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Abstract— We extend our previous results on event-triggered
agreement by proposing a triggering mechanism that is finite L2

gain stable with respect to additive disturbances in the open
loop dynamics of the agents. Moreover, the control design is
both distributed and provides strictly positive inter-execution
times. Simulation examples support the derived theoretical
results.

I. INTRODUCTION

The control of distributed multi-agent systems is now

facilitated by the current increase in computing and com-

munication resources. Several results concerning multi-agent

cooperative control have appeared in recent literature involv-

ing consensus algorithms [13],[14],[10] formation control

[4],[3],[2] and distributed estimation [16].

As the number of agents increases, there is a need for an

optimized allocation of the available resources. This paper

provides another potential contribution towards this direction.

In particular, this work is concerned with the adaptation

of near-optimal sampling strategies for the actuators in a

distributed multi-agent system that aims at achieving agree-

ment. The scheduling of the actuation updates can be done

in a time-driven or an event-driven fashion. It is possible

that an intelligent strategy for sampling will provide a better

allocation of available resources. Motivated by this assertion,

in recent work [5],[6],[15] we applied the framework of

event-based control [17],[20],[19],[9],[1],[12] to cooperative

control of multi-agent systems, and more specifically, to

the well-studied case of agreement or consensus distributed

control design.

This work builds upon the results of [5],[15] in a twofold

manner. While [5] provided a purely distributed event-based

strategy, there were no guarantees that all the agents had

a strictly positive inter-execution time. This is avoided here

by redefining the non-cooperative event-triggering rules of

[15] in a cooperative manner. Thus the resulting event-based

controllers can be seen as a combination of the frameworks

presented in our previous work in [5],[15]. The first result

of the paper establishes that the distributed event-based

control strategy guarantees a strict lower bound on the inter-

execution times. We then proceed to the main result of the

paper that proves finite L2 gain stability for the case of

additive noise in each of the agents’ dynamics in the open

loop system. Stability to an arbitrarily small set around the
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agreement point is guaranteed in both cases. The results

utilize the framework of [18], where finite L2 gain stability

was tackled for interconnected linear systems with non-

cooperative equilibria. In contrast, the results of the current

paper involve cooperative equilibria, i.e., convergence to the

agreement manifold.

The rest of the paper is organized as follows: Section

II presents some necessary background and discusses the

problem treated in the paper. The new event-triggered ruling

is discussed in Section III while Section IV presents the

analysis of the finite L2 gain stability for the perturbed case.

Some examples are given in Section V while Section VI

includes a summary of the results of this paper.

II. BACKGROUND AND PROBLEM STATEMENT

In this section we first review some related results on

algebraic graph theory [8] that are used in the paper and

proceed to describe the problem in hand.

A. Algebraic Graph Theory

For an undirected graph G with N vertices the adjacency

matrix A = A(G) = (aij) is the N × N matrix given by

aij = 1, if (i, j) ∈ E, where E is the set of edges, and

aij = 0, otherwise. If there is an edge (i, j) ∈ E, then i, j
are called adjacent. A path of length r from a vertex i to a

vertex j is a sequence of r+1 distinct vertices starting with i
and ending with j such that consecutive vertices are adjacent.

For i = j, this path is called a cycle. If there is a path between

any two vertices of the graph G, then G is called connected.

A connected graph is called a tree if it contains no cycles.

The degree di of vertex i is defined as the number of its

neighboring vertices, i.e. di = {#j : (i, j) ∈ E}. Let ∆
be the n × n diagonal matrix of di’s. Then ∆ is called the

degree matrix of G. The (combinatorial) Laplacian of G is

the symmetric positive semidefinite matrix L = ∆−A. For a

connected graph, the Laplacian has a single zero eigenvalue

and the corresponding eigenvector is the vector of ones, 1.

We denote by 0 = λ1(G) ≤ λ2(G) ≤ . . . ≤ λN (G) the

eigenvalues of L. If G is connected, then λ2(G) > 0. An

orientation on G is the assignment of a direction to each

edge. An oriented graph has the the incidence matrix B =
B(G) = (bij), which is the {0,±1} matrix with rows and

columns indexed by the vertices and edges of G, respectively,

such that bij = 1 if the vertex i is the head of the edge j,

and bij = −1 if vertex i is the tail of the edge j, and bij =
0 otherwise. Obviously, the matrix B varies with different

assignment of the edges’ orientation. The Laplacian matrix

is also given by L = BBT .
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B. System Model

The system considered consists of N agents, with xi ∈ R

denoting the state of agent i. Note that the results of the

paper are extendable to arbitrary dimensions. We assume that

agents’ motion obeys a single integrator model:

ẋi = ui, i ∈ N = {1, . . . , N} (1)

where ui denotes the control input for each agent.

Each agent is assigned a subset Ni ⊂ {1, . . . , N} of the

rest of the team, called agent i’s communication set, that

includes the agents with which it can communicate. The

undirected communication graph G = {V,E} of the multi-

agent team consists of a set of vertices V = {1, ..., N}
indexed by the team members, and a set of edges, E =
{(i, j) ∈ V × V |i ∈ Nj} containing pairs of vertices that

correspond to communicating agents. Moreover, we denote

by x̄ the m-dimensional stack vector of relative differences

of pairs of agents that form an edge in G, where m is the

number of edges. The following relations are easily verified:

Lx = Bx̄, x̄ = BTx. Since x̄ = 0 ⇒ Bx̄ = 0 ⇒ Lx = 0,

then if G is connected, the requirement Lx = 0 guarantees

that x has all its elements equal.

C. Problem Statement

The agreement control laws in [7],[13] were given by

ui = −
∑

j∈Ni

(xi − xj) (2)

and the closed-loop equations of the nominal system were

ẋi = − ∑

j∈Ni

(xi − xj , ), i ∈ {1, . . . , N}, so that ẋ = −Lx,

where x = [x1, . . . , xN ]T and L is the graph Laplacian. For

a connected graph, all agents’ states converge to a common

point, called the “agreement point”, which coincides with the

average 1
N

∑

i

xi(0) of the initial states.

In [6],[5] we redefined the above control formula-

tion to take into account distributed event-triggered strate-

gies. In particular, for each i ∈ N , and t ≥ 0, in-

troduce a (state) measurement error ei(t). Denote the

stack vector e(t) = [e1(t), . . . , eN(t)]T . A sequence of

events tk0 , t
k
1 , . . . is defined for each agent k according to

fk(ek(t
k
i ),

∑

j∈Nk
(xi(t

k
i ) − xj(t

k
i ))) = 0, for k ∈ N and

i = 0, 1, . . .. Hence a condition encoded by the function

fk(ek(t
k
i ),

∑

j∈Nk
(xi(t

k
i ) − xj(t

k
i ))) triggers the events for

agent k ∈ N . The decentralized control law for k is updated

both at its own event times tk0 , t
k
1 , . . ., as well as at the last

event times of its neighbors tj0, t
j
1, . . . , j ∈ Nk. Thus it is of

the form

uk(t) = uk(t
k
i ,

⋃

j∈Nk

tji′(t)), (3)

where i′(t)
∆
= arg min

l∈N:t≥tj
l

{

t− tjl

}

. We aim at deriving

control laws of the form (3), and event times tk0 , t
k
1 , . . ., for

each agent k ∈ N that drive (1) to an agreement point.

III. NEW EVENT-TRIGGERED RULES FOR THE

DECENTRALIZED APPROACH

In this section we redefine the triggering rules of [5] in the

decentralized case to guarantee that there is a strict minimum

inter-execution time for all agents. In the decentralized event-

triggered cooperative control formulation, each agent updates

its own control input at event times it decides based on

information from its neighboring agents. The event times

for each agent i ∈ N are denoted by ti0, t
i
1, . . ..

The measurement error for agent i is defined as

ei(t) = xi(t
i
k)− xi(t), t ∈ [tik, t

i
k+1) (4)

The decentralized control strategy for agent i is:

ui(t) = −
∑

j∈Ni

(

xi(t
i
k)− xj(t

j
k′(t))

)

(5)

where

k′(t)
∆
= arg min

l∈N:t≥tj
l

{

t− tjl

}

Note that we have xj(t
j
k′(t)) = xj(t) + ej(t),

so that ẋi(t) = − ∑

j∈Ni

(

xi(t
i
k)− xj(t

j
k′(t))

)

==

− ∑

j∈Ni

(xi(t)− xj(t)) − ∑

j∈Ni

(ei(t)− ej(t)). Similarly to

[13], the state vector x can be decomposed as x(t) =
x̄(t)1 + δ(t), where x̄(t) = 1

N

∑

i

xi(t) denotes the average

of the agents’ states and δ is called the disagreement vector

in [13] and 1 is the vector of ones. It can easily be shown

that ˙̄x = 0 for the agents’ initial average. Let us denote

x̄(t) = x̄(0) = x̄ for all t ≥ 0. Note that the above control

law can be written in stack vector form as ẋ = −L(x+ e).
We have ẋ = δ̇ = −L(x+ e) = −L(x̄1 + δ + e), so that

δ̇ = −L(δ + e) (6)

For an undirected graph, an important property of δ proven in

[13] is δTLδ ≥ λ2 (G) ‖δ‖2 for all δ satisfying x = x̄1+ δ.

Denote now Lx , z = [z1, . . . , zN ]T and consider the

Lyapunov function candidate

V =
1

2
xTLx

It is shown in [5] that

V̇ ≤ −
∑

i

(1 − a|Ni|)z2i +
∑

i

1

a
|Ni|e2i

where a > 0. We will now redefine the triggering rule of [5]

in order to achieve a strictly positive inter-execution time

for all agents, and not only one agent at a time, as in [5].

The resulting event-triggering strategy can be considered as

a combination of the triggering rules derived in our earlier

papers [5] and [15].

Assume that a satisfies

0 < a <
1

|Ni|
(7)
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for all i ∈ N . Then, enforcing the condition

e2i ≤ σia(1− a|Ni|)
|Ni|

z2i + εi (8)

where εi > 0 is a scalar constant for all i ∈ N , we get

V̇ ≤
∑

i

(σi − 1)(1− a|Ni|)z2i +
∑

i

1

a
|Ni|εi

The latter implies

V̇ ≤ −min
i

(1− σi)(1 − a|Ni|)||z||2 +
∑

i

1

a
|Ni|εi

which is negative for 0 < σi < 1 and

||z||2 >

∑

i

|Ni|εi
amin

i
(1− σi)(1 − a|Ni|)

The additional term εi > 0 in the event triggering rule (8)

with respect to the one in [5] allows for guaranteeing a lower

bound in the inter-execution times.

We can see now that for each i ∈ N , an event is triggered

when

fi



ei,
∑

j∈Ni

(xi − xj)





∆
= e2i − βiz

2
i − εi = 0 (9)

where zi =
∑

j∈Ni

(xi − xj) and we also use the notation

βi =
σia(1− a|Ni|)

|Ni|
. The update rule (9) holds at the event

times tik corresponding to agent i:

fi



ei
(

tik
)

,
∑

j∈Ni

(xi(t
i
k)− xj

(

tik
)

)



 = 0

with k = 0, 1, . . . and i ∈ N . At an event time tik, we have

ei(t
i
k) = xi(t

i
k)− xi(t

i
k) = 0

and thus, condition (8) is enforced.

It should be emphasized that the condition (9) is verified

by agent i only based on information of each own and

neighboring agents’ information.

The following theorem regarding the inter-event times

holds:

Theorem 1: Consider system ẋi = ui, i ∈ N =
{1, . . . , N} with the control law (5) and update ruling (9),

and assume that G is connected. Suppose that 0 < a < 1
|Ni|

and 0 < σi < 1 for all i ∈ N . Then for any initial condition

in R
N , and any time t ≥ 0, as long as

||z||2 >

∑

i

|Ni|εi
amin

i
(1 − σi)(1− a|Ni|)

,

the inter-execution times of all agents are lower bounded by

a strictly positive lower bound.

Proof : As long as

||z||2 >

∑

i

|Ni|εi
amin

i
(1− σi)(1 − a|Ni|)

we know that V̇ < 0. Thus V (t) < V (0) for all t > 0 and

this implies

xTLx = xTBBTx = ||BTx||2 < V (0)

Note now that Lx = BBTx so that ||Lx|| ≤ ||B||||BTx||,
which implies ||Lx|| ≤ ||B||

√

V (0), i.e., ||Lx|| remains

bounded.

Assume now that agent i updates its control law at time

t∗. Then ei(t
∗) = 0 and fi(t

∗) ≤ −εi < 0, so that i cannot

trigger again instantaneously, i.e., Zeno behavior is excluded.

We can now compute lower bounds on the interexecution

times. In particular, since in between t∗ and the next update

time of i we have that ėi = −ẋi = −ui, we have |ei(t)| ≤
∫ t

t∗
|ui(s)|ds for all t > t∗ until the next update time of i.

From (8) we have that ||e||2 =
∑

i |ei|2 ≤ ∑

i βiz
2
i +

∑

i εi. Using the notation β̄ = maxi βi and ε̄ =
∑

i εi the

last equation yields

||e||2 ≤ β̄||Lx||2 + ε̄

We can then derive |ui| ≤ ||u|| = ||L(x + e)|| ≤ ||Lx|| +
||L||(

√

β̄||Lx||+
√
ε̄), and, using ||Lx|| ≤ ||B||

√

V (0), we

finally have

|ui(t)| ≤ ||B||
√

V (0)(1 + ||L||
√

β̄) + ||L||
√
ε̄) , ū

Since |ei(t)| ≤
∫ t

t∗
|ui(s)|ds for all t > t∗, we have |ei(t)| ≤

ū(t − t∗), for all t > t∗ before the next event for agent i
is triggered. The next event is not triggered before (8) is

violated, and this cannot happen before |ei(t)| =
√
εi. A

lower bound for the next event time is thus given by t−t∗ =√
εi

ū
. Therefore the minimum lower bound for the next event

time for all agents i and all times t is given by t − t∗ =
mini

√
εi

ū , or using the standard notation for the inter-event

times, we have

tik+1 − tik =
mini

√
εi

ū
(10)

for all i ∈ N , k = 0, 1, . . . ♦
We now check the convergence properties of the closed

loop system (1),(5), (9). Following the derivations of [15], it

can be shown that the disagreement vector δ(t) in (6) satisfies

||δ(t)|| ≤ e−λ2t||δ(0)||+
t

∫

0

e−λ2(t−s)||Le(s)||ds

where λ2 is the second smallest eigenvalue of the Laplacian

matrix of G which satisfies λ2 > 0 for a connected G.

Remember that

||e||2 ≤ β̄||Lx||2 + ε̄

and assume that

||Lx||2 = ||z||2 ≤

∑

i

|Ni|εi
amin

i
(1− σi)(1 − a|Ni|)

, M1
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Then δ(t) is bounded by

||δ(t)|| ≤ e−λ2t(||δ(0)|| − ||L||2
√

β̄M1 + ε̄

λ2
)+

+
||L||2

√

β̄M1 + ε̄

λ2
, M2(t) (11)

Note that V̇ < 0 as long as ||z||2 > M1. Note also that

M1 is a linear function of εi and that M2(t) contains the

exponentially decaying term in e−λ2t. From (11) and δ =
x − x̄1, we have that ||z||2 ≤ M1 implies V = xTLx ≤
M1(M2(t) + |||x̄||). We can now state the following result:

Corollary 2: Consider system ẋ = u with the control

law (5),(9) and assume that the communication graph G
is connected. Then the system reaches the time varying set

V = xTLx ≤ M1(M2(t)+ |||x̄||) in finite time and remains

within this set. As t → ∞, the following bound holds:

||Lx||2 ≤ ||B||2M1(
||L||2

√

β̄M1 + ε̄

λ2
+ |||x̄||)

Proof : The first part is straightforward from the above

analysis. For the second part, note that for t → ∞, we have

that V (t) ≤ M1(
||L||2

√
β̄M1+ε̄

λ2

+ |||x̄||). The result is now

derived from the use of the relations xTLx = ||BTx||2 and

||Lx|| ≤ ||B||||BTx||. ♦
IV. L2 GAIN ANALYSIS

In this section we will examine the robustness of the

proposed approach with respect to additive disturbances

in the model. In particular, we assume that each agent’s

dynamics are perturbed by an additive noise of the form

ẋi = ui + wi, i ∈ N = {1, . . . , N} (12)

We assume that each wi is a one-dimensional L2 function.

The closed-loop dynamics for each agent i are thus now

given by

ẋi(t) = −
∑

j∈Ni

(

xi(t
i
k)− xj(t

j
k′(t))

)

+ wi(t) =

= −
∑

j∈Ni

(xi(t)− xj(t))−
∑

j∈Ni

(ei(t)− ej(t)) + wi(t)

Note that the above control law can be written in stack vector

form as

ẋ = −L(x+ e) + w (13)

where w = [w1, . . . , wN ]T is the stack vector of all distur-

bances.

We will examine the finite L2-gain stability [11] from the

vector Lx that represents the agreement objective to the noise

terms w for the system (13).

Consider again the Lyapunov function candidate

V =
1

2
xTLx

Then

V̇ = xTLẋ = −xTL(Lx+Le−w) = −zT z−zTLe+zTw

From the definition of the Laplacian matrix we get

V̇ = −
∑

i

z2i −
∑

i

∑

j∈Ni

zi (ei − ej) +
∑

i

ziwi

= −
∑

i

z2i −
∑

i

|Ni|ziei +
∑

i

∑

j∈Ni

ziej +
∑

i

ziwi

Using similar techniques as in the previous section, we can

bound V̇ as

V̇ ≤−
∑

i

(1 − a|Ni|)z2i +
∑

i

1

a
|Ni|e2i

+
∑

i

ζ

2
z2i +

∑

i

1

2ζ
w2

i

where a, ζ > 0. Assume that the triggering condition is now

given by

e2i ≤ σia(1− a|Ni| − ζ/2)

|Ni|
z2i + εi (14)

and denote by θi ,
σia(1−a|Ni|−ζ/2)

|Ni| . We can see now that

for each i ∈ N , an event is triggered when

fi



ei,
∑

j∈Ni

(xi − xj)





∆
= e2i − θiz

2
i − εi = 0 (15)

Then we have

V̇ ≤−
∑

i

(1 − σi)(1− a|Ni| − ζ/2)z2i

+
∑

i

|Ni|
a

εi +
∑

i

1

2ζ
w2

i

Assume that the controller parameters are chosen so that

0 < σi < 1 and 0 < a|Ni|+ζ/2 < 1. Then the last inequality

implies

V̇ ≤−min
i
{(1− σi)(1− a|Ni| − ζ/2)}||z||2

+
∑

i

|Ni|
a

εi +
1

2ζ
||w||2

which shows that the closed loop system is finite L2-

gain stable with an induced gain which is less than
1

√

2ζmin
i
{(1− σi)(1 − a|Ni| − ζ/2)}

. The preceding anal-

ysis is summarized in the following theorem:

Theorem 3: Consider system (13) with the triggering rule

(14) and assume that the communication graph G is con-

nected. Assume that the controller parameters are chosen

so that 0 < σi < 1 and 0 < a|Ni| + ζ/2 < 1
for all i ∈ N . Then the closed-loop system is finite

L2-gain stable with an induced gain which is less than
1

√

2ζmin
i
{(1− σi)(1 − a|Ni| − ζ/2)}

.

Having established finite L2-gain stability, we will now

derive similar lower bounds on the inter-execution times for

each agent. Towards this goal, assume that there is a uniform

upper bound in the noise terms in (12) of the form wi(t) ≤ w̄
for all i ∈ N and all t ≥ 0.
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The following result then holds:

Theorem 4: Consider the system (12) with the control law

(5) and update ruling (14) and assume that the communica-

tion graph G is connected. Suppose that 0 < σi < 1 and

0 < a|Ni| + ζ/2 < 1 for all i ∈ N and wi(t) ≤ w̄ for all

i ∈ N and all t ≥ 0. Then for any initial condition in R
N ,

and any time t ≥ 0, as long as

z2i >

εi|Ni|
a + w̄

2ζ

(1 − σi)(1− a|Ni| − ζ/2)

for all i ∈ N , the inter-execution times of all agents are

lower bounded by a strictly positive lower bound.

Proof : The proof follows similar steps as the one of Theorem

1. In particular, As long as

z2i >

εi|Ni|
a + w̄

2ζ

(1 − σi)(1− a|Ni| − ζ/2)

for all i ∈ N , we know that V̇ < 0. Thus V (t) < V (0)
for all t > 0 and this implies ||Lx|| ≤ ||B||

√

V (0), i.e.,

||Lx|| remains bounded. Assume now that agent i updates its

control law at time t∗. Then ei(t
∗) = 0 and fi(t

∗) ≤ −εi <
0, so that i cannot trigger again instantaneously. Now since

in between t∗ and the next update time of i we have that ėi =
−ẋi = −ui−wi, we have |ei(t)| ≤

∫ t

t∗
(|ui(s)|+ |wi(s)|)ds

for all t > t∗ until the next update time of i.
From (14) we have that ||e||2 =

∑

i |ei|2 ≤ ∑

i θiz
2
i +

∑

i εi. Using the notation θ̄ = maxi θi and ε̄ =
∑

i εi the

last equation yields ||e||2 ≤ θ̄||Lx||2+ ε̄. We can then derive

|ui| ≤ ||u|| = ||L(x+ e)|| ≤ ||Lx||+ ||L||(
√
θ̄||Lx||+

√
ε̄),

and, using ||Lx|| ≤ ||B||
√

V (0), we finally have

|ui(t)| ≤ ||B||
√

V (0)(1 + ||L||
√

θ̄) + ||L||
√
ε̄) , ū′

Since |ei(t)| ≤
∫ t

t∗
(|ui(s)| + |wi(s)|)ds for all t > t∗, we

have |ei(t)| ≤ (ū′ + w̄)(t − t∗), for all t > t∗ before the

next event for agent i is triggered. The next event is not

triggered before (14) is violated, and this cannot happen

before |ei(t)| =
√
εi. A lower bound for the next event time

is thus given by t − t∗ =

√
εi

ū′ + w̄
. Therefore the minimum

lower bound for the next event time for all agents i and all

times t is given by t− t∗ =
mini

√
εi

ū′+w̄ , or using the standard

notation for the inter-event times, we have

tik+1 − tik =
mini

√
εi

ū′ + w̄
(16)

for all i ∈ N , k = 0, 1, . . . ♦
The above analysis establishes the finite L2 gain stability

of the system and the existence of a strictly bounded inter-

execution times for all the agents. A similar analysis with

the one used in the end of the previous section can yield

similar results on the convergence of the perturbed system.

V. EXAMPLES

The results of the previous Sections are depicted through

computer simulations.

Consider a network of four agents whose Laplacian matrix

is given by

L =









1 −1 0 0
−1 3 −1 −1
0 −1 2 −1
0 −1 −1 2









Agents are driven by (1) in the first simulation, while they

are driven by (12) in the second simulation. The two figures

depict the error norm evolution of the same agent in each

case. The first figure depicts the evolution of the error norm

and the corresponding element of the vector z = Lx for

the specific agent 4 in the case of the system (1), driven

by (5),(9). One can observe that the inter-execution times

are lower bounded. The same example is recapped with
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Fig. 1. Evolution of |z4|(bold line) and |e4| for the case of agents of the
system (1), driven by (5),(9).

the addition of noise, as per (12), with the control design

(5), (14). One can see that the event updates are still lower

bounded, however the state trajectory is more distant than the

desired equilibrium point |z4| = 0, due to the noise term. In

both cases however, the trajectory remains within a bounded

set from the agreement point, as expected from the derived

results.

VI. CONCLUSIONS

We extended our previous results on event-triggered agree-

ment by proposing a triggering mechanism that is finite L2

gain stable with respect to additive disturbances in the open

loop dynamics of the agents. Moreover, the control design is

both distributed and provides strictly positive inter-execution

times. Simulation examples support the derived theoretical

results.
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