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Abstract— This paper addresses a novel Lyapunov-based
diagnosis signal design for the Robust Fault Detection of a
class of Sampled Data systems whose output vector has to
follow an assigned reference. The only signal available for
measurements is the output variable. A simulation study on
a vehicle suspension system is also reported.
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I. INTRODUCTION

Over the past two decades, the growing demand for relia-

bility in industrial processes has drawn increasing attention

to the problem of Fault Detection (FD). In fact, faults in

sensors and actuators are usually associated to increasing

operating costs, off-specification production, line shut-down

and possible detrimental environment impact. In monitoring

and diagnostic of complex dynamical systems when the

system under consideration is subject to uncertainties and/or

unknown disturbances, robust FDI schemes are usually re-

quired. The issue of robustness in FD techniques has been

widely studied [2]. In particular, H∞ optimization [2], [7],

[8], [14], [17], [20], aims at reaching an acceptable com-

promise between disturbance robustness and fault sensitivity,

while the adoption of unknown input observer (UIO) [2], [3],

[9], [12], [15], [18], [19] is aimed at analytically decoupling

the state estimation error from the unknown inputs. Broadly

speaking, a diagnosis signal, called residual, is generated

within the UIO approach, which should be independent with

respect to the system operating state and should be decoupled

from disturbances.

Moreover the introduction of computers into signal pro-

cessing and control occurred in the mid 20th century,

brought with increasing persistence, the problem of con-

sidering plants with saturating quantized measurements to

the attention of the research community. Despite of its large

diffusion in industrial digital control systems, at least as far

as the author are aware, limited attention has been given

to Robust Fault Detection of Sampled Data (SD) systems,

where a continuous-time plant is driven by a digital computer

(by the aid of analog/digital and digital/analog converters)

and may be affected both by faults and uncertain terms,

such as unknown disturbances or model uncertainties. In the

case of perturbed plants, if matched disturbances affect the

continuous-time plant, full decoupling of disturbance terms

from faulty signal becomes more difficult in SD systems [22],
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because uncertainty satisfying the matching condition in the

original continous-time plant do loose such property after

discretization, therefore unmatched disturbances should be

considered. This effect could make even harder the design of

robust tools to be used for detecting the eventual occurrence

of faults. In the framework of SD systems, the recent papers

by Ding et al. [22], [23] should be mentioned, where a direct

FD design approach for SD systems is proposed solving an

optimization problem based on a well defined operator, but

no explicit analytical residual function is provided there. FD

analytical approaches for SISO SD systems are studied by

the authors in [6], in [4] where some strong conditions of [6]

are overcome and in [5] which addresses a robust FD design

approach for uncertain MIMO SD systems.

The main contribution of this note is the design of a

Lyapunov-based diagnosis signal for the robust Fault De-

tection of a class of Sampled Data systems whose output

vector follows a given reference (tracking problem).

It is considered a completely observable single input single

output (SISO), time-invariant continuous-time system which

may be affected both by faults and by uncertain terms, such

as unknown disturbances or model uncertainties [22], which

are assumed bounded by a suitable positive constant as in

many other different approaches. Moreover it is supposed

that the fault distribution vector does not belong to the same

subspace of the disturbance distribution vector and that the

system given by the state and the unknown input is not

controllable. Setting up suitable assumptions the design of a

reduced-order observer and a control input are addressed to

guarantee an assigned reference following. Then the presence

of a nonzero fault is taken into account a Lyapunov function

is disigned to define a fault diagnosis signal.

This paper is organized as follows: in Section II the

problem statement is addressed. Assuming initially that no

faults affects the continuous time system, Section III deals

with the design of a reduced-order filter which causes the

estimation error to be bounded by a known constant, and

Section IV addresses the robust tracking problem. Section V

deals with a novel Lyapunov-based diagnosis signal design

problem of a class of uncertain SD system in which the only

available signal is the output variable. Finally, in Section

VI simulations of a vehicle suspension system are addressed

as a worked example of the set-up showed in the previous

sections.

In what follows, the symbol || · || refers to the Euclidean

norm, while the operator (·)′ indicates the transpose opera-

tion.
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II. PROBLEM STATEMENT

Consider a digital feedback control system consisting

of the interconnection of a SISO completely observable

continuous-time plant, a digital controller and a A/D con-

verter. The plant is affected by an additive unknown distur-

bance term and may also undergo possible actuator faults

belonging to the classes of abrupt faults (stepwise) or in-

cipient faults (drift-like) [15]. With no loss of generality

the continuous-time systems is given in the observability

canonical form and it is described as follows
{

ẋ(t) = Ax(t) + bu(t) + rd(t) + fφ(t)
y(t) = c′ x(t)

(1)

where x(t) ∈ R
n is the state vector which is not available

for measurement, y(t) ∈ R is the output, u(t) ∈ R is the

known input vector, d(t) ∈ R is the unknown input (or

disturbance), and φ(t) ∈ R is an unknown actuator failures

whose distribution matrix f ∈ R
n is supposed known. A, b,

c′, r are known constant matrices. The discretization of plant

equations, assuming that u is constant during each sampling

interval TC , provides:
{

x̄(k + 1) = Ḡx̄(k) + q̄u(k) + ∆̄(k) + Φ̄(k)
y(k) = c′x̄(k)

(2)

where

Ḡ = eATC , (3)

q̄ =

(
∫ TC

0

eAτ dτ

)

b , (4)

∆̄(k) =

∫ TC

0

eAσ r d((k + 1)TC − σ) dσ, (5)

Φ̄(k) =

∫ (k+1)TC

kTC

eA((k+1)TC−σ)f φ(σ)dσ . (6)

Assuming that observability is preserved by a proper choice

of the sampling frequency, with no loss of generality the

discretized system (2) can be trasformed in the observability

canonical form by a suitable square invertible matrix M (see

for example [1]), obtaining:
{

x(k + 1) = Gx(k) + qu(k) +∆(k) +Φ(k)
y(k) = c′x(k) = x2(k)

(7)

with G = M−1 ḠM, q = M−1 q̄, ∆(k) = M−1 ∆̄(k),
Φ(k) = M−1 Φ̄(k) and c̄′ = c′ M = c′. Partitioning the

state vector x(t) as x(t) = (x1(t), x2(t))
′ with x1(t) ∈

R
n−1 and x2(t) ∈ R, the output signal is exactly the last

compotent of the state vector y(k) = x2(k). Moreover, plant

matrices can be partitioned accordingly

G =

(

G11 g12

g21
′ g22

)

, q =

(

q1

q2

)

,

and ∆(k) = (∆1(k), ∆2(k))
′, where G11 ∈ R

(n−1)×(n−1),

q1, ∆1(k) ∈ R
n−1 and the other matrices have appropriate

dimensions.

The addressed problem is defined but some assumptions:

Assumption 1: The state vector is unavailable for mea-

surement except for the output variable y(k).

Assumption 2: The disturbance distribution r is not multi-

ple of the fault distribution f , that is for any α ∈ R, r 6= α f .

Assumption 3: The system (A, r) is not controllable.

The above assumption assures that the subset 〈A|Imr〉⊥

contains a not null vector. Two further hypothesis ensure the

existence of a particular control vector u which causes the

tracking error to be bounded, and the state vector boundness.

Assumption 4: The scalar q2 is not null.

Assumption 5: The invariant zeros of the system

(G,q, c′) are asymptotically stable. (See [10].)

With a slight abuse of notation we have written x(k) in

place of x(k TC). As in many other different approaches the

upper limit of the disturbance is supposed to be known.

Assumption 6: The unknown term d(t) is assumed to be

bounded by a known positive constant ̺ > 0:

|d(t)| ≤ ̺ ∀ t ∈ [0,∞).

III. FILTER DESIGN

Assume no actuator faults affect the continuous-time sys-

tem (1). Let us design the following reduced-order state

observer

x̂1(k + 1) = q1u(k) + v(k) (8)

The dynamics of the estimation error, defined as

e1(k) := x1(k)− x̂1(k), (9)

is given by

e1(k + 1) = G11x1(k) + g12y(k) +∆1(k)− v(k);

choosing

v(k) := g12y(k) +G11x̂1(k), (10)

one has

e1(k + 1) = G11e1(k) +∆1(k). (11)

The term ∆1(k) is bounded by ||∆(k)|| which verifies

||∆(k)|| ≤ ̺

∫ TC

0

∥

∥M−1eAσ r
∥

∥ dσ =: ˜̺. (12)

As a consequence, since the matrix G11 is nilpotent by

definition (i.e. G11
n = 0), for k ≥ n the estimation error

verifies

||e1(k)|| ≤ n ˜̺ (13)

IV. ROBUST TRACKING PROBLEM

Assigned a reference signal yd(k), a control input u(k) is

chosen in order to guarantee the asymptotic boundedness of

the tracking error

ǫ(k) := y(k)− yd(k), (14)

moreover the asymptotic boundedness of the state vector is

addressed.

The dynamics of the error ǫ(k) is:

ǫ(k + 1) = g21
′x̂1(k) + g22ǫ(k) + q2u(k) + g21

′e1(k)

+ ∆2(k)− yd(k + 1) + g22yd(k)
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Due to Assumption 4 the control input u(k) can be chosen

as

u(k) := −q2
−1g21

′x̂1(k)− q2
−1g22ǫ(k) +

+ q2
−1yd(k + 1)− q2

−1g22yd(k), (15)

so the dynamics of the tracking error reduces to

ǫ(k + 1) = g21
′e1(k) + ∆2(k). (16)

Thanks to the error estimation (13) and to the observability

canonical form of (7), the tracking error is always bounded

by a constant depending on the disturbance bound

|ǫ(k + 1)| ≤ ˜̺(1 + n), (17)

where ˜̺ is defined in (12).

Since the estimation error is bounded as showed in (13),

if the estimated state x̂1 is bounded, then the asymptotic

boundness of the vector state x is straightforward.

Due to (8), (10) and (15) the dynamics of the estimated

state x̂1 are given by

x̂1(k + 1) = v(k) + q1u(k) =

= Hx̂1(k) + h̄ ǫ(k) +

+ q−1
2 q1 yd(k + 1) + h̄yd(k)

where H := (G11−q
−1
2 q1g21

′) and h̄ := (g12−q
−1
2 q1g22).

Since it can be proved the eigenvalues of H are exactly the

invariant zeros of (G,q, c′) [4], Assumption 5 implies that

H is Schur stable. Therefore the asymptotic boundness of the

estimated state x̂1 follows straightforwardly observing that

||x̂1(k + 1)|| ≤ ||Hkx̂1(0)||+

k−1
∑

i=0

||Hi||C0,

where

C0 := ˜̺(1 + n||g21
′||)||h̄||+ (||h̄||+ ||q−1

2 q1||) sup
j∈N

|yd(j)|

and, as a consequence

lim sup
k→∞

||x̂1(k)|| ≤

∞
∑

i=0

||Hi||C0 <∞.

V. FAULT DETECTION PROBLEM

Let us introduce now a nonzero fault φ(t) ∈ R. Using

Assumption 3 a sufficient condition for faults detectability

based on a Lyapunov function is provided.

The estimation error dynamics (9) for k ≥ n modifies as

e1(k + 1) =

n−1
∑

i=0

G11
i(∆1(k − i) +Φ1(k − i)).

Now, by definition, one has

∆(k) ∈ Im([r Ār . . . Ān−1r]) = 〈Ā|Imr〉

where Ā := M−1A and 〈Ā|Imr〉 is the controllable

subspace of (Ā, r) defined by Wonham in [21].

Due to Assumption 3 there exists p ∈ 〈Ā, r〉⊥ such that

p′Āir = 0 for all i = 0, 1, . . . , n − 1, hence such that

p′∆(k TC) = 0 for every instant k TC . The vector p can

be partitioned as (p1, p2)
′ with p1 ∈ R

n−1 and p2 ∈ R

according to the previous partitions.

Regarding the tracking error one has

ǫ(k + 1) = g21
′e1(k) + ∆2(k) + Φ2(k).

Setting w′(k) := [e1(k) ǫ(k)]
′ one has

w(k + 1) = Gw(k) +

[

∆1(k)
∆2(k)

]

+

[

Φ1(k)
Φ2(k)

]

with G :=

[

G11 0
g21

′ 0

]

.

By means of a change of coordinates w̄(k) := T−1 w(k) =
(e1(k),p

′w(k))′ through the matrix

T−1 =

[

In−1 0
p′
1 p2

]

, T =

[

In−1 0
−p−1

2 p′
1 p−1

2

]

(18)

where In−1 is the identity matrix of dimension n − 1, the

dynamics of w(k) are transformed as follows

w̄(k + 1) =

[

G11 0
p′
1G11 + p2g21

′ 0

]

w̄(k) +

+

[

∆1(k)
0

]

+

[

Φ1(k)
p′
1Φ1(k) + p2Φ2(k)

]

.

The state matrix Ω := T−1GT is Schur stable, as all its

eigenvalues are placed in the origin of the complex plane.

The fault-free system can be rewritten as

w̄(k + 1) = Ωw̄(k) + s(k)

where s(k) = [∆1(k) 0]
′ and due to (12)

||s(k)|| ≤ ˜̺. (19)

Let us define a Lyapunov function

V (k) := w̄(k)′Lw̄(k) (20)

where L is the solution of the algebraic equation

Ω′LΩ− L = −Ψ, (21)

with a symmetric positive-definite matrix Ψ > 0. It is worth

to note that, since Ω is a stable matrix the existence of the

solution L is ensured. Setting the increment of the Lyapunov

function

LV (k) := V (k + 1)− V (k),

we have

LV (k) = −w̄(k)′Ψw̄(k) + 2 s(k)′LΩw̄(k) + s(k)′Ls(k)

and due to (19)

LV (k) ≤ −w̄(k)′Ψw̄(k) + 2˜̺||LΩw̄(k)||+ ||L|| ˜̺2 ≤

≤ −ψ||w(k)||2 + ||L|| ˜̺2 +

+ 2˜̺||LΩT−1|| ||w(k)||

with

ψ := ||(T−1)′ΨT−1||.

The inequality LV (k) ≤ 0 is satisfied for

||w(k)|| ≥ w0,
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where

w0 :=
˜̺
(

||LΩT−1||+
√

||L||ψ + ||LΩT−1||2
)

ψ
. (22)

This means that, outside such interval, the norm of w(k) is

decreasing at any time step and this fact can be employed for

diagnosis purposes. On the other hand, not the whole error

vector w(k) but only the tracking error ǫ(k) is available

for measurement. We can give a sufficient condition for the

fault occurence considering the worst case, as explained in

the next statement.

Lemma 1: Let us suppose that for a time step k > 0 the

variable ǫ(k) is out of the sector, i.e. |ǫ(k)| > w0. If the

condition |ǫ(k + 1)| > |ǫ(k)|+ n ˜̺ holds for a given k, then

a fault has occurred at some time step k1 < k.

Proof: Let us suppose that |ǫ(k)| > w0. Since

||w(k)|| ≥ |ǫ(k)| > w0

we have also ||w(k)|| > w0. Out of the sector, in the

absence of faults, one must have ||w̄(k + 1)|| < ||w̄(k)||
and also ||w(k + 1)|| < ||w(k)||, as the Lyapunov function

can be rewritten as V (k) = w(k)′(T−1)′LT−1w(k). Since

||e1(k)|| ≤ n ˜̺, the observation error cannot contribute to any

eventual growth of ||w(k)|| for more than n ˜̺. Therefore:

||w(k + 1)|| ≥ |ǫ(k + 1)| > |ǫ(k)|+ n ˜̺≥

≥ |ǫ(k)|+ ||e1(k)|| > ||w(k)||

hence whenever |ǫ(k+1)| > |ǫ(k)|+n ˜̺, then ||w(k+1)|| >
||w(k)||, this meaning that a fault has necessarily occurred.

The previous development requires that w0 < ˜̺(1 +n) in

view of (17).

Setting L and Ψ such that

ψ(1 + n)− 2||LΩT−1|| − ||L|| > 0, (23)

the inequality w0 < ˜̺(1 + n) holds true.

VI. APPLICATION TO A VEHICLE SUSPENSION SYSTEM

In this section, a physical application is presented as

a worked example of the set-up showed in the previous

sections. A vehicle suspension system can be reduced to

the so-called quarter-car model, shown in Fig. 1, where an

additional force ∆Fu resulting from semi-active components

has been added [11], and the Coulomb friction FC has been

neglected for simplicity. The tire is typically modeled by a

single linear spring.

Fig.1 - The quarter-car model.

The classical quarter-car model can be derived (see [16])

z̈B(t) = −
dB
mB

żB(t) +
dB
mB

żW (t)−
cB
mB

zB(t)+

+
cB
mB

zW (t)−
FC

mB

+
1

mB

∆Fu −
1

mB

FB

z̈W (t) =
dB
mW

żB(t)−
dB
mB

żW (t) +
cB
mW

zB(t)+

−
cB + cW
mW

zW (t) +
cW
mW

r(t) −
FC

mW

−
1

mW

∆Fu

where cB and cW stand for stiffness of body spring and
of tire respectively, dB is the body damping coefficient
supposed to be constant. mB and mW are the body and
wheel mass, zB , zW and r stand for the vertical body,
wheel, and road displacement, FZ is the dynamic car load
and FB is the gravity force which is negligible because
zB and zW are the distance from the equilibrium. The
road has a displacement |r(t)| ≤ 0.01 m. The state vector
x = [x1, x2, x3, x4]

′ has been built as follows: x1 = żB ,
x2 = zB , x3 = żW , and x4 = zW . Finally, the input function
u(t) = ∆Fu has been taken into account. The continuous
time system is

ẋ(t) =









− dB

mB
− cB

mB

dB

mB

cB

mB

1 0 0 0
dB

mW

cB

mW
− dB

mW
− cB+cW

mW

0 0 1 0









x(t)+









1

mB

0
− 1

mW

0









u(t) +







0
0
1

mW

0






cW r(t) +









1

mB

0
− 1

mW

0









φ(t)

y(t) =
[

0 1 0 0
]

x(t)

where φ(t) is an eventual actuator fault. According to [13],

the following coefficient values have been used: mB =
375 kg, mW = 20 kg, cB = 130000N/m, cW = 105N/m,

dB = 9800N · sec/m. Discretizing the system with a

sampling interval TC = 0.02 sec, the matrices of the

discretized plant are

Ḡ =









0.9997 −0.111 −25.4 −2866
0.009975 0.9913 −2.026 −241.4
4.771 10−5 0.009216 0.8177 −21.61
6.404 10−8 1.465 10−5 0.001653 −0.03565









,

q̄ =
[

0.133 0.0006427 2.673 10−5 4.159 10−8
]′
,
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and it can be verified that Assumptions 4 and 5 hold true, in

fact the plant zeros are −0.2118, 0.7633± 0.6466i.
A control input u(t) = u(k TC) for t ∈ [k TC , (k+1)TC [

verifies (15). A road displacement of the form r(t) = 0.01 ∗
sin(t) has been considered, therefore the disturbance term
turns out to be bounded by a constant ρ = cW ∗0.01 = 1000.
It can be verified that the controllability matrix of (A, r)
has a small determinant (≃ 0.75) with respect to matrix
coefficients, therefore Assumption 2 is fulfilled too. The
vector p can be determined as p′ =

[

0 0 0 10−5
]

, and setting

Ψ =







0.001 0 0 0
0 0.001 0 0
0 0 0.001 0
0 0 0 0.00001







one gets a solution

L =









0 −2.28 · 10−5 1.86 · 10−9 0
−2.28 · 10−5 0.002 3.55 · 10−15 0
1.86 · 10−9 3.55 · 10−15 0.001 0

0 0 0 0.001









with ||L|| = 0.0020003 which gives a boundw0 = 0.028882
greater than (n + 1)ρ̃ = 0.0030879. Plant initial conditions

have been chosen as x(0)′ = [0 0.3 0 0.3].
A reference signal yd(t) = 0 has been chosen, and Fig. 2

shows that the output signal follows the given signal when

no faults affect the continuous time system. Fig. 3 shows

that the estimation error e1(k) verifies (13) in the fault free

case. Then an abrupt fault φ(t) of intensity equal to 30 ρ has

considered to occur in (1) for t ≥ 50 s. Fig. 4 displays the

dynamics of the control input u(k). Following the procedure

of Lemma 1, detection is performed at time t = 51 s. In

particular, the tracking error is reported in Fig. 5, where a

dotted line shows the tracking bound (n + 1)˜̺ (17) and a

dash-dot line represents w0 (22). As proved in Lemma 1,

since |e(k)| ≥ w0 and g(k) = |e(k + 1)| − |e(k)| − n ˜̺> 0
as showed in Fig. 6, we are certain a fault has occured. In

Fig. 7 and Fig. 8 an incipient fault of amplitude equal to ρ
has considered to occur in (1) for t ≥ 50 s.

VII. CONCLUSIONS

These notes addressed the design of a Lyapunov-based

diagnosis signal for the Robust Fault Detection of a class of

Sampled-Data systems whose output vector has to follow

an assigned reference. Under some suitable assumptions,

a reduced-order observer and a control input have been

designed to solve the robust tracking problem. The only

signal available for measurements is the output. A physical

application of a vehicle suspension system has been studied

as a worked example.
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Fig. 2 - Robust tracking in the fault free case.
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lines is nρ̃.
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Fig.4 - Control input.
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Fig. 5 - Tracking error when an abrupt fault φ(t) = 30ρ

occurs at t = 51 s.
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Fig. 6 - Function g(k) = |ǫ(k + 1)| − |ǫ(k)| − n ˜̺ when an

abrupt fault φ(t) = 30ρ occurs at t = 51 s.
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Fig. 7 - Tracking error when an incipient fault of amplitude

ρ occurs at t = 51 s.
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Fig. 8 - Function g(k) = |ǫ(k + 1)| − |ǫ(k)| − n ˜̺ when an

incipient fault of amplitude ρ occurs at t = 51 s.
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