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Abstract— In this paper, we propose a method to synthe-
size infinite-dimensional observer-based controllers for partial-
differential systems. To illustrate the approach, we use a one-
dimensional model of heat conduction with point observation and
boundary control. Our method uses Sum-of-Squares optimization
to solve linear operator inequalities in an infinite-dimensional
Hilbert space. We use the semigroup framework and an operator
version of the separation theorem and the Lyapunov inequality.
We implement our method using SOSTOOLS and SeDuMi. We
simulate the effects of our controller using Matlab.

I. INTRODUCTION

Some physical systems have dynamics which are best

modeled using partial differential equations (PDE). In this

paper we address the problem of controller synthesis for one

such system. Specifically, we propose a method of controller

synthesis for a one-dimensional heat conducting rod with

point observation and boundary control. Often, controller

design for infinite-dimensional systems is done using an early

lumping approach [20], [19]. In this approach the governing

PDE is discretized in the non-temporal variables to obtain a

finite-dimensional model using, for example, finite-difference

and finite-element methods [11]. Then, controller synthesis

techniques are applied to the approximate finite-dimensional

model [8]. The advantage of this approach is that one can uti-

lize results from the well researched area of finite-dimensional

controller synthesis. Unfortunately, in this approach some

of the system dynamics are ignored. These unmodeled dy-

namics may lead to unsatisfactory performance [2]. In our

approach, we use Sum-of Squares polynomials and convex

optimization to construct both infinite-dimensional observers

and controllers without discretization. Thus we synthesize

observer based controllers for the infinite-dimensional model

and not it’s finite-dimensional approximation.

Some results on the boundary control of heat conducting

systems can be found in [13], [3] and [4]. References on

the more general problem of boundary control of systems

governed by parabolic equations include [1], [12] and [17].

Conceptually, our approach is based on the semigroup

framework [9]. Semigroup theory is a rigorous treatment

of state-space for infinite-dimensional systems. We use this

state-space framework to express the observer and controller

design problems separately by use of a separation theorem

involving a transformation of variables. We then express
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the observer/controller design problems as linear operator

inequalities. We reformulate these inequalities using positive

polynomial variables to parameterize the space of positive op-

erators on a relevant Hilbert space. Because Sum-of-Squares

allows us to optimize over the space of positive polynomials,

we are able to solve these reformulated operator inequalities.

II. PRELIMINARIES

A. Sum-of-Squares polynomials

As the name implies, a Sum-of-Squares(SOS) polynomial

is one which can be represented as a sum of squared polyno-

mials. That is, a polynomial p(x),x ∈R
n is SOS if there exist

polynomials pi(x), i = 1, · · · ,N such that

p(x) =
N

∑
i=1

(pi(x))
2
.

A sufficient condition for a polynomial to be non-negative is

that it be a SOS polynomial.

To check whether a polynomial is SOS we employ the

following theorem.

Theorem 1: A polynomial p(x),x∈R
n of degree 2d is sum-

of-squares if and only if there exists a symmetric positive

semi-definite (PSD) matrix Q � 0 such that

p(x) = z(x)T Qz(x), (1)

where z(x) is a vector of monomials of degree d or less.

If we can find a symmetric PSD matrix Q such that (1) is

satisfied then the polynomial p(x) is SOS and hence non-

negative.

Therefore to find a symmetric PSD matrix Q satisfying (1)

we have to find the components of Q which satisfy a number

of linear constraints and a linear matrix inequality (to en-

sure it’s semi-definiteness). Hence, the problem of checking

whether a polynomial is SOS can be formulated as a convex

feasibility problem.

What this implies is that even though the question of

polynomial positivity is NP-hard [7], the problem of checking

whether a polynomial is SOS can be solved using Semi-

definite programming (SDP). It is generally accepted that

SDPs can be solved in polynomial time by employing Interior-

point methods [14]. This renders the problem of performing a

search for a SOS decomposition for a polynomial of the form

in (1) tractable.

B. Semigroup theory

Semigroup theory is utilized for studying infinite-

dimensional systems in the time domain using the state space

architecture. Some important references on the subject are [9],
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[6], [18] and [5]. In this subsection we will outline concepts

pertinent to the work presented in the paper.

Definition 1: A strongly continuous semigroup or a C0-

semigroup is an operator-valued function T (t) : R+ → L (Z)
that satisfies the following properties:

T (t + s) = T (t)T (s) for t,s ≥ 0;

T (0) = I;

‖T (t)z0 − z0‖→ 0 as t → 0+ for all z0 ∈ Z,

where Z is a Hilbert space, L (Z) is the Banach space of

linear and bounded operators mapping Z back to itself, ‖ · ‖
is the norm induced by the inner product defined on Z and I

is the identity operator on Z.

Associated with a C0-semigroup is an operator known as

it’s infinitesimal generator.

Definition 2: The infinitesimal generator A of a C0-

semigroup T (t) on a Hilbert space Z is defined by

Az = lim
t→0+

1

t
(T (t)− I)z.

The subset of Z on which this limit exists is the domain of

the infinitesimal generator and is denoted by D(A)⊂ Z.

Now, consider the following differential equation defined

on a Hilbert space Z:

ż(t) = Az(t), t ≥ 0, z(0) = z0 ∈ D(A)⊂ Z (2)

and suppose A is the generator of a C0-semigroup T (t). Then

the solution of this differential equation is given by

z(t) = T (t)z0. (3)

On the other hand, let’s consider an ordinary differential

equation (ODE) defined on R
n,n ∈ N,

ẋ(t) = Bx(t), t ≥ 0, x(0) = x0 ∈ R
n
. (4)

Here B ∈R
n×n is a matrix. The solution to the ODE is given

by

x(t) = eBtx0. (5)

On comparing (3) and (5) we see that the C0-semigroup T (t)
can be thought of as a generalization of the evolution operator

eBt .

As in the case of ODEs, the solution of (4), x(t), converges

to zero exponentially fast as t → ∞ if and only if the matrix B

is Hurwitz. Similarly, the solution of the differential equation

(2) on the Hilbert space Z, z(t), converges to zero exponen-

tially fast if and only if the operator A is the infinitesimal

generator of an exponentially stable C0-semigroup. To see this,

we refer to the following definition.

Definition 3: A C0-semigroup T (t) on a Hilbert space Z is

exponentially stable if there exist positive constants M and α

such that

‖T (t)‖ ≤ Me−αt for t ≥ 0.

Here ‖ · ‖ is the induced operator norm.

Now suppose that the operator A in (2) is the infinitesimal

generator of an exponentially stable C0-semigroup T (t), then

the solution is

z(t) = T (t)z0.

Since T (t) is assumed to be an exponentially stable C0-

semigroup, we get

‖z(t)‖= ‖T (t)z0‖ ≤ ‖T (t)‖‖z0‖ ≤ Me−αt‖z0‖.

Therefore ‖z(t)‖ → 0 exponentially fast as t → ∞ which

implies that z(t)→ 0, a.e. exponentially fast as t → ∞.

We will be using the following operator version of the

Lyapunov inequality to check if an operator on a Hilbert

space is the infinitesimal generator of an exponentially stable

semigroup.

Theorem 2: Suppose that A is the infinitesimal generator

of a C0-semigroup T (t) on a Hilbert space Z. Then T (t)
is exponentially stable if and only if there exists a positive

operator P ∈ L (Z) such that

〈Az,Pz〉+ 〈Pz,Az〉< 0 for all z ∈ D(A),z 6= 0,

where 〈·, ·〉 is the inner product defined on Z.

The condition in Theorem 2 implies that for every z ∈ D(A)
there exits a positive scalar ε such that

〈Az,Pz〉+ 〈Pz,Az〉=−ε〈z,z〉.

Then the proof follows from [9, Theorem 5.1.3].

III. PROBLEM SETUP

In this section we will explicitly outline the problem this

paper aims to solve.

Consider the following one-dimensional heat conducting

rod:

wt(z, t) = wzz(z, t), z ∈ (0,1), t > 0

w(0, t) = 0, t ≥ 0

wz(1, t) = u(t), t ≥ 0

w(z,0) = w0(z), z ∈ [0,1]

y(t) = w(1, t), t ≥ 0,

with boundary control, u(t) ∈R, and point observation at the

right end. Here z ∈ [0,1] is the spatial variable and w(z, t) is

the temperature of the rod and is fixed at z = 0.

The governing PDE for the system can be expressed as a

differential equation on the Hilbert space L2(0,1) as follows

ẋ(t) = Ax(t)+Bu(t),x(0) ∈ D(A)

y(t) =Cx(t).

We will denote this linear system by Σ(A,B,C). Here

Ah = h′′ for h ∈ D(A) (6)

is the infinitesimal generator of a C0-semigroup. D(A) denotes

the domain of the operator A and is defined as

D(A) = {h ∈ L2(0,1) : h,h′ abs. continuous ,

h′′ ∈ L2(0,1),h(0) = h′(1) = 0}.

The state space is the Hilbert space L2(0,1) with the state

x(t) = w(·, t) ∈ L2(0,1), t ≥ 0. Since the state space is the

function space L2(0,1), the system in question is infinite-

dimensional. Note that throughout the paper a single prime

and a double prime denotes a single derivative and a double
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derivative with respect to the spatial variable respectively. The

input operator B maps R to L2(0,1) and is defined as

(Bu(t))(z) = δ1(z)u(t), (7)

where δ1 is the Dirac delta function centered at z = 1.

We use the Dirac delta function for it’s sifting property.

That is, for a delta function centered at α in some interval

[a,b] and a function f ∈ L2[a,b] we have the property that
∫ 1

0 δα(z) f (z)dz = f (α).
The output operator C maps L2(0,1) to R and is defined as

Cx(t) = 〈x(t),δ1〉= (x(t))(1), (8)

where 〈·, ·〉 is the inner product defined on the space L2(0,1).
The operator C ensures that we only receive a partial

knowledge of the state. Specifically, we can only measure

the temperature of the the rod at the right end. To synthesize

controllers for such systems we need to design an observer.

An observer is a system which estimates the state of the plant

we wish to control by using the output from the plant. We

utilize the state estimate provided by the observer to design

stabilizing controllers for the plant.

We will design a Luenberger observer-based controller,

denoted by Σo(A,B,C,L,F), of the form

˙̂x(t) = (A+LC)x̂(t)+Bu(t)−Ly(t),

u(t) = Fx̂(t),

where x̂(t) ∈ L2(0,1) is the observer state and the operators

L ∈ L (R,L2(0,1)) and F ∈ L (L2(0,1),R) have to be con-

structed such that the input u(t) = Fx̂(t) stabilizes the plant

Σ(A,B,C). For this purpose we will employ the following

theorem.

Theorem 3 (Separation theorem): Consider the linear sys-

tem Σ(A,B,C) and assume that it is exponentially stabilizable

and exponentially detectable. If F ∈ L (L2(0,1),R) and L ∈
L (R,L2(0,1)) are such that A + BF and A + LC generate

exponentially stable C0-semigroups, then the observer based

controller Σo(A,B,C,L,F) stabilizes the system to be con-

trolled.

See [9, Theorem 5.3.3] for the proof. Here the term

exponentially stabilizable means that there exists some F ∈
L (L2(0,1),R) such that A+BF generates an exponentially

stable C0-semigroup. Similarly, exponentially detectable im-

plies that there exists some L ∈ L (R,L2(0,1)) such that

A+LC generates an exponentially stable C0-semigroup.

In this paper we will use Sum-of Squares polynomials and

convex optimization to construct operators F and L satisfying

Theorem 3 thus ensuring that the observer based control input

stabilizes the system in question.

Note that throughout the paper we will assume that for

any F ∈L (L2(0,1),R) and L ∈L (R,L2(0,1)), the operators

A+ BF and A+ LC are the infinitesimal generators of C0-

semigroups for the operators A,B and C given in (6), (7)

and (8) respectively. We make this strong assumption since

the goal of this paper is to illustrate a method of controller

synthesis. For applications however, one must ensure that

A+BF and A+LC generate C0-semigroups. For this purpose,

the Hille-Yosida theorem [10, Section 7.4.2] can be employed.

Additionally, one could also refer to [16].

IV. MAIN RESULTS

We saw in the Separation theorem that for the linear system

Σ(A,B,C) if there exist operators F ∈ L (L2(0,1),R) and

L ∈ L (R,L2(0,1)) such that A + BF and A + LC generate

exponentially stable C0-semigroups, then the observer-based

controller Σo(A,B,C,L,F) stabilizes the system. In this section

we provide results which are employed to construct the desired

operators so that we may synthesize observer based controllers

for the heat conducting rod.

The following theorems reformulate the operator inequal-

ities associated with Theorem 2 as polynomial feasibility

problems.

Theorem 4: Let (Ax)(z) = x′′(z) for all x ∈ D(A) and

Cx(t)= 〈x(t),δ1〉=(x(t))(1). Suppose there exist polynomials

Mo(z) and No(z) defined on z ∈ [0,1] such that

Mo(z)> 0 for all z ∈ [0,1], (9)

and
[

M′′
o (z)
2

No(z)
2

No(z)
2

−
M′

0(1)
2

]

≺ 0 for all z ∈ [0,1], (10)

Then the operator A+LC is the infinitesimal generator of

an exponentially stable C0-semigroup where the operator L ∈
L (R,L2(0,1)) is defined as

La = M−1
o (z)No(z)a for any a ∈ R.

Proof:

To show that A+LC generates an exponentially stable C0-

semigroup, we will have to show that there exists a positive

operator P ∈ L (L2(0,1)) such that P and A+LC satisfy

〈(A+LC)x,Px〉+ 〈Px,(A+LC)x〉< 0 for all z ∈ D(A),z 6= 0.

where

D(A) = {h ∈ L2(0,1) : h,h′ abs. continuous,

h′′ ∈ L2(0,1),h(0) = h′(1) = 0}.

Let P ∈ L (L2(0,1)) be given by

(Px)(z) = Mo(z)x(z).

Since Mo a strictly positive scalar polynomial, P is linear,

positive and self-adjoint. Additionally, since the polynomial

Mo(z) is strictly positive on the compact set [0,1], Mo(x)
−1

is continuous and thus the operator P is bounded. Therefore

P ∈ L (L2(0,1)). Now,

〈(A+LC)x,Px〉= 〈Ax,Px〉+ 〈LCx,Px〉 for all x ∈ D(A).

Since P = P∗,

〈(A+LC)x,Px〉= 〈Ax,Px〉+ 〈PLCx,x〉.

Recall that

(Px)(z) = Mo(z)x(z),

La = M−1
o (z)No(z)a for any a ∈ R
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and

Cx(t) = 〈x(t),δ1〉= (x(t))(1)

hence

((PLC)(x))(z) = (PL)x(1) = No(z)x(1).

Therefore we get

〈(A+LC)x,Px〉= 〈Ax,Px〉+ 〈PLCx,x〉

=
∫ 1

0
x(z)Mo(z)x

′′(z)dz+
∫ 1

0
x(1)No(z)x(z)dz.

Applying integration by parts on the first term of above

equation and using the fact that x(0) = x′(1) = 0 for all

x ∈ D(A) we get

〈(A+LC)x,Px〉

=
∫ 1

0

(

−x′(z)Mo(z)x
′(z)−

M′
o(1)

2
x2(1)

)

dz

+
∫ 1

0

(

x(z)
M

′′

o (z)

2
x(z)+ x(1)No(z)x(z)

)

dz

=
∫ 1

0

[

x(z)
x(1)

]T
[

M′′
o (z)
2

No(z)
2

No(z)
2

−
M′

0(1)
2

]

[

x(z)
x(1)

]

dz

−
∫ 1

0
Mo(z)x

′(z)2dz.

By assumption, Mo(z)> 0 and
[

M′′
o (z)
2

No(z)
2

No(z)
2

−
M′

0(1)
2

]

≺ 0

for all z ∈ [0,1]. We conclude that

〈(A+LC)x,Px〉< 0, for all x ∈ D(A),x 6= 0.

Note that the field over which our state space L2(0,1) is

defined is the set of reals R. Hence

〈(A+LC)x,Px〉= 〈Px,(A+LC)x〉.

Therefore

〈(A+LC)x,Px〉+ 〈Px,(A+LC)x〉< 0,

for all x ∈ D(A),x 6= 0. Additionally, note that the operator

L is linear and bounded. From Theorem 2 we conclude that

A+LC generates an exponentially stable C0-semigroup.

Theorem 5: Let (Ax)(z) = x′′(z) for all x ∈ D(A) and

(Bu)(z) = δ1(z)u for u ∈ R. Suppose there exist polynomials

Mc(z),R1(z) and R2(z) such that

Mc(z)> 0, for all z ∈ [0,1], (11)
[

M′′
c (z)
2

R1(z)
2

R1(z)
2

R2(1)

]

≺ 0, for all z ∈ [0,1] (12)

Then A + BF is the generator of an exponentially stable

semigroup where the operator F ∈ L (L2(0,1),R) is defined

as

(Fx)(z) =
∫ 1

0

(

K1(z)x(z)+
∂

∂ z
(K2(z)x(z))

)

dz,

where

K1(z) = M−1
c (z)R1(z),

K2(z) = M−1
c (z)R2(z).

Proof: Suppose the hypotheses of the theorem hold true.

We begin by defining the positive operator Pc ∈ L (L2(0,1))
as

(Pcx)(z) = M−1
c (z)x(z),

which is well defined since Mc(z)> 0 on the compact set [0,1]
and is positive and self-adjoint.

Now,

〈(A+BF)x,Pcx〉= 〈Ax,Pcx〉+ 〈BFx,Pcx〉

for x ∈ D(A). We will evaluate the two terms of the above

expression separately.

〈Ax,Pcx〉=
∫ 1

0

∂ 2x(z)

∂ z2
M−1

c (z)x(z)dz.

We now define a new variable

y(z) = x(z)M−1
c (z),

which is well defined as Mc(z)> 0.

Then

〈Ax,Pcx〉=
∫ 1

0

∂ 2(Mc(z)M
−1
c (z)x(z))

∂ z2
M−1

c (z)x(z)dz

=
∫ 1

0

∂ 2(Mc(z)y(z))

∂ z2
y(z)dz.

Expanding and applying integration by parts we get

〈Ax,Pcx〉

=
∫ 1

0

[

M′′
c (z)

2
[y(z)]2 −Mc(z)[y

′(z)]2
]

dz

+
∫ 1

0

[

M′
c(1)[y(1)]

2 + y′(1)Mc(1)y(1)
]

dz, (13)

where we have used the fact that

y(z) = x(z)M−1
c (z)

and x(0) = 0, hence

y(0) = 0.

We have

x(z) = Mc(z)y(z),

x′(z) = M′
c(z)y(z)+Mc(z)y

′(z),

x′(1) = M′
c(1)y(1)+Mc(1)y

′(1).

Since x′(1) = 0 ,

Mc(1)y
′(1)+M′

c(1)y(1) = 0,

Mc(1)y
′(1) =−M′

c(1)y(1).
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Substituting Mc(1)y
′(1) = −M′

c(1)y(1) in the last term of

(13) we get

〈Ax,Pcx〉

=
∫ 1

0

[

M′′
c (z)

2
[y(z)]2 −Mc(z)[y

′(z)]2
]

dz

+
∫ 1

0

[

M′
c(1)[y(1)]

2 −M′
c(1)[y(1)]

2
]

dz

=
∫ 1

0

[

M′′
c (z)

2
[y(z)]2 −Mc(z)[y

′(z)]2
]

dz.

Now, we have

(Fx)(z) =
∫ 1

0

(

K1(s)x(z)+
∂

∂ z
(K2(z)x(z))

)

dz

=
∫ 1

0

(

R1(z)y(z)+
∂

∂ s
(R2(z)y(z))

)

dz

=
∫ 1

0
R1(z)y(z)dz+R2(1)y(1)−R2(0)y(0)

=
∫ 1

0
R1(z)y(z)dz+R2(1)y(1)

Since Fx is a constant, we have

〈BFx,Pcx〉= 〈BFx,y〉

=
∫ 1

0
δ1(z)Fxy(z)dz

= y(1)Fx

=
∫ 1

0
(y(1)R1(z)y(z)+ y(1)R2(1)y(1))dz.

Adding equations the expressions for 〈Ax,Pcx〉 and

〈BFx,Pcx〉, we get

〈(A+BF)x,Pcx〉

=
∫ 1

0

(

M′′
c (z)

2
[y(z)]2 −Mc(z)[y

′(z)]2
)

dz

+
∫ 1

0

(

y(1)R1(z)y(z)+R2(1)y
2(1)

)

dz

=
∫ 1

0

[

y(z)
y(1)

]

[

M′′
c (z)
2

R1(z)
2

R1(z)
2

R2(1)

]

[

y(z)
y(1)

]

dz−
∫ 1

0
Mc(z)y

′(z)2dz

Since Mc(z)> 0 and
[

M′′
c (z)
2

R1(z)
2

R1(z)
2

R2(1)

]

≺ 0

for all z ∈ [0,1], we conclude that

〈(A+BF)x,Pcx〉< 0, for all x ∈ D(A),x 6= 0.

Since our state space L2(0,1) is defined over the field of reals

R,

〈(A+BF)x,Pcx〉= 〈Pcx,(A+BF)x〉.

Hence,

〈(A+BF)x,Pcx〉+ 〈Pcx,(A+BF)x〉< 0,

for all x ∈ D(A),x 6= 0. Note that it is easy to show that the

operator F is linear and bounded.

From Theorem 2 we conclude that A+BF is the generator

of an exponentially stable semigroup.

V. IMPLEMENTATION AND SIMULATION

As shown in the previous section, in order to construct a

stabilizing controller for the system Σ(A,B,C) we have to

search for polynomials Mo(z),No(z),Mc(z),R1(z) and R2(z)
such that the conditions (9), (10), (11) and (12) are satisfied.

We perform this search using SOSTOOLS [15], a freely

available MATLAB toolbox which employs semi-definite pro-

gramming (SDP) for implementing algorithms over the set

of SOS polynomials. Note that this is a feasibility search

and such polynomials will not exist if the system can not

be stabilized.

Once we obtain the observer based controller using SOS-

TOOLS we would like to simulate the controlled plant.

However, due to the absence of analog computers we use

finite-difference methods to approximate the controlled model

with a finite-dimensional model. We then use SIMULINK to

simulate the finite-dimensional approximation. Note that the

finite-dimensional approximation is used for simulation only

and not for synthesis.

We present the numerical solution of the controlled plant

in the following figures.

Figure 1 shows the desired steady state reference pro-

file wre f (z) ∈ D(A) towards which we want the controller

to drive the system state. Figure 2(a) shows the system

state (x(t))(z) = w(z, t), Figure 2(b) shows the observer state

(x̂(t))(z) = wobs(z, t) and Figure 2(c) presents the control

tracking error w(z, t) − wre f (z). Additionally, Figure 2(d)

shows the control input u(t).

0 0.2 0.4 0.6 0.8 1
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
Target profile

z

w
(z

)

Fig. 1: Desired steady state target profile(reference profile), wre f (z)∈
D(A)

VI. CONCLUSIONS AND FUTURE WORK

A. Conclusions

In this paper we presented a method to design observer-

based controllers for an infinite-dimensional system. We

used Sum-of-Squares polynomials and convex optimization to

achieve the desired goals. The process outlined in the paper

may be used for other infinite-dimensional systems as well.

However, it must be noted that controller synthesis, using the

presented method, is application-specific and hence will vary

from system to system. This is because a different system will

have different dynamics and the transformations will lead to

different (9), (10), (11) and (12).
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Fig. 2: System and Observer solutions

B. Future work

The next logical step in this research would be to construct

linear operator-inequality-type conditions to calculate the H∞-

norm of the controlled plant so that we can do a performance

analysis for the controllers. We would also like to design

methods to synthesize optimal controllers with respect to the

H∞-norm.
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