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Abstract— In this paper, we study the minimum energy
control problem in a flow environment, in which the flow is de-
scribed by a quadratic function and the objective is to minimize
the energy consumption while driving drifters from one point
to another. The minimum energy control problem is motivated
by the fact that mobile drifters are powered by batteries of
limited capacity. We first derive the unconstrained optimal
control using the Pontryagin’s minimum principle, and then
take into account state constraints that arise naturally in our
setting. If the dynamics of drifters are restricted to be of Dubin’s
type, the optimal control is in the form of state feedback, which
potentially leads to more robust implementation.

I. INTRODUCTION

In estuaries, saline saltwater can intrude deeply into river

channels, due to factors such as tidal forcing, droughts,

the diversion of freshwater for agricultural and/or municipal

uses, and hurricanes. Saltwater intrusion can have a huge im-

pact on the freshwater supply for agriculture and municipal

uses, and the inland biota. The freshwater-saltwater boundary

in estuaries acts as an indicator of saltwater intrusion, and has

been studied based on simplified 1-D theoretical analysis [1],

numerical analysis [2], or static measurements [3]. However,

none of these approaches is capable of obtaining a relatively

accurate boundary (that might change slowly with time). In

a companion paper [4], we study the freshwater-saltwater

boundary detection problem by deploying two drifters to

explore the boundary, and propose boundary exploration

algorithms that search for a point which can reflect the degree

of saltwater intrusion.

There are two types of drifter movements in the boundary

exploration algorithms [4]: i) a drifter moves along a straight

line and stops only when the measured salinity satisfies a

certain condition, and ii) a drifter moves from one point

to another. In this paper, we focus on the second type

of movements, and study control strategies that drive the

drifter from one point to another as well as minimizing the

energy consumption; the latter consideration is due to the

fact that mobile drifters are commonly powered by batteries

of limited capacity. To better approximate the river flow

in well aligned channels (e.g., irrigation canals), we model

the flow using a quadratic function; in contrast, previous

work usually assumes that the river flow is approximated

as constant, piecewise constant, or affine flows. However,
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this better approximation makes the minimum energy con-

trol problem very challenging. Constraints such as that the

optimal trajectory should stay inside the river region impose

further challenges.

We first derive the unconstrained optimal control using

the Pontryagin’s minimum principle [5], and then look into

issues such as bounds on the parameters that characterize

the optimal control, conditions under which the optimal

trajectory stays inside the river region, and the existence of

multiple optimal trajectories. For minimum energy control

with state constraints that arise naturally in our setting, we

first adjoin additional multiplier functions to the Hamilto-

nian, and then provide a set of equations that need to be

solved to obtain the optimal control. If the dynamics of

drifters are restricted to be of Dubin’s type, the optimal

control is in the form of state feedback, which potentially

leads to more robust implementation.

Minimum energy control has been considered, e.g. [6]–[8].

In [6]–[8], the goal is to find a path with the minimum energy

loss between given source and destination points in piecewise

constant regions. Our work differs from [6]–[8] in the cost

function. More specifically, in [6], [8], the cost of any path on

the surface of a terrain is defined to be the energy loss due to

both friction and gravity and could be anisotropic, and in [7],

the cost in each region is isotropic. In our work, the cost is

defined to be the minimum energy necessary to run against

the river flow and is anisotropic. If drifters are operated

as Dubin’s vehicles, the minimum energy control problem

reduces to the minimum time control problem. Minimum

time path planning in a flow environment originates from the

classic Zermelo’s navigation problem. For some recent work,

refer to [9]–[11]. This work differs from those references in

that the flow is described by a quadratic function and the

optimal trajectory is constrained to the river environment.

II. PROBLEM FORMULATION

For simplicity, we assume that the river banks are parallel

and the deployment base is on the freshwater side. Using the

Cartesian coordinate system, we define the centerline of the

river as the x-axis, and choose the y-axis to be perpendicular

to the x-axis and pass through the deployment base. Suppose

the distance from the deployment base to the x-axis is L
2

(note that L > 0 is chosen to be less than the width of the

river so that drifters can be operated safely), then the studied

river environment can be described by the two dimensional
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region D := {(x y)T ∈ R2 | − L
2 ≤ y ≤ L

2 }, as shown in

Fig. 1.

The velocity field in the region D is a mapping

V : D 7→ R
2, assigning (Vx(x, y) Vy(x, y))

T to a point

(x y)T ∈ D. We assume that Vy(x, y) = 0, and1

Vx(x, y) = v(y) = Ay2 +B , (1)

where A < 0 and B > 0 are constants, and 0 < Ay2 +B ≤
B for any y satisfying |y| ≤ L

2 . A typical velocity profile is

plotted in Fig. 1. Note that practical examples of the above

flow field could be river flows in irrigation canals and straight

channels.

A drifter runs at speed U = (Ux Uy)
T relative to the

velocity field, and then the dynamics of the drifter can be

described by

dx

dt
= Ux + Vx(x, y),

dy

dt
= Uy + Vy(x, y) .

We assume that drifters can run against the river

flow to track the freshwater-saltwater boundary, i.e.,

max(x y)T∈D ‖V (x, y)‖ ≤ ‖U‖max; for example, ‖U‖max

could be
√
5B as discussed in Remark 1 of Section III. If

a drifter is operated as a Dubin’s vehicle, then its velocity

magnitude is fixed as ‖U‖ but the heading angle θ can be

controlled, i.e., U = (‖U‖ cos θ ‖U‖ sin θ)T .

The freshwater-saltwater boundary can be described using

the salinity field in the river environment. The salinity field

is a mapping S : D 7→ R
+
0 assigning S(x, y) to a point

(x y)T ∈ D, where R+
0 is the set of nonnegative real

numbers and S(x, y) is the salinity at location (x y)T . Given

a salinity threshold Bth, the freshwater-saltwater boundary

is defined as a level set {(x y)T ∈ D | S(x, y) = Bth}. A

typical boundary is plotted in Fig. 1.

The objective is to deploy a set of drifters from the base

and find a point pmin on the boundary with the smallest

x coordinate. The drifter deployment problem is studied in

detail in a companion paper [4], in which there are two types

of drifter movements:

• A drifter moves parallel to the x axis and stops when the

salinity measurement satisfies a certain condition (e.g.,

this type is used in Algorithms 2 and 3 in [4]);

1The dependency of Vx(x, y) on y can be approximated as a quadratic
function for well aligned river environments [12], [13].
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Fig. 1. River environment for drifter deployment.

• A drifter moves from one point to another (e.g., this

type is used in Algorithms 1, 2, and 3 in [4]).

For the first type of movements, if the drifter moves down-

stream, no control is necessary; if it moves upstream, a

control along the negative x axis can be chosen to achieve

the objective since the drifter can run against the current.

The second type of movements is the focus of this paper,

and we want to find a control strategy that minimizes the

energy. More specifically, given p1 and p2 inside the region

D, the minimum energy control problem is formulated as

min

∫ tf

0

UTUdt ,

s.t.
dx

dt
= Ux +Ay2 +B ,

dy

dt
= Uy , (2)

x(0) = xp1 , y(0) = yp1 , x(tf ) = xp2 , y(tf ) = yp2 .

Note that tf is free, and |ypi | ≤ L
2 for i = 1, 2 (since the

drifter must stay inside the region D).

III. MINIMUM ENERGY CONTROL

In this section we study how to obtain the unconstrained

minimum energy control using the Pontryagin’s minimum

principle [5].

Proposition 1 The optimal control to the minimum energy

control problem without state constraints is given as U(t) =

− 1
2

[

C1

P2(t)

]

for t ∈ [0, tf ], where C1 is a constant, P2(t) =

cosh(t
√
AC1)P2(0)− 2

√
AC1 sinh(t

√
AC1)yp1 , cosh(x) =

ex+e−x

2 , and sinh(x) = ex−e−x

2 . If C1 6= 0, the parameters

C1, P2(0) and tf satisfy the following set of equations

yp2 =cosh(tf
√

AC1)yp1 − sinh(tf
√
AC1)P2(0)

2
√
AC1

, (3)

xp2 =xp1 +
P2(0)yp1

4C1
−

(4C2
1 − 4AC1y

2
p1 − 8BC1 + P2(0)

2)tf

8C1
+

(P2(0)
2 + 4AC1y

2
p1) sinh(2tf

√
AC1)

16C1

√
AC1

−

P2(0)yp1 cosh(2tf
√
AC1)

4C1
, (4)

− C2
1 + P2(tf )

2

4
+ C1(Ay

2
p2 +B) = 0 . (5)

If C1 = 0, P2(0) and tf satisfy

yp2 =yp1 − P2(0)tf
2

, (6)

xp2 =xp1 +Btf +A(
P2(0)

2t3f

12
−

P2(0)yp1t2f

2
+ y2p1tf ) .

(7)

Proof: The Hamiltonian of the minimum energy control

problem is H = UTU +PT (U +N), where P = (P1 P2)
T
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and N = (Ay2 +B 0)T . Using the minimum principle, we

obtain the following coupled ODEs besides Eq. (2):

dP1

dt
= 0 , (8)

dP2

dt
= −2AP1y . (9)

Since U is chosen to minimize the Hamiltonian, U = − 1
2P .

Plugging U into Eq (2), we obtain the following ODEs:

dx

dt
= −1

2
P1 +Ay2 +B , (10)

dy

dt
= −1

2
P2 . (11)

From Eq. (8), we know P1 is a constant and let P1(t) = C1

for t ∈ [0, tf ]. Depending on whether C1 is 0 or not, there

are two cases to consider.

Case I If C1 is nonzero, Eqs. (9) and (11) can be grouped

together and rewritten as dY
dt

= MY , where Y = (y P2)
T

and

M =

[

0 − 1
2

−2AC1 0

]

.

Therefore, Y (t) = eMtY (0). After calculating the matrix

exponential eMt, we obtain

y(t) = cosh(t
√

AC1)yp1 − sinh(t
√
AC1)P2(0)

2
√
AC1

, (12)

P2(t) = cosh(t
√

AC1)P2(0)− 2
√

AC1 sinh(t
√

AC1)yp1 ,

(13)

where P2(0) is the unknown initial condition for P2(t). Since

y(tf ) is given, we obtain the first equation on C1, P2(0) and

tf as Eq. (3). Plugging the expression of y in Eq. (12) into

Eq. (10) and using x(0) = xp1 , we can solve for x as below

x(t) = xp1 +
P2(0)yp1

4C1
−

(4C2
1 − 4AC1y

2
p1 − 8BC1 + P2(0)

2)t

8C1
+

(P2(0)
2 + 4AC1y

2
p1) sinh(2t

√
AC1)

16C1

√
AC1

−

P2(0)yp1 cosh(2t
√
AC1)

4C1
. (14)

Since x(tf ) is given, we obtain the second equation on C1,

P2(0) and tf as Eq. (4). Since tf is free and there is no cost

imposed on the final state, H|tf = 0. Therefore, we get the

third equation on C1, P2(0) and tf as Eq. (5).

By solving Eqs. (3), (4) and (5), we obtain C1, P2(0) and

tf , and then the optimal control is U = − 1
2 (C1 P2(t))

T for

t ∈ [0, tf ].

Case II If C1 is zero, then P1(t) = 0 for t ∈ [0, tf ]. From

Eq. (9), we get P2(t) = P2(0) for t ∈ [0, tf ]. From Eq. (11),

we obtain

y(t) = yp1 − P2(0)t

2
. (15)

Since we are given y(tf ), we obtain the first equation on tf
and P2(0) as Eq. (6). Plugging y into Eq. (10), we can solve

for x and get

x(t) = xp1 +Bt+A(
P2(0)

2t3

12
− P2(0)yp1t2

2
+y2p1t) . (16)

Based on the given x(tf ), we obtain the second equation on

tf and P2(0) as Eq. (7). After solving Eqs. (6) and (7), we

obtain P2(0) and tf , and then the optimal control is given

as U(t) = − 1
2 (0 P2(0))

T for t ∈ [0, tf ]. �

The following proposition shows that Case II is the limit

of Case I when C1 goes to 0, and can be verified based on

Eqs. (12), (13), and (14).

Proposition 2 If the parameter C1 in Proposition 1 con-

verges to 0, the optimal control (namely, C1 and the function

P2(t)) and the optimal trajectory (namely, the functions x(t)
and y(t)) in Case I converge pointwise to the optimal control

and the optimal trajectory in Case II.

In the following theorem, we propose bounds on C1, P2(0)
and tf , which are helpful when guessing an initial solution

since Eqs. (3), (4) and (5) are nonlinear.

Theorem 1 In the minimum energy control problem without

state constraints, the following results hold:

1) 0 ≤ C1 ≤ min(4v(yp1), 4v(yp2));
2) C1 = 0 if and only if xp1 < xp2 and yp1 = yp2 ;

3) If C1 ≥ 4v(L2 ), |y(t)| ≤ L
2 for any t ∈ [0, tf ];

4) If L ≥ 2
√

−B
A

, |y(t)| ≤ L
2 for any t ∈ [0, tf ];

5) |P2(t)| ≤ 2B, |P2(0)| ≤ 2v(yp1), and |P2(tf )| ≤
2v(yp2);

6) tf ≥ max
( |y

p2
−y

p1
|

B
,

|x
p2

−x
p1

|
B+min(2v(y

p1
), 2v(y

p2
))

)

;

7) If yp1 = 0, then any point p2 satisfying xp2 < xp1 and

yp2 = 0 can be reached via two different paths with

the same minimum energy cost.

Proof: 1) Since the Hamiltonian does not explicitly depend

on t, H|tf = 0 (namely, Eq. (5)) implies H|0 = 0. Therefore,

we have −C2

1
+P2(0)

2

4 +C1(Ay
2
p1 +B) = 0. Note that this is

a quadratic equation of C1 and can be rewritten as

C2
1 − 4(Ay2p1 +B)C1 + P2(0)

2 = 0 . (17)

Let C11 and C12 be the roots of the above equation. Then

C11+C12 = 4(Ay2p1+B) = 4v(yp1) > 0 because |yp1
| ≤ L

2 ,

and

C11C12 = P2(0)
2 ≥ 0 . (18)

Therefore, we must have C11 ≥ 0 and C12 ≥ 0, which im-

plies that C1 ≥ 0. Since C11+C12 = 4v(yp1), we must have

C1 ≤ 4v(yp1). Similarly, if we consider Eq. (5), we get C1 ≤
4v(yp2). Thus we have 0 ≤ C1 ≤ min(4v(yp1), 4v(yp2)).

2) (if part) We prove it by contradiction. Suppose C1 is

nonzero. Since U = −P
2 , the cost satisfies

∫ tf

0

UTUdt =
1

4

∫ tf

0

(C2
1 +P2(t)

2)dt ≥ 1

4
C2

1 (tf −0) > 0 .
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However, since xp1 < xp2 and yp1 = yp2 , U = (0 0)T

is feasible with cost 0 (this solution can be obtained from

Case II). Therefore, if C1 is nonzero, the solution is not

optimal. A contradiction.

(only if part) If C1 = 0, Eq. (18) implies that P2(0) must

be 0. Therefore, in Case II, Eq. (6) reduces to yp2 = yp1 ,

and Eq. (7) reduces to

xp2 = xp1 + (B +Ay2p1)tf = xp1 + v(yp1)tf > xp1

because v(yp1) > 0 and tf > 0.

3) Based on Eq. (12), we have

|y(t)| = | cosh(t
√

AC1)yp1 − sinh(t
√
AC1)P2(0)

2
√
AC1

|

= |yp1 cos(t
√

−AC1)−
P2(0)

2
√
−AC1

sin(t
√

−AC1)| (19)

≤

√

y2
p1 +

(

P2(0)

2
√
−AC1

)2

=

√

y2
p1 +

P2(0)2

4(−AC1)
. (20)

We have Eq. (19) because A < 0 and C1 ≥ 0. We obtain

P2(0)
2 from Eq. (17), then plug it into Eq. (20) and get

|y(t)| ≤
√

C1 − 4B

4A
. (21)

Since A < 0 and C1−4B ≤ min(4v(yp1), 4v(yp2))−4B ≤
4v(0)− 4B = 0, the upper bound on |y(t)| is a nonnegative

real number. If C1 ≥ 4v(L2 ), C1−4B ≥ 4AL2

4 . Since A < 0,

we have |y(t)| ≤ L
2 for any t ∈ [0, tf ].

4) Using Eq. (21) and the fact that C1 ≥ 0, we have

|y(t)| ≤
√

4B

−4A
=

√

−B

A
. (22)

Therefore, if

√

−B
A

≤ L
2 , i.e., L ≥ 2

√

−B
A

, |y(t)| ≤ L
2 .

5) Based on Eq. (13), we have

|P2(t)| = | cosh(t
√

AC1)P2(0)− 2
√

AC1 sinh(t
√

AC1)yp1 |
= |P2(0) cos(t

√

−AC1) + 2
√

−AC1 sin(t
√

−AC1)yp1 |
≤

√

P2(0)2 − 4AC1y
2
p1 . (23)

We obtain P2(0)
2 from Eq. (17), then plug it into Eq. (23)

and get |P2(t)| ≤
√

4BC1 − C2
1 =

√

4B2 − (C1 − 2B)2 ≤
2B. To show the upper bound on |P2(0)|, we consider

Eq. (17). Since C1 must be a real number, we have (4(Ay2p1+

B))2 − 4 × 1 × P2(0)
2 ≥ 0, which implies that |P2(0)| ≤

2(Ay2p1 +B) = 2v(yp1). Note that |P2(0)| ≤ 2v(yp1) ≤ 2B
since A < 0. Similarly, we can show the upper bound on

P2(tf ) based on Eq. (5).

6) Based on Eq. (11), we have

∫ y(tf )

y(0)

1dy =

∫ tf

0

−P2(t)

2
dt

|yp2 − yp1 | ≤ 1

2

∫ tf

0

| − P2(t)|dt ≤ Btf .

Therefore, we have tf ≥ |y
p2

−y
p1

|
B

. Based on Eq. (10), we

have
∫ x(tf )

x(0)

1dx =

∫ tf

0

−C1

2
+Ay2 +Bdt

|xp2 − xp1 | = |
∫ tf

0

−C1

2
+Ay2 +Bdt| ≤

∫ tf

0

| − C1

2
+Ay2 +B|dt ≤

∫ tf

0

|C1

2
|+ |Ay2 +B|dt ≤

(min(2v(yp1), 2v(yp2)) +B)tf , (24)

where |Ay2 + B| ≤ B in Eq. (24) holds because 0 ≤
B + Ay2 (due to Eq. (22)) and A < 0. Then tf ≥

|x
p2

−x
p1

|
B+min(2v(y

p1
), 2v(y

p2
)) . Putting them together, we get the

lower bound.

7) If yp1 = yp2 = 0, it can be verified that if P2(0) is a

solution to Eqs. (3), (4) and (5), −P2(0) is also a solution,

which implies that the two controls given as − 1
2

[

C1

P2(t)

]

and − 1
2

[

C1

−P2(t)

]

both solve the minimum energy control

problem and have the same energy cost. �

Remark 1 If xp1 > xp2 , the intuition of 1) in Theorem 1 is

quite clear because a drifter has to run against the current in

the x direction to reach xp2 . However, it is less intuitive that

even if xp1 ≤ xp2 , the optimal control always makes a drifter

run against the current as long as yp1 6= yp2 . 2) shows that

the only scenario when a drifter moves following the flow

is when xp1 < xp2 and yp1 = yp2 . 3) gives a way to check

if the optimal trajectory will always stay inside the region

D once C1 is calculated, and the condition only depends on

the relative velocity at the boundary of the region D. Note

that this condition is only sufficient: for example, as shown

in 2), if xp1 < xp2 and yp1 = yp2 , C1 is 0; even though the

condition in 3) is violated but the trajectory still stays inside

the region D. 4) provides another condition which does not

rely on C1. The condition L ≥ 2
√

−B
A

is equivalent to

v(L2 ) ≤ 0. However, since we assume that v(L2 ) > 0, it is

possible that the optimal trajectory might leave the region

D. Note that 1) and 5) implies that

‖U‖ =
√
UTU =

√

C2
1 + P2(t)2

2
≤

√
5B ,

since C1 ≤ min(4v(yp1), 4v(yp2)) ≤ 4B. The intuition

about 7) is that, because the flow is symmetric with respect

to the x axis, there could be two different ways but with

the same energy cost to move from point p1 on the x axis

to a point p2 also on the x axis satisfying xp2 < xp1 .

Such point p2 is called a conjugate point to p1 [5]. Note

that some solution to Eqs. (3), (4) and (5) could result in a

local maximum since the minimum principle only provides

necessary conditions for optimal control problems. �

Example 1 Suppose that the flow is given as v(y) = − y2

441+
1 and p1 is (5 5)T . We consider two scenarios. First, we

choose p2 to be (9 5)T . Since xp1 < xp2 and yp1 = yp2 ,
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Fig. 2. Optimal trajectories (the red curves) from p1 = (5 5)T to
p2 = (9 5)T , p3 = (1 5)T , p4 = (1 14)T , p5 = (5 14)T , p6 =
(9 14)T , p7 = (9 − 4)T , p8 = (5 − 4)T and p9 = (1 − 4)T .

C1 = 0 and P2(0) = 0 as shown in Theorem 1. In other

words, the control U is (0 0)T for t ∈ [0, tf ], where tf can

be calculated based on Eq. (7) and has the value 4.2404.

For the second scenario, we choose the destination p3 to be

(1 5)T . Since xp1 > xp3 , C1 must be nonzero. We solve

Eqs. (3), (4) and (5) using the nonlinear equation solver

fsolve in Matlab, and obtain C1 = 3.7642, P2(0) = −0.1839
and tf = 4.2539. The optimal trajectory is shown in Fig. 2,

in which the green thin arrows represent flow velocity. Let

L be 32, i.e., |y| ≤ 16 for any point p inside the region

D. Since 4v(L2 ) = 1.6780 < C1, the trajectory must stay

inside the region D, and this is also reflected in Fig. 2. Note

that C1 ≤ min(4v(yp1), 4v(yp2)) = 3.7732 and |P2(0)| ≤
2v(yp1) = 1.8866 hold. Since max( 0

B
, 4
B+2v(5) ) = 1.3857,

the lower bound of tf indeed holds. The optimal trajectories

for reaching points p4, p5, ..., p9 from p1 are also plotted in

Fig. 2. �

IV. MINIMUM ENERGY CONTROL WITH STATE

CONSTRAINTS

An optimal trajectory obtained using the method in Sec-

tion III could leaves the region D (one example is given in

Example 2). In this section, we study the minimum energy

control problem with the state constraints −L
2 ≤ y(t) ≤ L

2 .

We first calculate the unconstrained optimal trajectory. If

it does leave the region D, we employ the multiplier method

in [5] to obtain the optimal control. We assume that yp1 > 0
and yp2 > 0 so that we only need to consider the constraint

y(t) ≤ L
2 . To handle the constraint S(x, y, t) = y(t)−L

2 ≤ 0,

we first take its derivative with respect to t to obtain dS
dt

=
dy
dt

= Uy , and then we add an additional multiplier µ(t) to

adjoin dS
dt

in the Hamiltonian H , i.e., H = UTU +PT (U +
N) + µUy , where P = (P1 P2)

T and N = (B + Ay2 0)T .

Since H does not depend on x, we have

dP1

dt
= 0,

dP2

dt
= −2AP1y .

Since U is chosen to minimize H , we get Ux = −P1

2 and

Uy = −P2

2 − µ
2 . Note that if S(x, y, t) = 0, then Uy = 0

and µ(t) = −P2(t) ≥ 0; if S(x, y, t) < 0, then µ(t) = 0

and Uy = −P2(t)
2 .

In general, the trajectory consists of three pieces: i) from

0 to t1, the trajectory is an unconstrained arc; ii) from t1

to t2, the trajectory is an arc that satisfies S(x, y, t) = 0
and dS

dt
= 0; iii) from t2 to tf , the trajectory again is an

unconstrained arc. Here t1 is the time when the trajectory

enters the constrained boundary, t2 is the time when the

trajectory leaves the constrained boundary, and t1 ≤ t2.

Based on Theorem 1.2), C1 must be nonzero; otherwise,

the trajectory does not touch |y| = L
2 . If t ∈ [0, t1), P1(t) =

C1, P2(t), y(t), and x(t) are given in Eqs. (13), (12), and

(14) respectively. Since y(t1) =
L
2 , we get the equation

cosh(t
√

AC1)yp1 − sinh(t
√
AC1)P2(0)

2
√
AC1

=
L

2
. (25)

As S(x, y, t1) = 0 acts as an interior point constraint [5],

we have the following equations for P and H

P1(t
−
1 ) = P1(t

+
1 ), P2(t

−
1 ) = P2(t

+
1 )+η, H(t−1 ) = H(t+1 ) ,

where t−1 (or t+1 ) denotes the time just before (or after) t1,

and η is an unknown constant.

If t ∈ (t1, t2], we have Uy = 0. Therefore, y(t) = L
2 ,

P1(t) = C1, P2(t) = P2(t
+
1 ) − LAC1(t − t+1 ), µ(t) =

−P2(t), and x(t) = x(t1) + (B +AL2

4 − C1

2 )(t− t1). Note

that P2(t2) = P2(t
+
1 )− LAC1(t2 − t+1 ).

At t2, both H and P are continuous. Therefore,

if t ∈ [t2, tf ], we have P1(t) = C1, y(t) =

cosh((t − t2)
√
AC1)y(t2) − sinh((t−t2)

√
AC1)P2(t2)

2
√
AC1

, and

P2(t) = cosh((t − t2)
√
AC1)P2(t2) − 2

√
AC1 sinh((t −

t2)
√
AC1)y(t2). Since y(tf ) is given, we obtain the follow-

ing equation

yp2 =cosh((tf − t2)
√

AC1)y(t2)−
sinh((tf − t2)

√
AC1)P2(t2)

2
√
AC1

. (26)

Plugging the expression of y into Eq. (10), we can solve

for x, and obtain the following equation (since x(tf ) is given)

xp2 = x(t2) +
P2(t2)y(t2)

4C1
−

(4C2
1 − 4AC1y(t2)

2 − 8BC1 + P2(t2)
2)(tf − t2)

8C1
+

(P2(t2)
2 + 4AC1y(t2)

2) sinh(2(tf − t2)
√
AC1)

16C1

√
AC1

−

P2(t2)y(t2) cosh(2(tf − t2)
√
AC1)

4C1
. (27)

Since tf is free and there is no cost imposed on the final

state in the optimization problem, H|tf = 0. Since H does

not explicitly depend on t, H is constant and equal to 0 for

all t. Therefore, we have H|t−
1

= H|t2 = H|tf = 0, i.e.,

0 =− C2
1 + P2(t

−
1 )

2

4
+ C1(B +Ay(t−1 )

2) , (28)

0 =− C2
1

4
+ C1(B +A(

L

2
)2) , (29)

0 =− C2
1 + P2(tf )

2

4
+ C1(B +Ay2p2) . (30)

By solving Eqs. (25), (26), (27), (28), (29), and (30), we

can get C1, P2(0), η, t1, t2 and tf , and then the optimal
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Fig. 3. Constrained (the blue solid curve) and unconstrained (the red dashed
curve) optimal trajectories from p1 = (40 15)T to p2 = (35 15)T .

control is U = − 1
2

[

C1

P2(t) + µ(t)

]

for t ∈ [0, tf ]. Similarly,

we can obtain the optimal control for cases in which yp1 ≤ 0
and/or yp2 ≤ 0.

Example 2 We still use the flow parameters in Example 1,

but p1 is at (40 15)T and p2 is at (35 15)T . The uncon-

strained trajectory is shown as the red dashed curve in Fig. 3,

in which the green thin arrows represent flow velocity. The

state constraint is given as y(t) ≤ L
2 = 16. By solving

Eqs. (25), (26), (27), (28), (29), and (30) using the nonlinear

equation solver fsolve in Matlab, we obtain C1 = 1.6780,

P2(0) = −0.6869, η = 0.1278, t1 = 5.7596, t2 = 6.8110
and tf = 12.5736. The constrained optimal trajectory is

shown as the blue solid curve in Fig. 3. �

V. MINIMUM TIME CONTROL

If we restrict the dynamics of drifters to be of Dubin’s

type, i.e., U = (‖U‖ cos θ ‖U‖ sin θ)T , then the minimum

energy control problem reduces to a minimum time control

problem since the objective function can be rewritten as

min ‖U‖2
∫ tf
0

1dt. As shown in [5], the heading angle θ

satisfies the following differential equation:

dθ

dt
= sin2 θ

∂Vy

∂x
+ sin θ cos θ(

∂Vx

∂x
− ∂Vy

∂y
)− cos2 θ

∂Vx

∂y

= − cos2 θ
∂v(y)

∂y
= −2Ay cos2 θ ,

since Vx(x, y) = v(y) = Ay2 + B and Vy(x, y) = 0. Then

we have
dy

dθ
=

dy

dt

dt

dθ
= − ‖U‖ sin θ

2Ay cos2 θ
. (31)

We can rewrite Eq. (31) as 2ydy = −‖U‖ sin θ

A cos2 θ
dθ, integrate

on both sides and we obtain y2|yy
p1

= −‖U‖
A

sec θ|θθ(0). Now

we can get

sec θ = sec θ(0)− A

‖U‖ (y
2 − y2p1) . (32)

Essentially, θ is a function of θ(0), yp1 and y.

Since dx
dy

= ‖U‖ cos θ+v(y)
‖U‖ sin θ

, we can plug in the expression

for θ and the right hand side of dx
dy

is a function of y.

Now we can integrate both sides and solve for θ(0) based

on xp1 , yp1 , xp2 , yp2 . Details are omitted due to lack of

space. Once we get θ(0), we can design a feedback control

policy using Eq. (32) since θ only depends on the current y

coordinate. If the state constraints |y| ≤ L
2 are considered,

we can also solve the minimum time control problem using

the additional multiplier approach in [5].

VI. CONCLUSION

In this paper, we studied the minimum energy control

problem in which the river flow is approximated as a

quadratic function and the objective is to move a drifter from

one point to another with the minimum energy consumption.

We derived the optimal control strategy using the minimum

principle, and took into account state constraints so that

drifters will always stay inside the river region.

In the future, we would like to find approximation al-

gorithms to solve nonlinear Eqs. (3), (4), (5) quickly so

that the optimal control can be calculated by less powerful

computational devices in real time, and find an upper bound

on the final time tf .
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