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Abstract— In this paper we consider the problem of con-
structing feedback control laws for a system of n agents
that shall synchronize their attitudes in SO(3). We propose
distributed controllers for two synchronization problems, in
which the objective is the same, to synchronize the orientations,
but what the agents can perceive or communicate differs. In
the first problem the agents can measure their orientation to
a common reference object, and either communicate with the
neighbors or estimate the relative orientation to their neighbors.
In the second problem the agents can, without communication,
only measure the relative orientation to the neighbors. For
the first problem we present a controller which will lead to
synchronization, provided the neighborhood graph is connected.
For the second problem we present a controller that will lead to
synchronization provided the neighborhood graph is connected
and the agents initially are contained within a geodesic ball of
radius π

2
, which is the maximal convex set in SO(3).

I. INTRODUCTION

There has been an extensive study of cooperative control
problems in the past few years in applications such as
manipulation, surveillance or exploration of an environment.
Solutions based on distributed consensus, e.g., [2], [13] and
the references therein, present a lot of properties of great
interest for these kind of problems. They do not rely in any
specific communication topology, scale well with the number
of agents and are robust to the exit or the introduction of new
agents to the group.

One of the most challenging problems using distributed
consensus is attitude synchronization. The attitude synchro-
nization problem corresponds to the non-linear consensus
problem on the manifold SO(3) of all orthogonal matrices
in R3×3 with determinant equal to 1. Applications of this
scenario include flocking or the coordination of teams of
UAVs and satellites.

There are several works in the literature that study this
problem. Leader-follower schemes are adopted in [1] and [5].
However, with these approaches the interaction topology
between the agents is limited to a spanning tree or a ring.
The orientation alignment in terms of the velocity of all the
agents, commonly referred to as flocking, is studied in [10],
[11]. Passivity-based controllers are used in [6], [12]. These
approaches either assume the observation of the velocities of
the agents [6] or the knowledge of a global frame [12]. Using
relative information, in [14] chordal distances are used. In
order to compute this distance, based on the arithmetic mean
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of the rotation matrices, the agents need to communicate their
relative orientations.

A problem that is similar to the attitude synchronization
can be found in the context of camera networks calibra-
tion [15] and pose averaging [16]. Given initial relative
orientations between the cameras, the goal is to construct an
iterative algorithm that converges to an average orientation,
i.e., the Riemannian centre of mass, or the Karcher mean [8].
However, these approaches rely on discrete-time updates and
optimization techniques and therefore, they are not suitable
for the construction of continuous time distributed controllers
for a group of agents leading to synchronization of their
attitudes.

In order to solve the attitude synchronization problem we
present distributed angular velocity controllers, making use
of the axis angle representation to describe the orientation of
the agents. Using this representation, which is novel in this
context, the analysis of the synchronization problem becomes
tractable due to the properties of the the system. In the
paper we propose solutions for two different synchronization
problems. The objective in the two problems is the same, to
synchronize the orientations, however what the agents can
perceive or estimate differs between the two problems.

In the first problem each agent can only measure its
orientation to a common reference object. We consider two
cases for the interaction between neighboring agents. In the
first case they communicate with their neighbors and and in
the second case, they can estimate the relative orientations
between them. This is the case for example when, using
a vision sensor, the agents can observe a static object
which is known to them but they are not able to directly
observe each other. By exchanging these measurements, the
proposed controller will lead to synchronization, provided
the neighborhood graph is connected.

The second problem is more challenging because the
agents are only able to measure the relative orientation to its
neighbors in their own body frame, and no communication
between the agents are considered. This situation is more
realistic, since the availability of a global reference will be
difficult in many situations. We present a controller that will
lead to synchronization, provided the interaction graph is
connected and the agents are initially contained within a
geodesic ball of radius π/2, the largest convex geodesic
ball on SO(3). Similar solutions have been presented in
the literature for attitude synchronization, but to the the
knowledge of the authors the axis-angle representation has
not been used, and these works have often considered the
localization or estimation problem rather than the control
problem.
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This paper will proceed as follows. In Section II, first
the dynamics of the agents is introduced, secondly the
two different synchronization problems will be proposed. In
Section III the solution to the problem is introduced, where
we first propose the controller for the first problem and then
propose the controller for the second problem. In section IV
an illustrative example is provided where the two controllers
are used for the same initial configuration for a set of five
agents. Finally the paper is concluded in Section V.

II. PROBLEM FORMULATION

We want to synchronize the attitude for a system of n
rigid body agents. The formalism of [3], [4] will be adapted,
where the axis-angle representation of the orientation is used.
Let the world frame be denoted by Fw and the instantaneous
body frame of agent i by Fi. The axis-angle representation
of the orientation at time t of agent i in the world frame
Fw is denoted by θi(t)ui(t), where ui(t)

Tui(t) = 1.
The axis-angle representation of the orientation of agent
j in the frame of agent i, Fi, is denoted as θij(t)uij(t).
If Ri is the orientation of agent i in the the frame Fw,
represented as a rotation matrix, then θi(t)ûi(t) = Log(Ri),
and θij(t)ûij(t) = Log(RT

i Rj) (see e.g. [9]), where x̂
denotes the skew symmetric matrix generated by x.

We will for simplicity throughout the text, when possible,
abbreviate θi(t)ui(t) and θij(t)uij(t) as xi and xij respec-
tively, and x = [xT1 ,x

T
2 , ...,x

T
n ]T . Note that

xij = −xji, (1)

and in general
xj − xi 6= xij , (2)

which can be easily seen from the Baker-Campbell-
Hausdorff formula. Throughout the text, when we refer to the
orientation of an agent it will be the axis-angle representation
if nothing else is explicitly said.

The Riemannian distance between two points (this time
represented as orthogonal matrices) in SO(3) is defined as

dR(Ri,Rj) =
1√
2
||Log(RT

i Rj)||F = |θij |,

where θij is the angle of the axis-angle representation of
the rotation RT

i Rj . Note that from the definition of xi, it
follows that

xTi xi = θ2i . (3)

Denote the instantaneous angular velocity of Fi seen in
the frame Fi as ωi. The dynamics of xi is given by

ẋi = Lxi
ωi, (4)

and the dynamics of xij is given by

ẋij = Lxijωj −L−xijωi, (5)

where the transition matrix Lθu was given in [7] as

Lθu = I3 −
θ

2
û+

(
1− sinc(θ)

sinc2 θ2

)
û2. (6)

The function sinc(x) is defined so that xsinc(x) = sin(x)
and sinc(0) = 1. It was also shown in [7], that Lθu is
invertible for θ ∈ (−2π, 2π).

The connectivity between the agents will be represented
by the undirected connectivity (or neighborhood) graph G,
which is assumed to be connected. Let the indices of the
agents in the group constitute the vertexes in the graph. Agent
i will be connected to agents with index in the set Ni, i.e.,
there will be an edge (i,j) in the graph. Since G is undirected
j ∈ Ni if and only if i ∈ Nj . We will also refer to Ni as
the neighborhood of agent i. The connectivity will either be
based on estimation or communication, and will be clarified
in the problems below.

In this setting we want to construct a controller ωi for
each agent i so that the orientations of all agents become
synchronized as the time goes to infinity, i.e.,

xi − xj → 0, (7)

for all pairs (i, j), as t → ∞. A controller solving this
problem will be referred to as a synchronization controller.
We now formulate the two synchronization problems.

Problem 1 - Synchronization using global information

Construct a synchronization controller using global in-
formation. Here by global information we mean that the
measurements {xj − xi, j ∈ Ni} is available for agent i
and used in the controller (8). In practice this implies that
agent i can can measure xi, which is the case if for example
the agents are using a vision sensor and are observing some
common static object which is known to the agents. This
object will then serve as the global frame Fw. The vector
xj , where j ∈ Ni, is obtained by one of the following two
means.

1) Using communication. Here it is assumed that agent i
transmits its measurement of xi to agent j if they are
neighbors.

2) without communication. Here it is assumed that agent
i can estimate the relative orientation xij to agent j.
Thus agent i can calculate the rotation xj using the
following relations

Rij = exp(x̂ij),

Ri = exp(x̂i),

Rj = RiRij ,

x̂j = log(Rj).

The two methods complement each other. If it is not possible
to measure the relative orientations between neighboring
agents, communication can be used. On the other hand, in
situations when communication is not possible the second
alternative can be used.

One might argue that if a measurement of xi is available
for each agent i, then each agent can e.g. use the controller

ωi = −xi,

in order to reach synchronization at the origin of Fw. Thus
a distributed controller is not necessary. However, there are
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reasons to prefer a distributed controller in which each agent
i uses the information {xj − xi, j ∈ Ni}.

We can guarantee a better synchronization during the tran-
sient phase when the rotations of the agents are converging
to their finial synchronized orientation. The synchronization
becomes more robust and less sensitive to measurement
errors. If agent i is only using the measurement xi, then
this could be regarded as an open-loop controller in terms
of synchronization (not in terms of state feedback).

We require that θi ∈ (−π, π) for each pair of agents (i,j),
where j ∈ Ni, so that there is a bijective map from the axis
angle representation (so(3)) to SO(3).

Problem 2 - Synchronization using local information

Construct a synchronization controller using local in-
formation. By local information we mean the following.
Assume that agent i can directly measure or observe the
relative orientation xij for all agents j in the set Ni. Agent
i can not measure the relative orientation to agents not in
Ni. The relative orientation can e.g. be measured by using
vision see [15], [5], [3], [4].

No communication is assumed between the agents and
similar to Problem 1, we also require that θij ∈ (−π, π) for
each pair of agents (i,j), where j ∈ Ni.

III. SOLUTION

In this section we propose two distributed controllers that
solve Problem 1 and Problem 2 respectively. The section
contains two subsections. In Subsection III-A the controller
that solves Problem 1 is presented, and in Subsection III-B
the controller that solves Problem 2 is presented.

A. Solution to problem 1

The candidate controller is just the standard consensus
protocol

ωi = k
∑
j∈Ni

(xj − xi), (8)

where k > 0. The constant k will be omitted in the following
analysis without loss of generality.

Proposition 3.1: Controller (8) solves Problem 1.

Proof. We have as a requirement that |θi(t)| < π, ∀t ≥ 0,
in order to keep the bijective map between the axis-angle
representation and SO(3). In order to show that the require-
ment is fulfilled by using the controller, we show that the
open ball Br(I) around identity in Fw with radius r = π is
invariant.

The distance from identity to each orientation xi is |θi|.
Suppose |θi| ≥ |θj | ∀j = 1, 2, ..., n, we want to see how θ2i
changes. We have that

˙(θ2i )

2
=

˙(xTi xi)

2
= (9)

xTi Lxi

∑
j∈Ni

(xj − xi) ≤ (10)

−niθ2i +
∑
j∈Ni

θiθj ≤ 0, (11)

where ni = |Ni| and where we have used the fact that
xTi Lxi

= xTi . So the largest distance between the orientation
of any agent and the identity does not increase, implying that
the open ball will be invariant.

Now consider the Lyapunov function candidate

γ(t) =

n∑
i=1

θ2i =

n∑
i=1

xTi xi. (12)

We calculate the time derivative of γ as

γ̇ =

n∑
i=1

xTi Lxi

∑
j∈Ni

(xj − xi) (13)

=

n∑
i=1

xTi
∑
j∈Ni

(xj − xi) (14)

= −xTLx, (15)

where L is the graph Laplacian of G (not to mix up with
Lxi

which is a Jacobian matrix). Provided G is connected,
which is an assumption, γ̇ is negative unless xi = xj ∀i, j,
and by the invariance theorem this implies that the system
will be synchronized.

Proposition 3.1 states that the orientations of the agents
will be synchronized as t → ∞. A natural question to ask
now is to what orientation the agents will converge in the
global frame Fw. In the Euclidean case the convergence
point would be the arithmetic mean of the initial positions,
assuming a system of agents with single integrator dynamics.
One could assume something similar in this case. However
this can not be true in general since the mean is not always
time invariant. We hope the following discussion can shed
some light on this question.

Introduce the vector θ = [θ1, ...., θn]. From the proof of
Proposition 3.1 and especially equations (13) to (15), we see
that θTθ is decreasing as long as there exists a pair of agents
(i,j) such that θi 6= θj or there exists a pair of agents (i,j)
such that ui 6= uj .

The dynamics of xi can be seen as the sum of two
orthogonal parts

ẋi = θ̇iui + θiu̇i, (16)

where the first part is the change of xi in the direction of
ui and the second part is the change of xi in the direction
orthogonal to ui. In order to get the dynamics of θ we
multiply (16) with uTi from the left, and use the fact that
uTi ui = 1 and uTi u̇ = 0. We arive at the following
dynamical equation

θ̇i = uTi
∑
j∈Ni

(xj − xi) =
∑
j∈Ni

(uTi ujθj − θi). (17)

In order to get the dynamics of ui we use the fact that ui
and u̇i are orthogonal and thus −û2u̇ = u̇. Hence

u̇i = − 1

θi
û2
ixi = − 1

θi
(1− k(θi))û

2
i

∑
j∈Ni

xj + ûi
∑
j∈Ni

xj ,

(18)
where we have used the fact that û3 = −û.
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Consider the case of two agents where u1 6= u2 initially.
One can see that the motion of u1 consists of two orthogonal
components: the first component draws u1 closer to u2 while
the second component generates a motion on the normal
direction of the plane formed by u1 and u2 as long as
θ2 6= 0. This indicates that u1 would reach synchronization
“spirally”. Simulations seem to indicate that θ∗ is zero, see
Figure 1.

B. Solution to problem 2

The candidate controller is

ωi = k
∑
j∈Ni

xij , (19)

where k > 0.
Proposition 3.2: If there is a Q ∈ SO(3), such that the

orientations of the agents initially are contained within an
open ball Br(Q) of radius r less than or equal to π

2 centered
around Q in the frame Fw, i.e.,

|θij | <
π

2
∀i, j, (20)

the controller (19) solves Problem 2.

Proof. We will divide the proof into two parts. In the first
part we show invariance and in the second part we will show
convergence.

Suppose that the condition

|θij | <
π

2
∀i, j,

is fulfilled, or that there is a Q in Fw such that all the
orientations of the agents are contained in the open ball
Br(Q), where r ≤ π

2 . The ball Br(Q) is a convex set,
see [8], [9].

Let X(t) = {xi(t)}, i = 1, ..., n be the set of all rotations
from each frame Fi to the frame Fw. Let Xi(t) = {xj(t)},
j ∈ Ni be set of the rotations from the frames Fi of each
agent i to the frame Fw. The following relations must hold

Conv(Xi(t)) ⊂ Conv(X(t)) ⊂ Br(Q),

where Conv(Xi(t)) and Conv(X(t)) denotes the convex
hull of the elements in Xi(t) and X(t) respectively. Let
X̄(t) denote the set of all rotations of the neighbors of agent
i except agent i, i.e., X̄(t) = Xi(t)− {xi}.

The Karcher mean of the elements in the set X̄i(t) at time
t is defined as the rotation R∗i (t) which minimizes

γ(R∗i ) =
∑
j∈Ni

d2R(Rj(t),R
∗
i (t)).

The rotation matrix we define as Ri = exp(x̂i) and

x̂ij = Log(RT
i Rj).

The dynamics of Ri is thus given by

Ṙi = Riω̂i = Ri

∑
j∈Ni

x̂ij . (21)

The Karcher mean R∗i (t) ∈ Conv(Xi(t)). The function
γ(R∗i ) is convex, see [9], and is defined on the convex set
Conv(Xi(t)). Thus the shortest path between Ri and R∗i
is contained in Conv(Xi(t)) and the direction to move in
order to follow this path at the rotation Ri, is given by the
covariant derivative of γ(Ri), see [9],

5γ(Ri) = Ri

∑
j∈Ni

Log(RT
j Ri) = −Ri

∑
j∈Ni

x̂ij . (22)

Since (21) and (22) are opposite in sign, this implies that
Ri(t) will move in the gradient descent direction of γ(t) at
time t, a direction that points into Conv(Xi(t)). Since this
is true for all agents, especially the ones on the border of
Conv(X(t)), the set Br(Q) is invariant.

Now we will prove that the rotations will be synchronized
as t → ∞. This can be easily shown using (6). We first
define the sum of all the rotations of the neighbors of agent
i as

xsi =
∑
j∈Ni

xij , (23)

and define the candidate Lyapunov function

φ(t) =
1

2

n∑
i=1

∑
j∈Ni

xTijxij =

n∑
i=1

∑
j∈Ni

d2R(Ri,Rj). (24)

Since the graph is connected, φ will be zero if and only if
the orientations are aligned. The derivative is given by

φ̇(t) =

n∑
i=1

∑
j∈Ni

xTij(Lxijωj −L−xijωi)

=

n∑
i=1

∑
j∈Ni

∑
k∈Nj

xTijxjk −
n∑
i=1

∑
j∈Ni

∑
k∈Ni

xTijxik

=

n∑
j=1

∑
i∈Nj

∑
k∈Nj

xTijxjk −
n∑
i=1

∑
j∈Ni

∑
k∈Ni

xTijxik

= −
n∑
j=1

∑
i∈Nj

∑
k∈Nj

xTjixjk −
n∑
i=1

∑
j∈Ni

∑
k∈Ni

xTijxik

= −2

n∑
i=1

xTsixsi ,

This implies that φ̇(t) is negative unless xsi = 0, i =
1, ..., n. Thus xij(t) will converge to the largest invariant
set contained in xsi = 0, i = 1, ..., n. Since

5γ(Ri) = Rixsi , i = 1, ..., n,

xsi = 0 implies each Ri is in the Karcher mean of all
its neighbors. If the rotations in the neighborhood are not
synchronized at this point, then there must be some rotations
forming the boundary of the convex hull Conv(Xi). Pro-
vided G is connected, for any of those rotations the rotation
would not be in the Karcher mean of its neighbors, which
is a contradiction. This implies that if the agents are in the
largest invariant set of xsi = 0, i = 1, ..., n., the rotations
have to be synchronized.

1965



IV. ILLUSTRATIVE EXAMPLE

We will now show the performance of the controllers
for an illustrative example with 5 agents, whose initial
orientations are uniformly distributed in the geodesic ball
Br(Q) where r = π

2 . The simulation was conducted in
Matlab Simulink. The graph adjaceny matrix E in G is given
by

E =


1 1 0 0 0
1 1 1 0 0
0 1 1 1 1
0 0 1 1 1
0 0 1 1 1

 ,
the time horizon was chosen as 10 sec and k = 5. In
Figure 1 the controller (8) is used and one can see how the
agents converge from their initial orientations (blue squares)
to the final orientation where they reach synchronization. The
synchronization point (or orientation) is at the origin of of
the global frame Fw in this case.

In Figure 2 the controller (19) is used. one can see how the
agents converge from their initial orientations (blue squares)
the the final orientation where they reach synchronization.
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Fig. 1. The rotations of five agents converge to a synchronized rotation as
time goes to infinity and the agents use controller (8). The initial orientations
are marked by blue squares. In this example the constant k was chosen as 5,
and the time horizon was 10 sec. The agents are synchronized at the rotation
[0, 0, 0]T or at the identity of Fw , which differs from the synchronization
point in Figure 2.

V. CONCLUSIONS

In this paper we have proposed two distributed controllers
for the attitude synchronization problem. The first controller
is based on differences between the orientations in a global
frame, and the second controller is based on the relative
orientations between the agents. The axis-angle representa-
tion has been used in order to represent the orientations,
and its properties makes the convergence analysis easy. The
first controller leads to synchronization, provided the neigh-
borhood graph is connected. When the second controller is
used, the orientations will be synchronized, provided the
interaction graph is connected and the agents initially are
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Fig. 2. The rotations of five agents converge to a synchronized rotation as
time goes to infinity and the agents use controller (19). In this example the
constant k was chosen as 5, and the time horizon was 10 sec. Blue squares
indicate the initial orientations of the agents.

contained within a geodesic ball of radius π
2 , which is the

maximal convex set in SO(3).
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