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Abstract— This paper presents a reinforcement learning al-
gorithm and provides conditions for global convergence to
Nash equilibria. For several reinforcement learning schemes,
including the ones proposed here, excluding convergence to
action profiles which are not Nash equilibria may not be trivial,
unless the step-size sequence is appropriately tailored to the
specifics of the game. In this paper, we sidestep these issues
by introducing a new class of reinforcement learning schemes
where the strategy of each agent is perturbed by a state-
dependent perturbation function. Contrary to prior work on
equilibrium selection in games, where perturbation functions
are globally state dependent, the perturbation function here is
assumed to be local, i.e., it only depends on the strategy of each
agent. We provide conditions under which the strategies of the
agents will converge to an arbitrarily small neighborhood of
the set of Nash equilibria almost surely. We further specialize
the results to a class of potential games.

I. INTRODUCTION

Lately, agent-based modeling has generated significant in-

terest in various settings, such as engineering, social sciences

and economics. In those formulations, agents make decisions

independently and without knowledge of the actions or in-

tentions of the other agents. Usually, the interactions among

agents can be described in terms of a strategic-form game,

and stability notions, such as the Nash equilibrium, can be

utilized to describe desirable outcomes for all agents.

In this paper, we are interested in deriving conditions

under which agents learn to play Nash equilibria. Assuming

minimum information available to each agent, namely its

own utilities and actions, we introduce a novel reinforcement

learning scheme and derive conditions under which global

convergence to Nash equilibria can be achieved.

Prior results in reinforcement learning has primarily fo-

cused on common-payoff games [1]. In reference [2], a rein-

forcement learning scheme is introduced and convergence to

the set of Nash equilibria is shown when applied to a class

of potential games. However, although the analysis is based

on weak-convergence arguments (due to a constant step-

size selection), an explicit characterization of the limiting

invariant distribution is not provided, while the issue of

non-convergence to unstable points on the boundary of the
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domain has been overlooked. In fact, as pointed out in [3],

establishing non-convergence to the boundary of the proba-

bility simplex might not be trivial, since standard results of

the ODE method for stochastic approximations (e.g., non-

convergence to unstable equilibria [4]) are not applicable.

In this paper, we sidestep these issues by introducing a

variation of reinforcement learning algorithms where the

strategy of each agent is perturbed by a state-dependent

perturbation function. Contrary to prior work on equilibrium

selection, where perturbation functions are also state depen-

dent [5], the perturbation function here is assumed to be

local, i.e., it only depends on the strategy of each agent. Due

to this perturbation function, the ODE method for stochastic

approximations can be applied, since boundary points of the

domain cease to be stationary points of the relevant ODE.

This paper extends prior work [6] of the authors, where

the perturbation function was assumed constant along the

domain. In particular, we provide conditions under which the

strategies of the agents will converge to an arbitrarily small

neighborhood of the set of Nash equilibria almost surely.

We further specialize the results to a class of games which

belong to the family of potential games [7].

The remainder of the paper is organized as follows.

Section II introduces the necessary terminology. Section III

introduces the perturbed reinforcement learning scheme with

a state-based perturbation function. Section IV states some

standard results for analyzing stochastic approximations.

Section V characterizes the set of stationary points for both

the unperturbed and the perturbed learning scheme. Sec-

tion VI discusses convergence properties of the unperturbed

reinforcement learning scheme, while Section VII presents

conditions under which the perturbed learning scheme con-

verges to the set of Nash equilibria. Section VIII specializes

the convergence analysis to a class of potential games.

Finally, Section IX presents concluding remarks.

Notation:

− |x| denotes the Euclidean norm of a vector x ∈ R
n.

− |x|∞ denotes the ℓ∞-norm of a vector x ∈ R
n.

− Bδ(x) denotes the δ-neighborhood of a vector x ∈ R
n,

i.e., Bδ(x) , {y ∈ R
n : |x− y| < δ}.

− dist(x,A) denotes the distance from a point x to a set

A, i.e., dist(x,A) , infy∈A |x− y| .
− Bδ(A) denotes the δ-neighborhood of the set A ⊂ R

n,

i.e., Bδ(A) , {x ∈ R
n : dist(x,A) < δ}.

− ∆(m) denotes the probability simplex of dimensionm,

i.e., ∆(m) , {x ∈ R
m : x ≥ 0,1Tx = 1}.

− Π∆ : Rm → ∆(m) is the projection to the probability

simplex, i.e., Π∆[x] , argminy∈∆(m) |x− y|.
− Ao is the interior of A ⊂ R

n, and ∂A is its boundary.
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− col{αi}i∈J is the column vector with entries {αi}i∈J

for some set of indexes J .

II. TERMINOLOGY

We consider the standard setup of finite strategic-form

games.

1) Game: A finite strategic-form game involves a finite

set of agents (or players), I , {1, 2, ..., n}. Each agent i ∈ I
has a finite set of available actions, Ai. Let αi ∈ Ai be an

action of agent i, and α = (α1, ..., αn) the action profile of

all agents. The set A is the Cartesian product of the action

spaces of all agents, i.e., A , A1 × ...×An.

The action profile α ∈ A produces a payoff (or utility)

for each agent. The utility of agent i, denoted by Ri, is a

function which maps the action profile α to a payoff in R.

Denote R : A → R
n the combination of payoffs (or payoff

profile) of all agents, i.e., R(·) , (R1(·), ..., Rn(·)).
2) Strategy: Let σij ∈ [0, 1] denote the probability that

agent i selects action αi = j. Then, σi , (σi1, ..., σi|Ai|)
is a probability distribution over the set of actions Ai (or

strategy of agent i), i.e., σi ∈ ∆(|Ai|), where |Ai| denotes

the cardinality of the set Ai. We will also use the term

strategy profile to denote the combination of strategies of

all agents σ = (σ1, σ2, ..., σn) ∈ ∆ where ∆ , ∆(|A1|)×
...×∆(|An|) is the set of strategy profiles.

Note that if σi is a unit vector (or a vertex of ∆(|Ai|)),
say ej , then agent i selects an action j with probability one.

Such a strategy will be called pure strategy. Likewise, a pure

strategy profile is a profile of pure strategies. Denote ∆
∗ the

set of pure strategy profiles or vertices of ∆. We will use

the term mixed strategy to define a strategy that is not pure.

3) Expected payoff and Nash equilibrium: Given a strat-

egy profile σ ∈ ∆, the expected payoff vector of each agent

i, Ui : ∆ → R
|Ai|, can be computed by1

Ui(σ) ,
∑

j∈Ai

ej
∑

α−i∈A−i

(

∏

s∈−i

σsαs

)

Ri(j, α−i). (1)

We may think of the entry j of the expected payoff vector,

denoted Uij(σ), as the payoff of agent i who is playing action

j at the strategy profile σ. We denote the profile of expected

payoff vectors as U(σ) = (U1(σ), ..., Un(σ)). Finally, let

ui(σ) be the expected payoff of agent i at strategy profile

σ ∈ ∆, defined as ui(σ) , σT
i Ui(σ).

Definition 2.1 (Nash equilibrium): A strategy profile

σ∗ = (σ∗
1 , σ

∗
2 , ..., σ

∗
n) ∈ ∆ is a Nash equilibrium if, for

each agent i ∈ I,

ui(σ
∗
i , σ

∗
−i) ≥ ui(σi, σ

∗
−i) (2)

for all σi ∈ ∆(|Ai|) such that σi 6= σ∗
i .

In the special case where for all i ∈ I, σ∗
i is a pure

strategy, σ∗ ∈ ∆
∗ is called a pure Nash equilibrium. Any

Nash equilibrium which is not pure is called a mixed Nash

equilibrium. Also, in case the inequality in (2) is strict, the

Nash equilibrium is called a strict Nash equilibrium.

1The notation −i denotes the complementary set I\{i}. We will often
split the argument of a function in this way, e.g., F (α) = F (αi, α−i).

III. PERTURBED LEARNING AUTOMATA

In this section, we introduce the basic form of the learning

dynamics that we will consider in the remainder of the paper.

They belong to the general class of learning automata [1].

For the remainder of the paper, we will assume:

Assumption 3.1 (Strictly positive payoffs): For every i ∈
I, the utility function satisfies Ri(α) > 0 for all α ∈ A.

Even in the case where utilities take on negative values, we

can still analyze the game by considering an equivalent one

with strictly positive payoffs (cf., [8]).

A. Modified Linear Reward-Inaction (L̃R−I ) scheme

We consider a reinforcement scheme which is a small

modification of the original linear reward-inaction (LR−I )

scheme [9], [10]. This modified scheme, denoted by L̃R−I ,

was introduced in [6]. Contrary to LR−I , Ri(·) may take

values other than {0, 1}, which increases the family of games

this algorithm can be applied to.

Similarly to LR−I , the probability that agent i selects

action j at time k is σij(k) = xij(k), for some probability

vector xi(k) which is updated according to the recursion:

xi(k+1) = Π∆ [xi(k) + ǫ(k) · Ri(α(k)) · [αi(k)− xi(k)]] .
(3)

Here we identify actions Ai with vertices of the simplex,

{e1, e2, ..., e|Ai|}. For example, if agent i selects action j at

time k, then αi(k) = ej . Note that by letting the step-size

sequence ǫ(k) to be sufficiently small and since the payoff

function Ri is uniformly bounded in A, xi(k) ∈ ∆(|Ai|)
and the projection operator Π∆ can be omitted.

We consider the following class of step-size sequences:

ǫ(k) =
1

kν + 1
(4)

for some ν ∈ (1/2, 1]. For these values of ν, the following

two conditions can easily be verified:

∞
∑

k=0

ǫ(k) = ∞ and

∞
∑

k=0

ǫ(k)2 <∞. (5)

The selection of ν is closely related to the desired rate of

convergence. Compared with prior reinforcement learning

schemes, both [11] and [3] consider comparable step-size

sequences.

B. Pertubed Linear Reward-Inaction Scheme (L̃λ
R−I )

Here we consider a perturbed version of the scheme L̃R−I ,

in the same spirit with [6], where the decision probabilities

of each agent are slightly perturbed. In particular, we assume

that each agent i selects action j ∈ Ai with probability

σij , (1− ζi(xi, λ))xij + ζi(xi, λ)/ |Ai| , (6)

for some perturbation function ζi : ∆(|Ai|)× [0, 1] → [0, 1],
where the probability vector xi is updated according to (3).

We consider the following perturbation function:

ζi(xi, λ) =

{

0 |xi|∞ < β,
λ

(1−β)2 (|xi|∞ − β)2 |xi|∞ ≥ β,
(7)
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for some β ∈ (0, 1) which is close to one. In other words,

an agent perturbs its strategy when the latter is close to a

vertex of the probability simplex. Note that the perturbation

function is continuously differentiable for some β sufficiently

close to one. Furthermore, limλ↓0 ζi(xi, λ) = 0 uniformly in

x, which establishes equivalence of the perturbed dynamics

with the unperturbed dynamics as λ approaches zero.

The main difference with earlier work by the same authors

[6] is that here we allow for the perturbation function to

also depend on agent’s own strategy. Similar ideas of state

dependent perturbations have been utilized for equilibrium

selection in adaptive learning by [5]. The difference here is

that the perturbation function is locally state dependent, i.e.,

it only depends on the strategy of each agent and not on the

strategy profile of all agents.

We will denote this scheme by L̃λ
R−I .

IV. BACKGROUND CONVERGENCE ANALYSIS

Let Ω , ∆
∞ denote the canonical path space with an

element ω being a sequence {x(0), x(1), ...}, where x(k) ,
(x1(k), ..., xn(k)) ∈ ∆ is generated by the reinforcement

learning process. An example of a random variable defined

in Ω is the function ψk : Ω → ∆ such that ψk(ω) = x(k).
In several cases, we will abuse notation by simply writing

x(k) or α(k) instead of ψk(ω). Let also F be a σ-algebra

of subsets in Ω and P, E be the probability and expectation

operator on (Ω,F), respectively. In the following analysis,

we implicitly assume that the σ-algebra F is generated

appropriately to allow computation of the probabilities or

expectations of interest.

A. Exit of a sample function from a domain

It is important to have conditions under which the process

ψk(ω) = x(k), k ≥ 0, with some initial distribution, will

exit an open domain G in finite time.

Proposition 4.1 (Theorem 5.1 in [12]): Suppose there ex-

ists a nonnegative function, V (k, x) in the domain k ≥ 0,

x ∈ G, such that

∆V (k, x) , E[V (k + 1, x(k + 1))− V (k, x(k))|x(k) = x]

satisfies ∆V (k, x) ≤ −a(k) in this domain, where a(k) is a

sequence such that

a(k) > 0,

∞
∑

k=0

a(k) = ∞. (8)

Then the process x(k) leaves G in a finite time with proba-

bility one.

The following corollary is important in cases we would

like to consider entrance of a stochastic process into the

domain of attraction of an equilibrium. It is a direct con-

sequence of Proposition 4.1. For details, see Exercise 5.1 in

[12].

Corollary 4.1: Let A ⊂ ∆, Bδ(A) its δ-neighborhood,

and Dδ(A) = ∆\Bδ(A). Suppose there exists a nonnegative

function V (k, x) in the domain k ≥ 0, x ∈ ∆ for which

∆V (k, x) ≤ −a(k)ϕ(k, x), k ≥ 0, x ∈ ∆, (9)

where the sequence a(k) satisfies (8) and ϕ(k, x) satisfies

inf
k≥T,x∈Dδ(A)

ϕ(k, x) > 0

for all δ > 0 and some T = T (δ). Then

P[lim inf
k→∞

dist(x(k), A) = 0] = 1.

Corollary 4.1 implies that x(k) enters an arbitrarily small

neighborhood of a set A infinitely often with probability one.

B. Convergence to mean-field dynamics

The convergence properties of the reinforcement learning

schemes can be described via the ODE method for stochastic

approximations. The recursion of L̃λ
R−I , λ ≥ 0, can be

written in the following form:

xi(k + 1) = xi(k) + ǫ(k) · [gλi (x(k)) + ξλi (k)], (10)

where the observation sequence has been decomposed into a

deterministic sequence, gλi (x(k)), (or mean-field) and a noise

sequence ξλi (k). The mean-field is defined as follows:

gλi (x) , E[Ri(α(k))[αi(k)− xi(k)]|x(k) = x]

such that its s-th entry is

gλis(x) = Uis(x)σis −
∑

q∈Ai

Uiq(x)σiqxis.

where σiq , q ∈ Ai, is defined in (6). It is straightforward

to verify that gλi (·) is continuously differentiable. The noise

sequence is defined as

ξλi (k) , Ri(α(k)) · [αi(k)− xi(k)]− gλi (x(k)),

where E[ξλi (k)|x(k) = x] = 0 for all x ∈ ∆.

Note that for λ = 0, (10) coincides with L̃R−I . We will

denote g(x) the corresponding vector field for λ = 0.

The more compact form of (10) will also be used:

x(k + 1) = x(k) + ǫ(k) · [gλ(x(k)) + ξλ(k)], (11)

where gλ(·) , col{gλi (·)}i∈I and ξλ(·) , col{ξλi (·)}i∈I .

Proposition 4.2 (Theorem 6.6.1 in [13]): For the rein-

forcement scheme L̃λ
R−I , λ ≥ 0, the stochastic iteration

(11) is such that, for almost all ω ∈ Ω, {ψk(ω) = x(k)}
converges to some invariant set of the ODE

ẋ = gλ(x). (12)

Also, if A ⊂ ∆ is a locally asymptotically stable set in the

sense of Lyapunov for (12), and x(k) is in some compact

set in the domain of attraction of A infinitely often with

probability ≥ ρ, then P[limk→∞ x(k) ∈ A] ≥ ρ.

V. STATIONARY POINTS

The stationary points of the mean-field dynamics are

defined as the set of points x ∈ ∆ for which gλ(x) = 0. In

this section, we characterize the set of stationary points for

both the unperturbed (λ = 0) and the perturbed dynamics

(λ > 0).
We will make the following distinction among stationary

points of (12) for λ > 0, denoted Sλ:
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− Sλ
∂∆: stationary points in ∂∆;

− Sλ
∆∗ : stationary points which are vertices of ∆;

− Sλ
∆o : stationary points in ∆

o;

− Sλ
NE: stationary points which are Nash equilibria.

We will also use the notation S∂∆, S∆∗ S∆o , and SNE

to denote the corresponding sets when λ = 0.

A. Stationary points of unperturbed dynamics (λ = 0)

Proposition 5.1 (Stationary points for λ = 0): A strategy

profile x∗ is a stationary point of the ODE (12) if and only

if, for every agent i ∈ I, there exists a constant ci > 0, such

that for any action j ∈ Ai, x
∗
ij > 0 implies Uij(x

∗) = ci.
The above result is quite well known for replicator learning

dynamics. In fact, notice that the corresponding mean-field

of the share of strategy s in agent i when λ = 0 is:

gis(x) =



Uis(x) −
∑

q∈Ai

Uiq(x)xiq



 xis (13)

which coincides with the corresponding shares provided by

the replicator dynamics (e.g., see equation (3.3) in [14]).

Two straightforward implications of Proposition 5.1 are:

Corollary 5.1 (Pure Strategies): For λ = 0, any pure

strategy profile is a stationary point of the ODE (12).

Corollary 5.2 (Nash Equilibria): For λ = 0, any Nash

equilibrium is a stationary point of the ODE (12).

Note that for some games not all stationary points of

the ODE (12) are Nash equilibria. For example, if you

consider the Typewriter Game of Table I, the pure strategy

profiles which correspond to (A,B) or (B,A) are not Nash

equilibria, although they are stationary points of (12).

A B

A 4, 4 2, 2
B 2, 2 3, 3

TABLE I

THE TYPEWRITER GAME.

On the other hand, any stationary point in the interior of

∆ will necessarily be a Nash equilibrium as the following

corollary shows.

Corollary 5.3 (Mixed Nash equilibria): For λ = 0, any

stationary point x∗ of the ODE (12), such that x∗ ∈ ∆
o, is

a (mixed) Nash equilibrium of the game.

Note that the above corollaries do not exclude the possi-

bility that there exist stationary points in ∂∆ without those

necessarily being pure strategy profiles. For the remainder

of the paper, we will only consider games which satisfy:

Property 5.1: For the unperturbed dynamics, there are no

stationary points in ∂∆ other than the ones in ∆
∗, i.e.,

S∂∆\S∆∗ = ∅. Moreover, there exists δ > 0 such that

Bδ(S∆o) ⊂ ∆
o.

In other words, we only consider games for which, the

stationary points of (12), λ = 0, in the boundary of ∆ are

vertices of ∆, and the stationary points in ∆
o are isolated

from the boundary. Property 5.1 is not restrictive and is

satisfied for most but trivial cases.

B. Stationary points of perturbed dynamics (λ > 0)

A straightforward implication of the properties of the

perturbation function is the following:

Lemma 5.1 (Sensitivity of S∆o ): There exists β0 ∈ (0, 1)
such that S∆o ⊆ Sλ

∆o for any β0 < β < 1 and any λ > 0.

Vertices of ∆ cease to be equilibria for λ > 0. The

following proposition provides the sensitivity of S∆∗ to

small values of λ.

Lemma 5.2 (Sensitivity of S∆∗ ): For any stationary point

x∗ ∈ S∆∗ , which corresponds to a strict Nash equilibrium

and for sufficiently small λ > 0, there exists a unique

continuously differentiable function ν∗ : R+ → R
|A|, such

that limλ↓0 ν
∗(λ) = ν∗(0) = 0, and

x̃ = x∗ + ν∗(λ) ∈ ∆
o (14)

is a stationary point of the ODE (12). If instead x∗ ∈ S∆∗ is

not a Nash equilibrium, then for any sufficiently small δ > 0
and λ > 0, the δ-neighborhood of x∗ in ∆, Bδ(x

∗), does

not contain any stationary point of the ODE (12).

Note that the statements of Lemma 5.2 do not depend on

the selection of β. Instead, they require λ to be sufficiently

small. Also, note that Lemma 5.2 does not discuss the

sensitivity of Nash equilibria which are not strict. However, it

is straightforward to show that vertices cannot be stationary

points for λ > 0.

Let also S̃λ
NE denote the set of stationary points in ∆

o

which are perturbations of the stationary points in S∆∗∩SNE

(strict or non-strict) for some λ > 0.

Proposition 5.2 (Stationary points of perturbed dynamics):

For any β ∈ (0, 1), let δ∗ = δ∗(β) be the smallest δ > 0
such that, for all x ∈ ∆\Bδ(∆

∗), ζi(xi, λ) = 0 for some

i ∈ I. When β is sufficiently close to one and λ > 0
is sufficiently small, then: a) S̃λ

NE ⊂ Bδ∗(∆
∗), and b)

Sλ = S∆o ∪ S̃λ
NE.

In other words, the stationary points of the perturbed dynam-

ics are either the interior stationary points of the unperturbed

dynamics or perturbations of pure Nash equilibria.

VI. CONVERGENCE TO BOUNDARY POINTS

Recall that, for the unperturbed dynamics, not all station-

ary points in ∆
∗ are necessarily Nash equilibria. Conver-

gence to non-desirable stationary points, such as the ones

which are not Nash equilibria, cannot be excluded when

agents employ the unperturbed reinforcement scheme L̃R−I .

Proposition 6.1 (Convergence to boundary points):

If agents employ the reinforcement scheme L̃R−I , the

probability that the same action profile will be played for

all future times is uniformly bounded away from zero over

all initial conditions if Ri(α) > 1 for each α ∈ A, i ∈ I.

Proposition 6.1 reveals the main issue of applying re-

inforcement learning schemes, which is convergence with

positive probability to boundary points which are not Nash

equilibrium profiles.

Figure 1 shows a typical response of L̃R−I in the Type-

writer Game of Table I. We observe that it is possible for the

process to converge to a non-Nash equilibrium profile since

Ri(α) > 1 for all α ∈ A and i ∈ I.
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Fig. 1. Typical response of L̃R−I on the Typewriter Game of Table I
when ν = 0.78.

These issues, which are also pointed out in [15], [3], will

be resolved here due to the introduction of the perturbation

function in L̃λ
R−I .

VII. CONVERGENCE OF PERTURBED DYNAMICS (L̃λ
R−I )

The convergence analysis of the perturbed dynamics L̃λ
R−I

will be subject to the following assumption:

Assumption 7.1: For the unperturbed dynamics, L̃R−I ,

there exists a twice continuously differentiable and nonneg-

ative function V : ∆ → R+ such that a) ∇xV (x)Tg(x) ≤ 0
for all x ∈ ∆, and b) ∇xV (x)Tg(x) = 0 if and only if

g(x) = 0.

For some δ > 0, consider the δ-neighborhood of the set

of stationary points Sλ, Bδ(S
λ). Define also the closed set:

Dδ(S
λ) , ∆\Bδ(S

λ).
Lemma 7.1: Under Assumption 7.1, for β ∈ (0, 1) suffi-

ciently close to one and λ > 0 sufficiently small, there exists

δ = δ(β, λ) > 0 such that

sup
x∈Dδ(Sλ)

∇xV (x)Tgλ(x) < 0.

Lemma 7.2 (LAS - L̃λ
R−I ): For any λ > 0 sufficiently

small, any stationary point x̃ ∈ S̃λ
NE, which is a perturbation

of a strict Nash equilibrium according to (14), is a locally

asymptotically stable point of the ODE (12).

Theorem 7.1 (Convergence to Nash equilibria): Under

Assumption 7.1, if agents employ the L̃λ
R−I reinforcement

scheme for some β ∈ (0, 1) sufficiently close to one and

λ > 0 sufficiently small, then there exists δ = δ(β, λ) such

that,

P[lim inf
k→∞

dist(x(k),Bδ(S
λ)) = 0] = 1.

Also, for almost all ω, the process {ψk(ω) = x(k)} con-

verges to some invariant set in Bδ(S
λ).

VIII. SPECIALIZATION TO POTENTIAL GAMES

A. Potential games

In this section, we will specialize the convergence analysis

to a class of games which belongs to the general family

of potential games (cf., [7]). In particular, we will consider

games which satisfy the following property:

Property 8.1: There exists a C2 function f : ∆ → R such

that ∇σi
f(σ) = Ui(σ) for all σ ∈ ∆ and i ∈ I.

Example 1: (Common-payoff games) One class of games

which satisfies Property 8.1 is common-payoff games, where

the payoff function is the same for all players. An example of

a common-payoff game is the Typewriter Game of Table I.

It is straightforward to show that for this game the function

f(σ) = 4σ11σ21 + 2σ11σ22 + 2σ12σ21 + 3σ12σ22

satisfies Property 8.1.

Example 2: (Congestion games) A typical congestion

game consists of a set I of n players and a set P of m
paths. For each player i, let the set of pure strategies Ai be

the set of m paths. The cost to each player i of selecting

the path p depends on the number of players that are using

the same path. The expected number of players using path p
is χp(σ) ,

∑

i∈I σip. Define cp = cp(χp) to be the cost of

using path p when χp players are using path p and let cp(χp)
be linear on χp. The expected utility of player i is defined

as: ui(σ) , −
∑

p∈P cp(χp(σ)). Note that the function

f(σ) , −
∑

p∈P

∫ χp(σ)

0

cp(z)dz

satisfies Property 8.1.

B. Convergence to Nash equilibria

The following proposition establishes convergence to Nash

equilibria for this class of potential games.

Proposition 8.1 (Convergence to Nash equilibria): In the

class of games satisfying Property 8.1, the L̃λ
R−I reinforce-

ment scheme satisfies the conclusions of Theorem 7.1.

C. Convergence to pure Nash equilibria

In several games, convergence to mixed Nash equilibria

of the unperturbed dynamics S∆o can be excluded. In this

case, convergence to stationary points in S̃λ
NE which are

perturbations of pure Nash equilibria can be established.

Let x−i denote the distribution over action profiles of the

group of agents −i. Let Di be the matrix of payoffs of

agent i and D−i be the matrix of payoffs of −i. The vector

of expected payoffs of agent i and −i can be expressed as

Ui(x) = Dix−i and U−i(x) = D−ixi, respectively.

To analyze the behavior around stationary points in ∆
o,

we consider the nonnegative function V (x) , fmax−f(x) ≥
0, x ∈ ∆, where fmax , supx∈∆

f(x). It is straightforward

to verify that the Jacobian matrix of f(x) is:

∇2
xf(x) =

(

O Di
D−i O

)

.

Higher-order derivatives of f(x) will be zero, therefore from

the extension of Taylor’s Theorem (cf., Theorem 5.15 in [16])

to multivariable functions, we have:

∆V (k, x) = −∇xf(x)
T
E[δx(k)|x(k) = x]−

E[δx−i(k)
TD−iδxi(k)|x(k) = x]−

E[δxi(k)
TDiδx−i(k)|x(k) = x], (15)

where δx(k) , x(k + 1)− x(k).
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A direct consequence of the above formulation and Propo-

sition 4.1 is the following:

Proposition 8.2 (Non-convergence to S∆o ): If agents em-

ploy the L̃R−I reinforcement scheme and x∗ ∈ S∆o satisfies

1) E[δx−i(k)
TD−iδxi(k)|x(k) = x] > 0,

2) E[δxi(k)
TDiδx−i(k)|x(k) = x] > 0

uniformly in x ∈ Bδ(x
∗), for some δ > 0 sufficiently small,

then P[limk→∞ x(k) = x∗] = 0.

For several games testing the conditions of Proposition 8.2

may be difficult. For example, for two players and two

actions, it is straightforward to show that:

E[δxi
TDiδx−i|xi(k) = xi, x−i(k) = x−i] =
ǫ(k)2xi1xi2x(−i)1x(−i)2(d

i
11 − di12 − di21 + di22)·

((di11)
2 − (di12)

2 − (di21)
2 + (di22)

2), (16)

where disℓ denotes the (s, ℓ) entry of Di, i = 1, 2. Consider,

for example, the Typewriter Game of Table I. Since the game

is symmetric, and di11 > di12, di22 > di21, i = 1, 2, the second-

order terms of the incremental gain will be positive. The

above computation can be extended in a similar manner to

the case of larger number of actions or players.

Proposition 8.3 (Convergence to pure Nash equilibria):

In the framework of Proposition 8.1, let the conditions of

Proposition 8.2 also hold. If the game exhibits pure Nash

equilibria which are all strict, then, for some β ∈ (0, 1)
sufficiently close to one and λ > 0 sufficiently small, the

process {ψk(ω) = x(k)} converges to the set S̃λ
NE for

almost all ω, i.e., P[limk→∞ x(k) ∈ S̃λ
NE] = 1.

D. Example

Consider the Typewriter Game of Table I. This game

exhibits two pure Nash equilibria which are strict, (A,A)
and (B,B). There is also a mixed Nash equilibrium, which

satisfies the conditions of Proposition 8.2 as it can be

verified from (16). Thus, the conditions of Proposition 8.3

are satisfied, and the process will converge to the stationary

points in S̃λ
NE almost surely. Figure 2 shows the solution of

the ODE (12) for an initial condition which corresponds to

the non-Nash action profile (B,A). The solution converges
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Fig. 2. ODE solution for L̃λ

R−I
and for the Typewriter Game of Table I

when β = 0.995, λ = 0.001 and initial condition (B,A).

to the strict Nash equilibrium (B,B). Note that escaping

from (B,A) would not be possible if λ = 0.

IX. CONCLUSIONS

This paper presented a new reinforcement learning scheme

for distributed convergence to Nash equilibria. The main

difference from prior schemes lies in the introduction of

a perturbation function in the decision rule of each agent

which depends only on its own strategy. The introduction of

this perturbation function sidestepped issues regarding the

behavior of the algorithm close to vertices of the simplex. In

particular, we derived conditions under which the perturbed

reinforcement learning scheme converges to an arbitrarily

small neighborhood of the set of Nash equilibria almost

surely. We further specialized the results to a class of games

which belong to potential games.
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