, for N = 3, the following modular configuration

which satisfies (15) (see Figure 2(a))

r1 := r2 := r3 := r̄, h1 := h2 := h3 := 0,
ψ2 := ψ1 − (2/3)π, ψ3 := ψ1 + (2/3)π .

(18)

Observe that the above planar modular configuration forms

an equilateral triangle in which the length of each side is

given by
√
3r̄. By fixing ψ1 = 0, we obtain

BFA = [G(r̄, 0), R̄−(2/3)πG(r̄, 0), R̄(2/3)πG(r̄, 0)] . (19)

In this case, simple computations show that, for r̄ >
0, rank(BFA) = 6, and then also the third item of the

proposition holds true.

In the case in which additional payload is added to

the modular system, the center of gravity of the overall

modular vehicle may not coincide with the centroid of

the formation as given in Assumption 1. The feasibility

of the geometric properties (12)-(13) may be affected by

the presence of a payload modifying the vertical position

of the center of gravity of the overall formation, such

as in the case in which the modular system is required

to transport a heavy object. This kind of payload is

denoted here as balanced since it does not affect the lateral

and longitudinal position of the center of mass of the vehicle.

Assumption 2 (balanced payload): the body z-axis of the

reference frame Fbm intersects the centroid formed by all

the centers of mass of each single module, namely

N
∑

i=1

Rψi
ℓbii =

[

0, 0, z̄
]T

(20)

for some z̄ in R. 2

The effect of balanced payload in term of the geometric

properties (12)-(13) is shown in the following proposition.

Proposition 2 Consider a modular system M =
(N,Ψ,R,H) and assume that (20) holds. Then

• the minimum number of modules for which either (13)

or (12) hold true for any z̄ ∈ R is given by N = 2;

• for a planar configuration, i.e. hi = hj for all i 6= j,
i, j ∈ 1, 2, ...N , the minimum number of modules for

which either (13) or (12) hold true for any z̄ ∈ R is

given by N = 3.

Proof: Consider the definitions of G(ri, hi),
GV T (ri, hi) and R̄ψi

introduced in the proof of Proposition

1. Observe first of all that for N = 1 by taking r1 = 0
and h1 = d, assumption (20) is satisfied with z̄ = d and

rank(GV T (0, d)) = 2. Then pick the two-modules system

defined in (16). From (5) if h1 = d and r1 = r2 = 0
then necessarily h2 6= d. Assumption (20) is satisfied with

z̄ = h1 + h2 and the matrix BFA = [G(0, h1), G(0, h2)]
has rank equal to 6. This proves the first item.

To prove the second item, consider first the planar two-

modules system defined by (17). If h1 = h2 = d due to

additional balanced payload (in fact (20) holds with z̄ = 2d)

then BV T has rank equal to 3. Finally, consider planar

three-modules system defined in (18). In the worst case in

which h1 = h2 = h3 = d, namely (20) holds with z̄ = 3d.

Then, following the proof of Proposition 2, matrix BFA =
[G(r̄, d), R̄−(2/3)πG(r̄, d), R̄(2/3)πG(r̄, d)] can be shown to

have rank equal to 6.

From the above result, it turns out that the presence of

balanced payload may directly affect the minimum number

of modules required to guarantee controllability of the system

using the vectored-thrust paradigm. In fact the payload may

reduce the distance between the resultant center of mass of

the vehicle and the center of pressures of the aerodynamic

surfaces and accordingly reduce the attitude control authority

of the vehicle. Suitably designed modular systems are then

shown to better tolerate variations in the position of the

center of mass with respect to the single ducted-fan module.

V. HOVERING IN THE PRESENCE OF DISTURBANCES

In this section we show how the control allocation prob-

lems FA-CCAP and VT-CCAP can be employed to charac-

terize the performances of the system in achieving interaction

operations. In particular, with an eye on system (9), consider

the problem of maintaining a stable hovering flight in the

presence of external force and torque disturbances fd and τd.

In the hovering configuration the vehicle maintains a constant

position p = p⋆ and a constant orientation such that Re3 =
e3, namely the vertical body axis is perfectly aligned with

the gravity force vector. This configuration is an equilibrium

point if and only if it is possible to allocate a force vector

f⋆c = fhov(fd) and a torque vector τ⋆ = τ⋆c = τhov(τd) with

fhov(fd) := −Mmge3 −RT fd, τhov(τd) := −τd . (21)

Accordingly, if (12) holds for the given configuration, a nec-

essary and sufficient condition for FA-CCAP to be feasible

considering a desired wrench vector given by (21) is simply

given by

f⋆c ∈ Φf and τ⋆c ∈ Φτ . (22)

In the case in which only (13) holds, condition (22) is only

necessary. Rather, a necessary and sufficient condition is to

have, for some w′ such that Bτ (Ψ,R,H)w′ = τ⋆c ,

f⋆c ∈ Φf (τ
⋆
c ) (23)

having defined

Φf (τ
⋆
c ) :=

{f ∈ Φf | f = Bfw(τ
⋆
c ), w(τ

⋆
c ) ∈ w′ ⊕ ker(Bτ (Ψ,R,H))}.

(24)
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A. Attainable Forces and Torques for a Physical Prototype

In this section we compute the sets Φf and Φτ by

considering, for a single module, a physical ducted-fan

prototype with M = 1.5 Kg, ᾱ = 0.4 rad, T̄ = 1.2,

kL = 0.204 rad−1 and k′L = 0.082 mrad−1. In particular

the parameters are obtained from the configuration described

in [12] near the hovering condition. Figures 3(a)-3(b) and

4(a)-4(b) show the region of attainable forces and torques

respectively for the single module and for the 2-modules

prototype depicted in Figure 2(b) with h̄ = 0.7 m. Observe

that this 2-modules prototype preserves the same geometry

of the original single module system, however, being fully

actuated, any force and torque in Φf × Φτ can be actually

obtained. For the cases of planar modules with N = 2 and

N = 3 (respectively Figure 1 and 2(a)), we consider the

choice of r̄ = 0.7 m and we obtain the results shown in

Figures 5(a)- 6(b). With respect to the previous cases observe

that forces and torques polytopes are not symmetric.
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Fig. 3. The sets Φf and Φτ for a single module prototype.

−4
−2

0
2

4

−5

0

5
−4

−2

0

2

4

F
x
 [N]F

y
 [N]

F
z
 [

N
]

(a) Forces.

−2
−1

0
1

2

−2

0

2
−1

−0.5

0

0.5

1

τ
x
 [Nm]τ

y
 [Nm]

τ z
 [

N
m

]

(b) Torques.

Fig. 4. The sets Φf and Φτ for the two-module prototype depicted in
Figure 2(b).
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Fig. 5. The sets Φf and Φτ for a the planar 2-modules prototype depicted
in Figure 1.

VI. CONCLUSION

In this work we have considered a class of aerial robots

obtained by rigidly interconnecting a number of ducted-fan

aerial vehicles. The dynamical properties of the system have

been derived by solving suitable control allocation problems.

The dependence of the obtained solutions on the geometrical

properties of the modular system has been precisely pointed

out showing how certain designs achieve better properties
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Fig. 6. The sets Φf and Φτ for a the planar 3-modules prototype depicted
in Figure 2(a).

in term of external disturbance rejection and robustness to

payload variations.
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