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Rua Dr. Roberto Frias, Porto, Portugal 4200 465, Email: pjsantos@fe.up.pt

Abstract— The fitting of a causal dynamic model to an
image is a fundamental problem in image processing, pattern
recognition, and computer vision. There are numerous other
applications that require a causal dynamic model, such as
in scene analysis, machined parts inspection, and biometric
analysis, to name only a few. There are many types of
causal dynamic models that have been proposed in the
literature, among which the autoregressive moving average
(ARMA) and state-space models are the most widely known.
In this paper we introduce a 2-D stochastic state-space system
identification algorithm for obtaining stochastic 2-D, causal,
recursive, and separable-in-denominator (CRSD) models in
the Roesser state-space form. The algorithm is tested with a
real image and the reconstructed image is shown to be almost
indistinguishable to the true image.

I. INTRODUCTION

This paper deals with the parametric identification of a

quarter-plane (QP) causal linear space-invariant (LSI) 2-D

system excited by an unknown zero-mean white Gaussian

noise process. There has been a significant amount of

work in 2-D system identification and parametric modeling

of 2-D stationary random processes during the last two

decades. However, most of the work deals with parametric

2-D autoregressive moving average models, which have

received great attention in a wide range of image and signal

processing applications. These include image restoration,

image compression, stochastic texture analysis, modeling

of 2-D data, and spectrum estimation of 2-D data [1], [2],

[3], [10], [12], [13], to name only a few. Lashgari, et al.

[8] introduced an algorithm for image enhancement using

notions of state-space and developed a minimum variance

estimation algorithm. Fraanje, et al. [5] also developed a

deterministic canonical 2-D subspace algorithm.

Here we solve the 2-D stochastic subspace identification

problem for the CRSD model, along the lines of [7], [9],

[11], [14], [16], and a new algorithm is introduced. The

rest of the paper is organized as follows. In Section 2 the

problem is briefly formulated. In Section 3 we derive the

horizontal subspace equations, whereas in Section 4 we

derive the vertical subspace equations. In section 5 we

present the 2-D stochastic subspace system identification

algorithm. In Section 6 we present a case study involving

a real color image. In order to deal with color images, we

have taken the red, green, and blue (RGB) images as the

outputs of the system. Thus the data becomes a multivariate

stochastic process of dimensions Y ∈ IRℓ(N+1)×(M+1),

where ℓ = 3. Conclusions are then drawn in Section 7.

II. PROBLEM FORMULATION

Consider the 2-D quarter plane causal, recursive, and

separable-in-denominator (CRSD) stochastic system given

in the Roesser state-space model form

xh
r+1,s = A1x

h
r,s +A2x

v
r,s + wh

r,s (1)

xv
r,s+1 = A4x

v
r,s + wv

r,s (2)

yr,s = C1x
h
r,s + C2x

v
r,s + vr,s, (3)

where xh
r,s ∈ IRnh , xv

r,s ∈ IRnv , and yr,s ∈ IRℓ denote,

respectively, the local horizontal state, local vertical state,

and output vectors at the (r, s)th location of a finite spatial

domain D. The system matrices {A,C} have partitioned

dimensions A1 ∈ IRnh×nh , A2 ∈ IRnh×nv , A4 ∈ IRnv×nv ,

C1 ∈ IRℓ×nh , and C2 ∈ IRℓ×nv . The noise vectors wh
r,s ∈

IRnh , wv
r,s ∈ IRnv , and vr,s ∈ IRℓ are white noise processes

with zero mean and joint covariance matrix given by

cov







wh
r,s

wv
r,s

vr,s







=





Qhh Qhv Sh

Qvh Qvv Sv

ST
h ST

v R



 =

[

Q S

ST R

]

,

where MT denotes the transpose of M, and {Q,R, S}
are covariance matrices of appropriate dimensions. The

noise and state vectors are uncorrelated with each other,

i.e., IE
{

xh
r,s

[

(wr′,s′)
T

(vr′,s′)
T

]}

= 0nh×(n+ℓ) and

IE
{

xv
r,s

[

(wr′,s′)
T (vr′,s′)

T
]}

= 0nv×(n+ℓ), ∀ r′ ≥

r and s′ ≥ s, where w =

[

wh
r,s

wv
r,s

]

, n = nh+nv, IE is the
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expectation operator, and 0m×n denotes a zero matrix of

dimensions (m× n). Furthermore, the states xh
r,s and xv

r,s

have zero mean.

The positive definite state covariance is given by [4]

Π = cov

{

xh
r,s

xv
r,s

}

=

[

Πh 0nh×nv

0nv×nh
Πv

]

.

If we now define the covariance of the state update as

Π′ = cov

{

xh
r+1,s

xv
r,s+1

}

=

[

Πh Πhv

ΠT
hv Πv

]

,

where Πhv = A2ΠvA
T
4 + Qhv and Πvh = ΠT

hv . Then by

taking the expectation on both sides of (1) – (2), we obtain

the state covariance update equation as

Π′ = AΠAT +Q, (4)

where Π = ΠT and Π′ = (Π′)T . Note that (4) is not a

matrix Lyapunov state covariance equation since Π′ 6= Π.

However, by partitioning (4) one can decompose it into

a pair of horizontal and vertical matrix Lyapunov type

equations of the form (5) – (6) shown below. If we then

add the symmetry constraints, we obtain the system

Πh = A1ΠhA
T
1 +A2ΠvA

T
2 +Qhh (5)

Πv = A4ΠvA
T
4 +Qvv, Πh = ΠT

h , Πv = ΠT
v .(6)

Now vectorizing (5) – (6), one can then find vec{Πh} and

vec{Πv} by solving the following system of equations [6]










In2

h

−A1 ⊗A1 A2 ⊗A2

0n2
v
×n2

h

In2
v
−A4 ⊗A4

In2

h

−Θh 0n2

h
×n2

v

0n2
v
×n2

h

In2
v
−Θv











·

[

vec{Πh}
vec{Πv}

]

=









vec{Qhh}
vec{Qvv}
0n2

h
×1

0n2
v
×1









, (7)

where Ik denotes a k × k identity matrix, Θh ∈ IRn2

h
×n2

h

and Θv ∈ IRn2

v
×n2

v are permutation matrices such that

vec{ΠT
h } = Θhvec{Πh} and vec{ΠT

v } = Θvvec{Πv},

respectively, and ⊗ denotes the matrix Kronecker product.

Throughout the rest of the paper we will use the symbol

> 0 (≥ 0) to indicate that a matrix is positive definite

(positive semi-definite). Model (1) – (3) then satisfies

the following constraints, also known as the positive real

conditions:

[

Q S

ST R

]

≥ 0, Q ≥ 0, R > 0, and Π > 0.

Now define G1 and G2 as the horizontal and vertical

partitions of the matrix G ∈ IRn×ℓ, as in [4], [14]

G = IE

{[

xh
r+1,s

xv
r,s+1

]

yTr,s

}

= AΠCT + S =

[

G1

G2

]

G1 = A1ΠhC
T
1 +A2ΠvC

T
2 + Sh

G2 = A4ΠvC
T
2 + Sv,

then one can show that the 2-D output autocovariance

sequence is given in terms of the Markov parameters of

the system, i.e.,

Λk,l = IE
{

yr+k,s+ly
T
r,s

}

= C1ΠhC
T
1 + C2ΠvC

T
2 +R, if k = 0, l = 0

= C1A
k−1
1 G1, if k ≥ 1, l = 0

= C2A
l−1
4 G2, if k = 0, l ≥ 1

= C1A
k−1
1 A2A

l−1
4 G2, if k ≥ 1, l ≥ 1.

The problem can be stated as follows: Given a set of

ℓ distinct (N + 1) × (M + 1) images whose (r, s) pixels

are the output sequence yr,s ∈ IRℓ, for r ∈ [0, N ] and

s ∈ [0,M ], find {n,A,C,G,Π, Q,R, S}. This will lead to

a 2-D Kalman filter innovations model of (1) – (3).

III. HORIZONTAL DATA PROCESSING

In order to save space, throughout the rest of the

paper we will denote by hankel{(a0, a1, . . . , ak), n1, n2}
an (n1 × n2) Hankel matrix composed of the sequence

(a0, a1, . . . , ak) [7], [14], [16]. Let us now define the past

and future state matrices, output, and innovations Hankel

matrices for k = 0, 1, . . . ,M and N = 2i+ j − 2, as:

X̂h
p (k) =

[

x̂h
0,k x̂h

1,k · · · x̂h
j−1,k

]

X̂h
f (k) =

[

x̂h
i,k x̂h

i+1,k · · · x̂h
i+j−1,k

]

X̂hv
p (k) = hankel{(x̂v

0,k, x̂
v
1,k, . . . , x̂

v
i+j−2,k), nvi, j}

X̂hv
f (k) = hankel{(x̂v

i,k, x̂
v
i+1,k, . . . , x̂

v
2i+j−2,k), nvi, j}

Y h
p (k) = hankel{(y0,k, y1,k, , . . . , yi+j,k), ℓi, j}

Y h
f (k) = hankel{(yi,k, yi+1,k, . . . , y2i+j−2,k), ℓi, j}

Eh
p (k) = hankel{(e0,k, e1,k, . . . , ei+j−2,k), ℓi, j}

Eh
f (k) = hankel{(ei,k, ei+1,k, . . . , e2i+j−2,k), ℓi, j}.

Note that the above definitions correspond to the 2-D

CRSD innovations model of (1) – (3), and has the form

x̂h
r+1,s = A1x̂

h
r,s +A2x̂

v
r,s +Kher,s (8)

x̂v
r,s+1 = A4x̂

v
r,s +Kver,s (9)

yr,s = C1x̂
h
r,s + C2x̂

v
r,s + er,s, (10)

where {x̂h
r,s,Kh} and {x̂v

r,s,Kv} are, respectively, the

horizontal and vertical {state estimates, Kalman gain}, and

er,s is the innovations vector.

A. Horizontal Subspace Equations

Since the past and future vertical state matrices can

be decoupled from the horizontal states, we will now

derive the horizontal subspace equations. For this we need

to define the following past and future extended state

estimates, output, and innovations matrices

X̂
h

p =
[

X̂h
p (0) X̂h

p (1) · · · X̂h
p (M)

]

(11)

X̂
h

f =
[

X̂h
f (0) X̂h

f (1) · · · X̂h
f (M)

]

(12)

X̂
hv

p =
[

X̂hv
p (0) X̂hv

p (1) · · · X̂hv
p (M)

]

(13)
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X̂
hv

f =
[

X̂hv
f (0) X̂hv

f (1) · · · X̂hv
f (M)

]

(14)

Y h
p =

[

Y h
p (0) Y h

p (1) · · · Y h
p (M)

]

(15)

Y
h
f =

[

Y h
f (0) Y h

f (1) · · · Y h
f (M)

]

(16)

Eh
p =

[

Eh
p (0) Eh

p (1) · · · Eh
p (M)

]

(17)

Eh
f =

[

Eh
f (0) Eh

f (1) · · · Eh
f (M)

]

. (18)

If we now define the extended block matrices [11], [14]

Γh
i =

[

CT
1 (C1A1)

T · · · (C1A
i−1
1 )T

]

Γhv
i =











C2

C1A2 C2

...
...

. . .

C1A
i−2
1 A2 C1A

i−3
1 A2 · · · C2











Hh
i =











Iℓ
C1Kh Iℓ

...
...

. . .

C1A
i−2
1 Kh C1A

i−3
1 Kh · · · Iℓ











Chv
i =

[

Ai−1
1 A2 Ai−2

1 A2 · · · A2

]

Ch
i =

[

Ai−1
1 Kh Ai−2

1 Kh · · · Kh

]

,

then one can show that the following horizontal subspace

equations hold

Y
h
p = Γh

i X̂
h

p + Γhv
i X̂

hv

p +Hh
i E

h
p (19)

Y h
f = Γh

i X̂
h

f + Γhv
i X̂

hv

f +Hh
i E

h
f (20)

X̂
h

f = Ai
1X̂

h

p + Chv
i X̂

hv

p + Ch
i E

h
p . (21)

Equations (19) – (21) are the heart of the horizontal portion

of the 2-D stochastic subspace identification algorithm,

which will be presented in Section 6.

B. Horizontal Projections Y
h
f |Y

h
p and Y

h
p |Y

h
f [14]

Assuming rank{Γh
i } = nh, we will now derive the hori-

zontal portion of the 2-D stochastic subspace identification

algorithm. First we need to introduce the horizontal past

and future output covariance matrices, Rh
pp and Rh

ff , along

with the horizontal cross covariance matrix between the

future and the past, Hh
fp. The above mentioned covariances

are, respectively, defined as Rh
pp = Y h

pD(Y h
p)

T , Rh
ff =

Y
h
fD(Y h

f )
T , and H

h
fp = Y

h
fD(Y h

p)
T , where D =

diag{d1, d2, . . . , d(M+1)j} is a set of weights such that
∑(M+1)j

k=1 dk = 1, and dk > 0, for k = 1, 2, . . . , (M +1)j.

Here we use dk = 1
(M+1)j , for k = 1, 2, . . . , (M + 1)j.

Now define the projection of the future onto the past as

Y
h
f |Y

h
p =

[

Y
h
fD(Y h

p)
T
]

·
[

Y
h
fD(Y h

p)
T
]−1

· Y h
p

= H
h
fp(R

h
pp)

−1Y
h
p = Γh

i ·∆h
i (R

h
pp)

−1Y
h
p

= Γh
i · X̂

h

f , (22)

where ∆h
i =

[

Ai−1
1 G1 Ai−2

1 G1 · · · G1

]

and

Hh
fp = Γh

i ·∆h
i .

IV. VERTICAL DATA PROCESSING

Here we use the vertical model

x̂v
r,s+1 = A4x̂

v
r,s +Kver,s

ehr,s = yr,s − C1x̂
h
r,s = C2x̂

v
r,s + er,s.

Since C1 and X̂
h

f = {x̂h
i,s, x̂

h
i+1,s, x̂

h
i+2,s, . . . , x̂

h
i+j−1,s},

for s = 0, 1, 2, . . . ,M , can be determined from the hori-

zontal model, we are now restricted to use ehr,s, for r =
i, i+1, . . . , i+ j− 1 and s = 0, 1, 2, . . . ,M as the vertical

data, where M = 2i + j − 2. Let us now define the past

and future state, output, and innovations Hankel matrices

in the vertical direction, for k = i, i+ 1, . . . , i+ j − 1, as

X̂v
p (k) =

[

x̂v
k,0 x̂v

k,1 · · · x̂v
k,j−1

]

X̂v
f (k) =

[

x̂v
k,i x̂v

k,i+1 · · · x̂v
k,i+j−1

]

Y v
p (k) = hankel{(ehk,0, e

h
k,1, . . . , e

h
k,i+j−2), ℓi, j}

Y v
f (k) = hankel{(ehk,i, e

h
k,i+1, . . . , e

h
k,2i+j−2), ℓi, j}

Ev
p (k) = hankel{(ek,0, ek,1, . . . , ek,i+j−2), ℓi, j}

Ev
f (k) = hankel{(ek,i, ek,i+1, . . . , ek,2i+j−2), ℓi, j}.

Let us now concatenate all state, noise, and data matrices

for k = i, i+ 1, . . . , i+ j − 1. That is,

X̂
v

p =
[

X̂v
p (i) X̂v

p (i+ 1) · · · X̂v
p (i + j − 1)

]

X̂
v

f =
[

X̂v
f (i) X̂v

f (i + 1) · · · X̂v
f (i+ j − 1)

]

E
v
p =

[

Ev
p (i) Ev

p (i + 1) · · · Ev
p (i+ j − 1)

]

Ev
f =

[

Ev
f (i) Ev

f (i + 1) · · · Ev
f (i+ j − 1)

]

Y
v
p =

[

Y v
p (i) Y v

p (i+ 1) · · · Y v
p (i + j − 1)

]

Y v
f =

[

Y v
f (i) Y v

f (i+ 1) · · · Y v
f (i + j − 1)

]

.

Finally, we define the extended vertical parameter matrices

as

Γv
i =

[

(C2)
T (C2A4)

T · · · (C2A
i−1
4 )T

]

Hv
i =











Iℓ
C2Kv Iℓ

...
...

. . .

C2A
i−2
4 Kv C2A

i−3
4 Kv · · · Iℓ











Cv
i =

[

Ai−1
4 Kv Ai−2

4 Kv · · · Kv

]

.

We are now ready to define the subspace equations in the

vertical direction. Here the matrices Y v
p (k) and Y v

f (k),
for k = i, i + 1, . . . , i + j − 1, will be the data used

in the vertical portion of the 2-D stochastic subspace

identification algorithm.

A. Vertical Subspace Equations

The subspace equations in the vertical direction can now

be written as

Y
v
p = Γv

i X̂
v

p +Hv
i E

v
p (23)

Y
v
f = Γv

i X̂
v

f +Hv
i E

v
f (24)

X̂
v

f = Ai
4X̂

v

p + Cv
i E

v
p. (25)
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We will now develop the projection equations that will

allow us to identify the parameters of the vertical model.

B. Vertical Projections Y v
f |Y

v
p and Y v

p|Y
v
f [14]

As pointed out earlier, the 2-D stochastic subspace

identification algorithm will depend on a fundamental rank

condition from which the system orders can be determined.

Toward this end and assuming rank{Γv
i } = nv, we will

now derive the vertical portion of the 2-D stochastic sub-

space identification algorithm. First we need to introduce

the vertical past and future output covariance matrices,

Rv
pp and Rv

ff , along with the vertical cross covariance

matrix between the future and the past, Hv
fp. These are

respectively defined as Rv
pp = Y v

pD(Y v
p)

T , Rv
ff =

Y v
fD(Y v

f )
T , and Hv

fp = Y v
fD(Y v

p)
T . We now define

the projection of the future onto the past, Y v
f |Y

v
p, as

Y v
f |Y

v
p =

[

Y v
fD(Y v

p)
T
]

·
[

Y v
fD(Y v

p)
T
]−1

· Y v
p

= Γv
i · X̂

v

f , (26)

where ∆v
i =

[

Ai−1
4 G2 Ai−2

4 G2 · · · G2

]

and

Hv
fp = Γv

i ·∆
v
i .

V. 2-D STOCHASTIC IDENTIFICATION ALGORITHM

In this section we present an algorithm for the 2-

D stochastic subspace system identification problem. For

further details see [7], [?], [9], [11], [14], [16].

A. Stochastic 4SID Algorithm

1) Assemble the horizontal data matrices {Y h
p ,Y

h
f}

and compute the LQ decomposition of

1
√

j(M + 1)

[

Y h
p

Y h
f

]

=

[

Lh
11 0ℓi×ℓi

Lh
21 Lh

22

] [

Qh
1

Qh
2

]

.

2) Compute the orthogonal projection Y h
f |Y

h
p from

Y
h
f |Y

h
p = [Y h

fD(Y h
p)

T ][Y h
pD(Y h

p)
T ]−1Y

h
p

= Lh
21

(

Lh
11

)−1
Y h

p .

3) Perform the singular value decomposition (SVD)

Y h
f |Y

h
p =

[

Uh U⊥
h

]

[

Σh ×
× ×

] [

V T
h

(V ⊥
h )T

]

= UhΣ
1

2

h · Σ
1

2

hV
T
h = Γh

i · X̂
h

f ,

where Uh ∈ IRℓi×nh , Σh ∈ IRnh×nh , Vh ∈
IRnh×j(M+1), × denotes a zero matrix of appropriate

dimensions, Σh = diag{σh
1 , σ

h
2 , . . . , σ

h
nh

} denotes

the nh nonzero singular values in descending order.

4) Recover X̂
h

f =
(

Γh
i

)†
Lh
21

(

Lh
11

)−1
Y

h
p , where

(

Γh
i

)†
denotes the pseudo inverse of Γh

i .

5) Compute the first ℓ rows of Eh
f = Y

h
f−Y

h
f |Y

h
p , i.e.,

Eh
f (1 : ℓ, :) =

[

eh(0) eh(1) · · · eh(M)
]

,

which provides the residuals to be used in the vertical

model since C1 = Γh
i (1:ℓ,:) and for k ∈ [0,M ], we

have eh(k) = yh(k)− C1x̂
h(k), and

eh(k) =
[

ehi,k ehi+1,k · · · ehi+j−1,k

]

yh(k) =
[

yi,k yi+1,k · · · yi+j−1,k

]

x̂
h(k) =

[

x̂i,k x̂i+1,k · · · x̂i+j−1,k

]

.

6) Using the residuals {ehi,k, e
h
i+1,k, . . . , e

h
i+j−1,k} for

k = 0, 1, . . . ,M , assemble the vertical data matrices

{Y v
p,Y

v
f} and compute the LQ decomposition of

1

j2

[

Y v
p

Y
v
f

]

=

[

Lv
11 0ℓi×ℓi

Lv
21 Lv

22

] [

Qv
1

Qv
2

]

.

7) Compute the orthogonal projection Y v
f |Y

v
p from

Y
v
f |Y

v
p = [Y v

fD(Y v
p)

T ][Y v
pD(Y v

p)
T ]−1Y

v
p

= Lv
21 (L

v
11)

−1
Y

v
p.

8) Perform the singular value decomposition (SVD)

Y v
f |Y

v
p =

[

Uv U⊥
v

]

[

Σv ×
× ×

] [

V T
v

(V ⊥
v )T

]

= UvΣ
1

2

v · Σ
1

2

v V
T
v = Γv

i · X̂
v

f ,

where Uv ∈ IRℓi×nv , Σv ∈ IRnv×nv , Vv ∈ IRnv×j2 ,

Σv = diag{σv
1 , σ

v
2 , . . . , σ

v
nv
} denotes the nv nonzero

singular values in descending order.

9) Recover X̂
v

f = (Γv
i )

†
Lv
21 (L

v
11)

−1
Y v

p, where (Γv
i )

†

denotes the pseudo inverse of Γv
i .

10) Assemble the state matrices X̂
h

f ∈ IRnh×j(M+1) and

X̂
v

f ∈ IRnv×j2 into X̂
h
= reshape{X̂

h

f , nhj,M+1}

and X̂
v
= reshape{X̂

v

f , nvj, j}, respectively, where

reshape{M,n1n2, n3} takes the columns of M ∈
IRn1×n2n3 and first converts them into (n1n2 ×
1) block rows, then stacks these columnwise into

an (n1n2 × n3) matrix. Extract the same com-

mon information from the raw image matrix Y ∈
IRℓ(N+1)×(M+1). The i through i+ j− 1 block rows

and i through i + j − 1 columns are the ones in

common for all matrices, thus we extract these as

X̂
h

c = X̂
h
(1 : nhj, i + 1 : i + j), X̂

v

c = X̂
v
(1 :

nvj, 1 : j), and Y c = Y (ℓi+ 1 : ℓj, i+ 1 : i+ j).
11) Solve the overdetermined system of equations




x̂
h
2

x̂
v
2

y1



 =





A1 A2

0nv×nh
A4

C1 C2





[

x̂
h
1

x̂
v
1

]

+





wh

wv

v



 ,

where x̂
h
1 = reshape{X̂

h

c , nh, j
2}, x̂

v
1 =

reshape{X̂
v

c , nv, j
2}, y1 = reshape{Y c, ℓ, j

2},

x̂
h
2 = reshape{X̂

h

c , nh, j
2}, and x̂

v
2 =

reshape{X̂
v

c , nv, j
2}. The least squares solution is

given by






Â1 Â2

0nv×nh
Â4

Ĉ1 Ĉ2






=





x̂
h
2

x̂
v
2

y1



 ·

[

x̂
h
1

x̂
v
1

]†

.
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12) Compute residuals from step 11, . ŵ
h

, ŵ
v
, and v̂.

13) Compute the noise covariance matrices from




Qhh Qhv Sh

Qvh Qvv Sv

ST
h ST

v R



 = cov











ŵ
h

ŵ
v

v̂











.

14) Solve the pair of Lyapunov equations from (7) to

obtain Πh and Πv .

15) Compute G and Λ0,0 from

G = AΠCT + S and Λ0,0 = CΠCT +R.

16) Solve the Riccati equations for Ph and Pv from

Ph = A1PhA
T
1 +A2PvA

T
2

+(G1 −A1PhC
T
1 −A2PvC

T
2 )

×(Λ0,0 − C1PhC
T
1 − C2PvC

T
2 )

−1

×(G1 −A1PhC
T
1 −A2PvC

T
2 )

T

Pv = A4PvA
T
4 + (G2 −A4PhC

T
2 )

×(Λ0,0 − C1PhC
T
1 − C2PvC

T
2 )

−1

×(G2 −A4PvC
T
2 )

T .

17) Compute the Kalman gain matrices Kh and Kv from

Kh = (G1 −A1PhC
T
1 −A2PvC

T
2 )

×(Λ0,0 − C1PhC
T
1 − C2PvC

T
2 )

−1

Kv = (G2 −A4PhC
T
2 )

×(Λ0,0 − C1PhC
T
1 − C2PvC

T
2 )

−1.

18) Using initial conditions x̂h
0,s = 0nh×1 for s =

0, 1, . . . ,M and x̂v
r,0 = 0nv×1 for r = 0, 1, . . . , N ,

compute the enhanced image Ŷ ∈ IRℓ(N+1)×(M+1)

from the 2-D Kalman filter:

ŷr,s = C1x̂
h
r,s + C2x̂

v
r,s

er,s = yr,s − ŷr,s

x̂h
r+1,s = A1x̂

h
r,s +A2x̂

v
r,s +Kher,s

x̂v
r,s+1 = A4x̂

v
r,s +Kver,s.

19) End 4SID.

Note that 12)–17) are the purely stochastic version of

N4SID [14].

VI. CASE STUDY

An image can be modeled as a 2-D stochastic process

of the form

yr,s = ytruer,s + vr,s, (27)

where yr,s is the measured image, ytruer,s is the unknown

true image, and vr,s is a white noise process. We want

to make a clear distinction here between the deblurring

problem and the image modeling problem. The former is a

deconvolution problem, whereas the latter is a decomposi-

tion of a stochastic process into a true process and additive

noise, and acts like a measurement device. The algorithm

was tested with the classical Lena image, obtained from the

University of Southern California image repository [15].

The original Lena image is shown in Figure 1 and the

reconstructed image resulting from the application of the

algorithm is shown in Figure 2. The innovations were

plotted as an inverted image and is shown in Figure 3.

As can be seen from Figure 1 – 3, the 2-D Kalman

filter model, whose horizontal and vertical orders were

nh = 8 and nv = 7, respectively, performed fairly well in

recovering the original image. The variance accounted for

(VAF) was 99.57 and the equivalent signal-to-noise-ratio

(SNR) between the original and residual image was 24.88.

These two statistics indicate a very good performance of

the algorithm. Other performance measures used to assess

the algorithm are graphs of the original and fitted images,

along with the innovations, all plotted as time series.

These are shown in Table 1 and indicate an excellent

performance of the algorithm. A whiteness test done on

the autocorrelations of the innovations verified the model

assumptions. Finally, the horizontal and vertical singular

value plots are shown in Table 1.
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Fig. 1. Original Lena image.
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Fig. 2. Reconstructed Lena image
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Fig. 3. Residual Lena image.
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VII. CONCLUSIONS

We have introduced a new 2-D stochastic state space

subspace system identification (4SID) algorithm for mod-

eling 2-D stochastic processes. The algorithm is based

on a causal, recursive, separable-in-denominator (CRSD)
model and takes advantage of this structure to decompose

the problem into a cascade of horizontal and vertical

system identification sub-algorithms. At this stage this is a

reasonable assumption due to the fact that the states of a

general 2-D stochastic Roesser model are coupled. Instead

we approached the problem by a separable-in-denominator

structure, thus leading to a CRSD 2-D Kalman filter model

for processing 2-D stochastic processes. The algorithm was

tested with a real image and it performed very well.
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