
  

  

Abstract— Our recent investigations are focused to develop 
dynamic models for skeletal muscle force and finger angles for 
prosthetic hand control using surface electromyographic sEMG 
as input. Since sEMG is temporal and spatially distributed and 
is influenced by various factors, muscle fatigue and its related 
sEMG becomes of importance. This study is an effort to 
spectrally analyze the sEMG signal during progression of 
muscle fatigue. The sEMG is captured from the arms of healthy 
subjects during muscle fatiguing experiments for dynamic and 
static force levels. Filtered sEMG signal is segmented in five 
parts with 75% overlap between adjacent segments. The 
analysis is done using different classical (fast Fourier 
transform, Welch’s averaged modified periodogram), model-
based (Yule-Walker, Burg, Covariance and Modified 
Covariance autoregressive (AR) method), and eigenvector 
methods (Multiple Signal Classification (MUSIC) and 
eigenvector spectral estimation method) in frequency domain. 
Results show that the classical and eigenvector based methods 
are more sensitive than the model-based methods to fatigue 
related changes in sEMG signals. 

I. INTRODUCTION 
HIS work focuses on the analysis of sEMG signals, 

which are electric voltages ranging between -5 to +5 mV 
and investigates the effects of fatigue in the skeletal muscles. 
The motor units operate as a consequence of the central 
nervous system control strategies, signal transmission along 
nerve fibers and across neuromuscular junctions, electrical 
activation of the muscle fibers organized in elementary 
motors and, through a chain of complex biochemical events. 
The productions of the forces acting on the tendons of the 
agonist and/or antagonist muscles predict bone movement 
[1]. This mechanism also involves a number of feedback 
circuits relaying back to the spinal cord and the brain 
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information concerning the length and velocity of shortening 
of the muscles and the forces acting on the tendons [1]. The 
EMG signal gives information about the motor points and 
their controller i.e. the central nervous system [2, 3]. The 
central nervous system activates and controls the EMG 
signals which depend on the flow of specific ions including 
sodium (𝑁𝑎+), potassium (𝐾+) and calcium (𝐶𝑎++) 
resulting in the action potentials in nerves and their 
respective skeletal muscle fibers from which EMG signals 
are derived. Research efforts in the last few decades have 
focused on the prosthetic design where sEMG is a control 
input to activate the prosthesis. The sEMG is a dynamic 
signal with continual change in its pattern and strength and 
this becomes more complex with the fatigue induced in 
skeletal muscles. 

Failure to maintain the required force level is termed as 
muscle fatigue, which is a complex phenomenon [4]. 
Reasons for fatigue can be the result of peripheral changes at 
the muscle level or an inadequate output from the central 
nervous system to stimulate motoneurons [4]. Intricacies of 
muscle fatigue are associated with several aspects where the 
relative importance of each depends on the fiber type and 
composition of the contracting muscle(s), as well as the 
intensity, type, and duration of contraction activity. Muscle 
cells are the focal points of fatigue and rarely involve the 
central nervous system or the neuromuscular junction [5]. 
The amount of force generated, duration of each contraction, 
and the rest period between two contractions has a direct 
influence on the muscle fatigue rate [6]. Muscle fiber-type 
distribution [7, 8], nerve conduction velocity of fatiguing 
muscles [9, 10], or even central factors within the central 
nervous system (CNS) will affect motivation to perform 
activities [11]. The EMG analysis is a well-accepted method 
for muscle fatigue assessment [8-10, 12-17]. Even though 
the sEMG has some limitations associated with the skin 
impedance, electrode placement, and cross-talk, it is used for 
the estimation of muscle fatigue of different muscles [16, 18, 
19]. 

L. Lindstrom et al. developed a method that measures the 
localized muscle fatigue based on the power spectrum 
analysis using myoelectric signals, [20]. This approach 
permits real-time investigations and can yield statistically 
based criteria for the occurrence of fatigue. Rate of fatigue 
development and changes in muscle action potential 
conduction velocity were used to interpret the findings [20-
22]. Additional recruitment of motor units, synchronization 
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of active motor units along the muscle fibers, and a decrease 
in conduction velocity is reflected in the EMG signal as an 
increase of amplitude in time domain and a decrease of 
medium frequency in frequency domain [23, 24]. 

The joint analysis method using sEMG amplitude and 
spectrum (JASA) allows distinguishing between the 
difference of fatigue-induced and force related EMG 
changes. Simultaneous changes in the EMG amplitude and 
spectrum is considered in the JASA approach [25]. 
According to traditional measurements, the EMG amplitude 
increases and median frequency (MF) decreases as a result 
of muscle fatigue [26-28]. Fatigue can occur because of 
continuous high frequency and tetanic stimulations. Decline 
in the force magnitude can be attributed to reduced 𝐶𝑎++ 
release from the sarcoplasmic reticulum (SR), reduced 
myofibrilllar 𝐶𝑎++ sensitivity, or because of reduced 
maximum 𝐶𝑎++– activated tension. The main reason of the 
tension decline with continuous tetanic stimulation is 
decreased 𝐶𝑎++ release, which is due to impaired action 
potential propagation in the T tubules. Decrease in pH and 
increase in inorganic phosphate (Pi) concentration causes 
reduced 𝐶𝑎++ sensitivity and decline in maximum tension. 
This is the main contributing factor in decline of force with 
continual tetanic stimulation [29]. 

Increase in the inorganic phosphate in the myoplasm 
([Pi]myo) results in reduced SR 𝐶𝑎++ release in both 
skinned and intact fibers. Muscle performance declines with 
rigorous activities which results in fatigue. Metabolic 
changes on either the contractile machinery or the activation 
process are also responsible for the fatigue of muscles. 
Myofibrillar proteins and activation process both are 
affected during fatigue with substantial increase in the 
concentration of inorganic phosphate (Pi) in myoplasm. 
Further, it has been shown that failure of the sarcoplasmic 
reticulum (SR) to release 𝐶𝑎++ also contributes to fatigue 
[30]. During intense exercise of skeletal muscles (less than 
20 seconds), cells consume 100 of times more energy than 
during the rest period. The aerobic capacity of muscle cells 
falls short on energy demand and anaerobic metabolism 
must supply the majority of the adenosine triphosphate 
(ATP) required. Skeletal muscle fatigue results because of 
the high-intensity exercise. Hence, the anaerobic metabolism 
pathway results in a decline of contractile functionality [31]. 

The present work investigates the change in sEMG in 
frequency domain during skeletal muscle fatigue. The sEMG 
signals are acquired for multiple subjects for dynamic and 
static force experiments to induce skeletal muscle fatigue. 
The sEMG signals are filtered with a nonlinear Teager–
Kaiser Energy (TKE) operator-based nonlinear spatial filter 
[32]. Two sets of dynamic force data are segmented into 
three and five parts and two sets of static force data are 
segmented into five parts each. There is a 75% overlap 
between the two adjacent segments. A number of classical, 
model-based and eigenvector based spectral estimation 
techniques are used to study the change in the sEMG signals 
as a result of muscle fatigue. In classical methods Fast 

Fourier transform (FFT) and Welch’s averaged modified 
periodogram methods are used. In case of model-based 
methods Yule-Walker (Y-W), Burg, Covariance (Cov.) and 
Modified Covariance (Mcov.) Autoregressive (AR) methods 
are applied. For eigenvector methods Multiple Signal 
Classification (MUSIC) and Eigenvector (EIG) spectral 
estimation methods were selected for processing sEMG 
signals. Using these spectrum analysis techniques, Power 
Spectral Density (PSD) estimates and detailed 
documentations of the sEMG signals were obtained. These 
methods were compared in terms of their frequency 
resolution and the effects in determination of skeletal muscle 
fatigue. 

II. EXPERIMENTAL SET-UP AND PRE-PROCESSING 
An experiment set-up was developed using DELSYS® 
Bagnoli-16 EMG system with nine DE-3.1 sEMG sensors to 
capture the sEMG signals from skeletal muscles as given in 
[32]. This arrangement involves nine sensors covering four 
directional spatial distributions of the sEMG signal. The 
appropriate motor point of the flexor digitorum superficialis 
muscle (FDS), which controls the flexion of the ring finger, 
was identified using a wet probe muscle stimulator at the 
FDS (RICH-MAR, HV 1000). The middle three sEMG 
sensors were attached directly on the skin surface above the 
motor point of the ring finger. Prior to placing the sEMG 
sensors, the skin surface of the subject was prepared 
according to International Society of Electrophysiology and 
Kinesiology (ISEK) protocols [33]. Two different sets of 
fatigue inducing experiments were conducted using this set-
up of sEMG sensors. One experiment using dynamic force 
variations and another with 50 pounds of static force. For the 
dynamic force variation we used an InterlinkTM Electronics 
FSR 0.5” circular force sensor on a stress ball and for the 
static force experiment we used a cable tensionmeter 
(T5166) by ‘Pacific Scientific Company.’ 
 

 
Fig. 1. Experimental set-up for dynamic force levels. 

 

For the dynamic force experiment we restricted the thumb 
movement using a thumb splint. For the static force 
experiment we held the force of the dynamometer at 50 
pounds and tried to maintain this force level to induce 
fatigue in skeletal muscles. Force data for dynamic force 
experiments was captured using NI ELVISTM with 
InterlinkTM Electronics FSR 0.5” circular force sensor. 
Experimental set-up is shown in Fig. 1 and 2, where 9 
sensors are shown on a healthy subject forearm, holding a 
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stress ball and a grip tension dynamometer, respectively. 
The sEMG and finger force data was collected at a sampling 
rate of 2000 Hz using LabVIEW™ in conjunction with 
DELSYS® Bagnoli-16 EMG and NI ELVISTM. With these 
experimental set-ups, we conducted several experiments of 
30 seconds, 45 seconds and 60 seconds durations. 
 

 
Fig. 2. Experimental set-up for 50 pounds static force levels. 

III. SPECTRAL ESTIMATION METHODS 
Signals can be analyzed in the time and frequency 

domains and in some instances the frequency content of the 
signal is more useful than the time domain characteristics 
[34]. Various bio signals such as the heart rate, EMG, EEG, 
ECG, eye movements, and other motor responses, acoustic 
heart sounds, and stomach and intestinal sounds, show much 
richer information in the frequency domain [34]. Spectral 
analysis is a mathematical prism which finds the frequency 
content of a waveform by decomposing the signal into its 
constituent frequencies [34, 35]. There is a wide range of 
methods for spectral analysis, each having its own benefits 
and drawbacks. In this research we are using classical 
methods based on the Fourier transform, modern methods 
based on the estimation of model parameters, and 
eigenvector based methods [34] in order to characterize the 
muscle fatigue occurring in skeletal human muscles, in 
particular muscles of the forearm. To use the spectral 
analysis wisely, we need to have an understanding of the 
spectral features of interests and the best methods to 
accurately determine those features [34]. 
A. Discrete Fourier Transform (DFT) 
DFT which is the computational basis of the spectral 
analysis transforms the time or space domain data into 
frequency domain data [36]. The DFT of a vector 𝑥 of length 
𝑁 is given as 
𝑋(𝑘) = ∑ 𝑥(𝑗)𝜔𝑁

(𝑗−1)(𝑘−1)𝑁
𝑗=1 ,                                  (1) 

where 𝜔𝑁 = 𝑒(−2𝜋𝑖)/𝑁 is the 𝑁𝑡ℎ root of unity [36]. 

B. Welch’s averaged modified periodogram method: 
As the name suggests, the ‘Welch’s averaged modified 
periodogram method’ depends on the periodogram of the 
signal {𝑥(𝑛)𝑛𝑁} which is given by Equation (2), [36]. 
𝑆̂𝑝𝑒𝑟(𝑓) = 1

𝑁
|∑ 𝑥(𝑛)exp (−𝑗2𝜋𝑓𝑛)𝑁

𝑛=1 |2.        (2)   
In Welch method, the signal is segmented into eight parts of 
equal length with an overlapping ratio of 50% and each part 
is segmented using a Hamming window as given by 
Equation (3), [36]. 

𝑤(𝑛) = 0.54 − 0.46 cos �2𝜋 𝑛
𝑁
� , 0 ≤ 𝑛 ≤ 𝑁  .         (3)  

C. Yule-Walker (Y-W) autoregressive (AR) method: 
The Yule-Walker autoregressive method, also called the 
autocorrelation method, estimates the power spectral density 
(PSD) of the input. This method fits an autoregressive (AR) 
model to the windowed input data by minimizing the 
forward prediction error in the least-squares sense. This 
formulation leads to the Yule-Walker equations, which are 
solved by Levinson-Durbin recursion [36]. 

D. Burg autoregressive (AR) method: 
The Burg autoregressive (AR) method is a parametric 
spectral estimation method of the signal, 𝑥. The power 
spectral density is calculated in units of power per radians 
per sample. This method is based on the minimization of the 
forward and backward prediction error and on estimation of 
the reflection coefficients [36]. 

E. Covariance (Cov.) autoregressive (AR) method: 
The covariance autoregressive (AR) method uses the 
covariance algorithm to estimate the parametric spectral 
density of the signal, 𝑥. Based on causal observation of the 
input signal, the covariance method minimizes the forward 
prediction error and fits an AR linear prediction filter model 
to the signal [36]. 

F. Modified covariance (Mcov.) autoregressive (AR) 
method: 
Modified covariance autoregressive (AR) method estimates 
the PSD of the signal using the modified covariance method. 
Based on the causal information of the input signal, the 
modified covariance method fits an autoregressive (AR) 
linear prediction filter model to the signal by simultaneously 
minimizing the forward and backward prediction errors. The 
spectral estimate returned by this method is the magnitude 
squared frequency response of the AR model [36]. 

G. Multiple Signal Classification (MUSIC) spectral 
estimation method: 

The MUSIC algorithm estimates the pseudospectrum (in 
rad/sample) at the corresponding vector of frequencies for 
the input signal 𝑥 [36]. This algorithm uses the estimates of 
the eigenvectors of a correlation matrix associated with the 
input signal using Schmidt's eigenspace analysis method 
[37]. The MUSIC pseudospectrum estimate is given by 
Equation (4), 
𝑃𝑚𝑢𝑠𝑖𝑐(𝑓) = 1

𝑒𝐻(𝑓)(∑ 𝑣𝑘𝑣𝑘
𝐻𝑁

𝑘=𝑝+1 )𝑒(𝑓)
= 1

∑ �𝑣𝑘
𝐻𝑒(𝑓)�

2𝑁
𝑘=𝑝+1

,   (4) 

where 𝑁 is the dimension of the eigenvectors and 𝑣𝑘 is the 
𝑘-th eigenvector of the correlation matrix [36]. The signal 
subspace has a dimension 𝑝 and the eigenvectors 𝑣𝑘 used in 
the sum corresponds to the smallest eigenvalues and also 
spans the noise subspace [36]. The vector 𝑒(𝑓) consists of 
the complex exponentials, so the inner product 𝑣𝑘𝐻𝑒(𝑓) 
amounts to a Fourier transform. To estimates the 
pseudospectrum, the squared magnitudes are summed for 
FFT computed for each 𝑣𝑘 [36]. 
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H. Eigenvector (EIG) spectral estimation method: 
The eigenvector spectral estimation method estimates the 
pseudospectrum (in rad/sample) at the corresponding vector 
of frequencies using estimates of the eigenvectors of a 
correlation matrix associated with the input signal 𝑥 [36]. 
This method estimates the pseudospectrum from a signal or 
a correlation matrix using a weighted version of the MUSIC 
algorithm derived from Schmidt's eigenspace analysis 
method [37, 38]. To find the frequency content of the signal 
the algorithm performs eigenspace analysis of the signal's 
correlation matrix. Singular value decomposition is used to 
compute the eigenvalues and eigenvectors of the signal's 
correlation matrix [36]. This method computes the 
pseudospectrum estimate as given by Equation (5). 
𝑃𝑒𝑣(𝑓) = 1

(∑ �𝑣𝑘
𝐻𝑒(𝑓)�

2𝑁
𝑘=𝑝+1 )/𝜆𝑘

,             (5) 

where the eigenvectors have a dimension of 𝑁 and 𝑣𝑘 is the 
𝑘-th eigenvector of the correlation matrix [36]. The signal 
subspace has a dimension 𝑝 and the eigenvectors 𝑣𝑘 used in 
the sum corresponds to the smallest eigenvalues and also 
spans the noise subspace [36]. The vector 𝑒(𝑓) consists of 
the complex exponentials, so the inner product 𝑣𝑘𝐻𝑒(𝑓) 
amounts to a Fourier transform and to estimate the 
pseudospectrum, the squared magnitudes are summed for 
FFT computed for each 𝑣𝑘 [36]. 

I. Selection of Model Orders for Model-Based and 
Eigenvector Based Methods 

Model-based and eigenvector-based methods need to have 
a specific model order which is an important aspect of the 
use in these methods. Using the sEMG and force data as 
input and outputs for three and five sets of the segments for 
different data sets, we created model structure matrices using 
‘struc’ function in MATLAB®, using ‘arxstruc’ we 
compared a model order of 1 to 50th with varying delay of 1 
to 50 using cross-validation on the second half of the data 
set. With this approach, it was possible to select the order 
that gives the best fit for the validation data set. 

IV. RESULTS AND DISCUSSION 
sEMG signal changes as a consequence of muscle fatigue 

[23-28], the amplitude of the PSD of the signal increases and 
the median frequency shifts towards the lower frequency 
range [26-28]. In this study, PSDs of the different segments 
of each sEMG data set were obtained using FFT, Welch’s 
averaged modified periodogram, Yule-Walker, Burg, 
Covariance, Modified Covariance autoregressive (AR), 
Multiple Signal Classification (MUSIC), and Eigenvector 
spectral estimation methods. The objective of this study was 
to determine preferred methods of signal processing that 
elevates the sensitivity of muscle fatigue as represented in 
the PSD of the sEMG signal. An increased sensitivity allows 
for better modeling of the fatigue phenomena and hence 
more accurate sEMG models. Ultimately this may lead to 
better prosthetic control. 

Data of two experiments for dynamic force variations was 
segmented in three and five parts respectively. Each segment 
is with an overlap of 75% with its adjacent segment. Using 

different methods, we computed the PSDs for each segment. 
For the dynamic force experiments, the maximum value of 
PSDs of sEMG signal increases with muscle fatigue as time 
or segment number is increased. The classical methods (FFT 
and Welch) and eigenvector based methods (MUSIC and 
Eigenvector (EIG.)) are representing this change well in case 
of maximum PSD values and show a clear difference. 

Table I lists the peak values of the PSDs of five segments 
using classical and eigenvector based methods for a 
dynamically varying force experiment. Fig. 3 shows the 
overlapping plot of PSDs for five segments using the 
MUSIC algorithm based spectral estimation method. The 
increase in the maximum PSD value is evident from the 1st 
to the 5th segment of the data. 

 

TABLE I 
MAXIMUM VALUE OF PSD FOR CLASSICAL METHODS AND 

EIGENVECTOR BASED METHODS – DYNAMIC VARYING FORCE – 
EXPERIMENT 2 

Segment No. Classical-Methods Eigenvector-Methods 
 FFT Welch MUSIC EIG 
1st 4.1e+6 0.0082 371.59 1.0819 
2nd 5.09e+6 0.0100 424.43 1.3892 
3rd 5.74e+6 0.0111 480.71 1.4132 
4th 6.79e+6 0.0133 508.64 1.4936 
5th 2.13e+7 0.0379 695.08 10.2118 

 
Fig. 3. PSD vs. Frequency Plot for MUSIC Algorithm – 

Dynamic Force Experiment. 
 

Fig. 4 shows the resulting PSD using the Burg method. 
Comparing Fig. 3 and 4, the progression of fatigue influence 
shift in PSDs is evident in both plots. However, the MUSIC 
algorithm not only shows larger amplitudes, but also a 
greater relative sensitivity to fatigue. 

 

 
Fig. 4. PSD vs. Frequency Plot for Burg Method – Dynamic 

Force Experiment. 
 

The rather equal spacing between the lines of the PSD for 
the MUSIC algorithm compared to the Burg method 
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indicates a rather more linear relationship of the fatigue 
progression. 

The sEMG data of two experiments for static force (50 
pounds) were processed and the maximum PSDs of five 
segments using classical, model-based, and eigenvector 
based methods were computed. Data from both the 
experiments show similar results as the dynamic case. Table 
II lists the peak values of the PSDs of five segments using 
classical and eigenvector based methods for static force (50 
pounds) for one experiment. Table III lists the maximum 
values of the PSD for model-based methods: Y-W, Burg, 
Covariance, and modified covariance. 

 

TABLE II 
MAXIMUM VALUE OF PSD FOR CLASSICAL METHODS – STATIC 

FORCE – 50 POUNDS - EXPERIMENT 1 
Segment No. Classical-Methods Eigenvector-Methods 
 FFT Welch MUSIC  EIG 
1st 1.03e+5 6.81e-5 1413 9.93e-4 
2nd 1.80e+5 1.12e-4 1793 16e-4 
3rd 3.21e+5 1.80e-4 2296 28e-4 
4th 4.25e+5 2.62e-4 3102 37e-4 
5th 6.23e+5 3.58e-4 7723 104e-4 

TABLE III 
MAXIMUM VALUE OF PSD FOR CLASSICAL METHODS – STATIC 

FORCE – 50 POUNDS - EXPERIMENT 1 
Segment No. 1st  2nd  3rd  4th  5th  

Model-Based 
Methods 

7.7e-7 1.3e-6 2.3e-6 3.1e-6 7.81-6 

All of these methods resulted in the same maximum 
values for each segment. Comparing Table II and III, we 
recognize the large difference in maximum value between 
the model-based methods and the corresponding values from 
the FFT and MUSIC method. Fig. 5 shows the overlapping 
plot of PSDs for five parts using eigenvector algorithm 
based spectral estimation method. The increase in the 
maximum PSD value is evident from the 1st to the 5th 
segment of the static force sEMG data. 

 

 
Fig. 5. PSD vs. Frequency Plot for Eigenvector Method – 

Static Force of 50 Pounds. 
 

The eigenvector method produces a similar characteristic 
as the MUSIC algorithm and distinguishes itself by also 
providing a more linear characteristic of the fatigue 
progression and a greater relative sensitivity. Fig. 6 depicts 
the PSD generated by using FFT method for the 1st and 5th 
segments of a static force experiment. While providing a 
large maximum value, the FFT method is limited by its own 

spectral resolution (1/𝑁) and, due to windowing of the finite 
data set, results into spectral leaking. 

All the model-based methods for both dynamic and static 
force levels produce the same peak values and the same PSD 
for the corresponding experiment. Since Burg and Y-W 
methods guarantee stability while the covariance and 
modified covariance methods have conditions for stability to 
be satisfied (i.e. min. order must be of certain length of the 
input frame size), Burg and Y-W should be the preferred 
methods for sEMG analysis. However, the Burg method is to 
be preferred if short data sets are used. 

 

 
Fig. 6. PSD vs. Frequency Plot for FFT Method – Static 

Force of 50 Pounds. 
 

Comparing the eigenvector based methods (MUSIC and 
Eigenvector), both of these methods are frequency estimator 
techniques based on eigenanalysis of the autocorrelation 
matrix where the resulting estimate has sharp peaks at the 
frequencies of interest. The eigenvector method uses inverse 
eigenvector weighting whereas the MUSIC method uses 
unity weighting, implying that the eigenvector method gives 
fewer spurious peaks than the MUSIC algorithm [39]. As 
seen from the dynamic experiment results, the MUSIC 
method provides for a better spacing between the segment 
based PSDs compared to the Burg and eigenvector method. 
From static experiments, we conclude that all three (MUSIC, 
Burg, and Eigenvector) methods perform similarly if a linear 
relationship of the fatigue progression is desired. 

V. CONCLUSION AND FUTURE WORK 
This research characterizes muscle fatigue using a PSD 

representation of different segments of sEMG data. Classical 
(fast Fourier transform and Welch’s averaged modified 
periodogram), model-based (Y-W, Burg, Cov., and Mcov. 
autoregressive (AR) method) and eigenvector based methods 
(MUSIC and EIG. spectral estimation method) are used to 
compute the PSDs. Classical and eigenvector based methods 
are more sensitive than the model-based methods for 
analyzing the fatigue related changes in sEMG signal. 
However, the MUSIC algorithm provides good maximum 
value in the PSD as well as a clear distinction between the 
segmented sEMG data. The latter point is indicative of a 
relative linear fatigue progression in time for the same case 
when the MUSIC algorithm is utilized. In the future work 
these results can be used to design and improve the skeletal 
muscle ‘Force-sEMG-Fatigue’ based models [40] for 
prosthetic design and other rehabilitation research. 
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