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Abstract— A state estimation method is presented that allows
the designer to trade off estimator performance for communi-
cation bandwidth in a networked control system. The method is
based on a time-varying Kalman filter and a communication de-
cision rule for each sensor: a sensor measurement is transmitted
and used to update the Kalman filter if its associated prediction
variance exceeds a certain tolerable bound. The resulting
equation for the estimation error variance is deterministic,
which enables its off-line analysis. If a periodic solution to
the variance equation is found, it facilitates a straight-forward
implementation of the communication decision: each sensor
transmits its measurements with a fixed periodic sequence.
This state estimation method is applied in the feedback control
system of a cube balancing on one of its edges. Six rotating
bodies on the cube stabilize the system and constitute the agents
in the networked control system: each one is equipped with local
actuation, sensing, and computation, and the agents share their
sensor data over a broadcast network. Experimental results
compare the performance of the reduced communication state
estimation algorithm to a Kalman filter with full measurements.

I. INTRODUCTION

This paper considers the problem of estimating the state

of a dynamic system from multiple distributed sensors,

while at the same time seeking to reduce the number of

sensor measurements that serve as input to the estimator

algorithm. While the number and the arrangement of sen-

sors is considered as given, the sensors’ transmit rates are

variable. Since reducing the set of sensor data generally

decreases the estimator performance (provided the reduced

sensor data is not defective), a designer would thus be able to

trade off between estimator performance and communication

bandwidth.

Networked control systems (NCSs) are an example of the

described scenario, where transmitting a sensor measurement

is associated with a certain cost. In NCSs, a multi-purpose

communication network is shared by multiple control, sensor,

and actuator units, [1]. Accordingly, a sensor node trans-

mitting its measurement means that the other units cannot

use the network without increasing load-induced delays. In

wireless sensor networks, reducing the amount of transmitted

data often reduces the energy consumption on the sensor

nodes, [2].

We approach the problem of reduced communication

state estimation by using a (standard) time-varying Kalman

filter combined with a constraint on the usage of sensor

measurements: a particular sensor measurement is used to
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Fig. 1. The design problem: state estimator and communication logic are
designed in order to estimate the process state x(k) from a reduced number
of measurements. Solid lines denote continuous data flow (i.e. transmission
at every discrete time step k), dashed lines denote discontinuous flow of
data.

update the estimator if its associated prediction error variance

exceeds a certain tolerable bound. Hence, a measurement is

only used when it is required to meet a certain estimation

performance. The bounds represent tuning parameters that

allow one to trade off communication bandwidth for estima-

tion performance. The constraints define transmission rules

at each sensor.

The estimator design problem is depicted in Fig. 1. The

system state x(k) is estimated at discrete time instants k
from a subset of the measurements y(k). A communication

logic block selects the subset ỹ(k) from the full measurement

vector y(k) and sends the data over a network to the

state estimator. We assume an ideal communication network,

where the transmission of measurements is instantaneous

and no data is lost. The physical representation of the com-

munication logic block may be a sensor with computation

capabilities, a network agent (possibly itself running a state

estimator), or it may simply represent sensors with different

transmit rates. It is assumed that the system inputs u(k) are

known to the state estimator.

Actively reducing the transmission of data to a remote

estimator is known as controlled communication, [1]. Such

algorithms have been proposed in [3]–[6], for example. In

previous work [6], the sending decision is based on real

time measurement data. The method presented here differs

in that the sending decision is based on the estimation error

variance. Since the variance can be computed off-line, this

approach offers a tractable solution. Specifically, if a periodic

solution of the estimation variance evolution is found, it

corresponds to a periodic sending sequence for each sensor,

and hence allows for a straight-forward implementation of
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Fig. 2. The Balancing Cube (edge length 1.2m) is an example of
a networked control system: six rotating bodies, each having sensors,
actuation, and computational unit, share information over a network to
balance the cube on its edge.

the resulting communication logic. The periodic sending

sequence can be computed in advance and fixed for each

sensor. For two heterogeneous sensors, variance-based and

periodic scheduling of sensor transmissions have also been

studied in [7].

The state estimator is a time-varying Kalman filter that

handles the arrival of measurements at different rates. The

proposed technique can therefore also be regarded as a

method for designing a multi-rate Kalman filter, where the

update rates are determined based on upper bounds on

the tolerable error variance. The resulting state estimator

switches periodically between different modes defined by the

set of measurements available at an update step. Switching

or periodic state estimators have been studied, for example,

in [8]–[10], and references therein.

The Balancing Cube1 shown in Fig. 2 and 3 serves as

the testbed to demonstrate the presented method. The cube

balances on one of its edges through the action of six rotating

bodies on its inner faces. The rotating bodies carry a motor,

sensors, a computer, and a battery. Their computers share the

local sensor data over a Controller Area Network (CAN).

The cube therefore represents an example of a networked

control system with the rotating bodies being its agents. The

reduced communication state estimation scheme of Fig. 1 is

applied by implementing a copy of the same state estimator

on each agent. Being a broadcast network, the CAN ensures

the consistency of the state estimates in the network.

This paper is organized as follows: The equations for

the time-varying Kalman filter and associated constraints on

the usage of sensor measurements are presented in Sec. II.

Section III treats the special case of a periodic solution

to the estimation error variance iteration and the obtained

simplification of the communication logic. Experimental

1For a video of the Balancing Cube, please refer to the project website
http://www.cube.ethz.ch.

Fig. 3. Rendering of the Balancing Cube, shown in the same orientation
as in Fig. 2. The cube has six rotating arms, one on each face.

results from the Balancing Cube testbed are given in Sec. IV.

The paper concludes with remarks in Sec. V.

II. REDUCED COMMUNICATION STATE ESTIMATOR

We consider the stochastic linear time-invariant system

x(k) = Ax(k−1) +B u(k−1) + v(k−1) (1)

y(k) = C x(k) + w(k), (2)

where k is the discrete time index; x(k), v(k) ∈ R
n;

u(k) ∈ R
m; y(k), w(k) ∈ R

p; and all matrices are of

corresponding dimensions. The process noise, the measure-

ment noise, and the initial state x(0) are assumed mutually

independent, Gaussian distributed with v(k) ∼ N (0, Q),
w(k) ∼ N (0, R), and x(0) ∼ N (x0, P0), where N (m,V )
denotes a normally distributed random variable with mean

m and covariance matrix V . Furthermore, the pair (A,C)
is assumed detectable, (A,Q) stabilizable, and R diagonal.

The latter assumption means that the measurement noise

is mutually independent for any two sensors considered,

which is often the case in practice. The presented state

estimation method can, however, be readily extended to the

case of block diagonal R by sending blocks of correlated

measurements at once.

Throughout this paper j is used to index a single mea-

surement, i.e. an element of the vector y. Accordingly, Cj

denotes the jth row of C and Rjj the jth diagonal element

of R. We use the index set J(k), a subset of {1, . . . , p}, to

denote a selection of measurements at time k. The notation

[Cj ]j∈J(k) is used to denote the matrix constructed from

stacking the rows Cj for all j ∈ J(k); and diag[Rjj ]j∈J(k)

denotes the diagonal matrix with entries Rjj , for j ∈ J(k),
on its diagonal.

It is well-known that the optimal state estimator for the

system (1), (2) with full measurements (J(k) = {1, . . . , p})

is the Kalman filter, which is restated in Sec. II-A. The

constraints on the usage of measurements are set up in

Sec. II-B and the corresponding Kalman filter equations for

the reduced set of measurements (J(k) ⊆ {1, . . . , p}) are

derived.
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A. Kalman Filter with Full Set of Measurements

The Kalman filter recursions for the system (1), (2) can

be written as

x̂(k|k−1) = Ax̂(k−1|k−1) +Bu(k−1) (3)

P (k|k−1) = AP (k−1|k−1)AT +Q (4)

K(k) = P (k|k−1)CT
(

CP (k|k−1)CT +R
)−1

(5)

x̂(k|k) = x̂(k|k−1) +K(k)
(

y(k)−Cx̂(k|k−1)
)

(6)

P (k|k) =
(

I−K(k)C
)

P (k|k−1) (7)

with the following meaning of the Kalman filter variables

x̂(k|k−1) = E [x(k)|Y(k−1),U(k−1)]

x̂(k|k) = E [x(k)|Y(k),U(k)]

P (k|k−1) = Var [x(k)|Y(k−1),U(k−1)]

P (k|k) = Var [x(k)|Y(k),U(k)],

where E [·|·] denotes the conditional expected value, Var [·|·]
the conditional variance, and Y and U denote the sets of

measurements and inputs up to time k, i.e.

Y(k) =
{

y(l) | 0 ≤ l ≤ k
}

U(k) =
{

u(l) | 0 ≤ l ≤ k
}

.

The filter is initialized by x̂(0|0) = x0 and P (0|0) = P0.

To reflect the fact that for the filter (3)–(7) all sensor

measurements y(k) are communicated, it is referred to below

as full communication Kalman filter.

It is well-known (cf. e.g. [11]) that the time-varying

Kalman filter (3)–(7) is the optimal state estimator for the

considered problem class. Optimality, in this case, means that

the Kalman filter keeps track of the entire distribution of the

state x(k) conditioned on all measurements and inputs up to

time k.

Under the condition that the pair (A,C) is detectable and

(A,Q) is stabilizable, the Kalman filter recursion for the

prediction variance P (k|k−1) converges to a positive semi-

definite matrix P̄ , [11], i.e.

lim
k→∞

P (k|k−1) = P̄ ≥ 0,

which satisfies the discrete algebraic Riccati equation

(DARE)

P̄ = AP̄AT +Q−AP̄CT (CP̄CT +R)−1CP̄AT . (8)

B. Kalman Filter with Reduced Set of Measurements

In order to reduce communication requirements, we now

seek a state estimator for the system (1) that receives a time-

varying number p̃(k) ≤ p of measurements

ỹ(k) = C̃(k)x(k) + w̃(k), (9)

where ỹ(k), w̃(k) ∈ R
p̃(k), w̃(k) ∼ N (0, R̃(k)). Notice that

ỹ(k), w̃(k), C̃(k) ∈ R
p̃(k)×n, and R̃(k) ∈ R

p̃(k)×p̃(k) have

time varying dimensions, which includes the case p̃(k) = 0;

that is, at time k there is no measurement available at the

estimator. In order to avoid special treatment of this case,

we use the convention that y(k) = ∅, and the measurement

update step in the Kalman filter below is omitted in case no

measurement is available at time k.

We next state the Kalman filter equations for the system

(1), (9) and then make precise how the measurements (and

hence the matrices C̃(k) and R̃(k)) are selected at each time

step.

For any given sequence of {C̃(k)}k and {R̃(k)}k, the

time-varying Kalman filter

x̌(k|k−1) = Ax̌(k−1|k−1) +Bu(k−1) (10)

P̌ (k|k−1) = AP̌ (k−1|k−1)AT +Q (11)

Ǩ(k) = P̌ (k|k−1) C̃T(k)

·
(

C̃(k)P̌ (k|k−1)C̃T(k) + R̃(k)
)−1 (12)

x̌(k|k) = x̌(k|k−1) + Ǩ(k)
(

y(k)−C̃(k)x̌(k|k−1)
)

(13)

P̌ (k|k) =
(

I−Ǩ(k)C̃(k)
)

P̌ (k|k−1) (14)

is the optimal estimator for the system (1), (9) (cf. [11]). The

estimator keeps track of the state distribution conditioned on

all measurements ỹ(k) and inputs up to time k. Hence,

x̌(k|k−1) = E [x(k)|Ỹ(k−1),U(k−1)]

x̌(k|k) = E [x(k)|Ỹ(k),U(k)]

P̌ (k|k−1) = Var [x(k)|Ỹ(k−1),U(k−1)]

P̌ (k|k) = Var [x(k)|Ỹ(k),U(k)],

where Ỹ(k) denotes the collection of measurements ỹ(k),

Ỹ(k) =
{

ỹ(l) | 0 ≤ l ≤ k
}

.

Among all possible sequences {C̃(k)}k and {R̃(k)}k, we

now wish to choose those that correspond to a reduced set

of measurements J(k) ⊆ {1, . . . , p}. Following the idea out-

lined in the introduction, the estimator update uses only those

measurements whose prediction variance exceeds a certain

bound. Since the resulting estimator hence relies on a subset

of all measurements Y(k), its estimation variance is greater

than the variance of the full measurement Kalman filter (3)–

(7). Therefore, the prediction variance of measurement yj(k),

Var [yj(k) | Ỹ(k−1),U(k−1)] = CjP̌ (k|k−1)CT
j +Rjj (15)

is compared to its steady-state counterpart of the full mea-

surements filter,

P̄yj
:= lim

k→∞

Var [yj(k) | Y(k−1),U(k−1)] = CjP̄CT
j +Rjj .

(16)

Accordingly, we use the following rule to decide if a single

measurement yj(k) is transmitted for use in the Kalman filter

update:

transmit yj(k) ⇔

Var [yj(k) | Ỹ(k−1),U(k−1)]− P̄yj

P̄yj

≥ δj ,

which, with (15) and (16), simplifies to

transmit yj(k) ⇔ Cj

(

P̌ (k|k−1)− P̄
)

CT
j ≥ δjP̄yj

. (17)
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The tuning parameters δj capture the tolerable normalized

deviation of each sensor’s measurement prediction variance

from the full communication, steady-state variance. For

example, δj = 0 means no deviation, δj = 1 means deviation

of P̄yj
, etc. Clearly, if δj = 0 for all sensors, the reduced

communication Kalman filter (10)–(14) is equivalent to the

full communication filter (3)–(7).

Using the transmit rule (17), the index set J(k) of all

measurements used in the estimator at time k is

J(k) = {j | 0 ≤ j ≤ p, Cj

(

P̌ (k|k−1)− P̄
)

CT
j ≥ δjP̄yj

},
(18)

and the corresponding time-dependent output and measure-

ment noise variance matrices are

C̃(k) = [Cj ]j∈J(k) (19)

R̃(k) = diag[Rjj ]j∈J(k). (20)

The sequences {C̃(k)}k and {R̃(k)}k are well defined

by (18), (19), (20) and knowledge of P̌ (k|k−1). Together,

the equations (11), (12), (14), (18), (19), and (20) pro-

vide recursive update equations for obtaining the sequences

P̌ (k|k−1), P̌ (k|k), C̃(k), R̃(k) from the problem data (A,

C, R, Q, P0), and the tuning parameters δj . Note that this is

fundamentally different from approaches such as [6], where

the decision whether to use a measurement in the estimator

update depends on the actual measurement data y(k). If

the decision depends on real time data, the Kalman filter

variables P̌ (k|k−1) and P̌ (k|k) become random variables

themselves, whereas with the presented method, they can be

computed off-line from the problem data.

Since the Kalman filter (10)–(14) is the optimal state

estimator for any sequences {C̃(k)}k and {R̃(k)}k, it is also

optimal for those sequences given by (18), (19), (20). In other

words, given the constraints (17) expressing the objective to

use “valuable” measurements only, the Kalman filter (10)–

(14) is the optimal state estimator. It is referred to below as

reduced communication Kalman filter.

To later study the evolution of the estimation error vari-

ance, the equations (11), (12), and (14) are combined to

P̌ (k+1) = A P̌ (k)AT +Q−A P̌ (k) ČT
(

P̌ (k)
)

·
(

Č
(

P̌ (k)
)

P̌ (k) ČT
(

P̌ (k)
)

+ Ř
(

P̌ (k)
)

)−1

· Č
(

P̌ (k)
)

P̌ (k)AT

=: G
(

P̌ (k)
)

, (21)

where the short-hand P̌ (k) := P̌ (k|k − 1) is used;

Č(P̌ (k)) := C̃(k) and Ř(P̌ (k)) := R̃(k) have been

introduced to emphasize their dependence on P̌ (k) according

to (18), (19), (20); and G(·) denotes the map of P̌ (k) to

P̌ (k+1).

III. PERIODIC SOLUTIONS

The Kalman filter derived in Sec. II-B can readily be

implemented as a means to manage the communication rate

(measured as the number of measurements per time unit) for

the problem of Fig. 1. The state estimator block is given by

(10)–(14) and the communication logic by (17). However,

in view of the fact that the Kalman filter iteration (21) can

be computed off-line, it may be beneficial to analyze the

iteration for a given choice of threshold parameters δj . If

a periodic solution is found, it gives rise to a simplified

implementation of the measurement sending decisions.

For (A,C) detectable and (A,Q) stabilizable, the variance

of the full communication Kalman filter (3)–(7) converges

to the unique solution P̄ ≥ 0 of the the DARE (8).

Clearly, it cannot be generally expected that the reduced

communication Kalman filter (10)–(14) converges to the

same steady-state solution. We illustrate this point with the

following example: if A is unstable and δj is chosen large,

then if P̌ (k) starts close to P̄ , J(k) = ∅, and P̌ (k) will grow

according to P̌ (k + 1) = AP̌ (k)AT +Q; hence, P̄ is not a

solution.

The Kalman filter iteration (21) may, however, have pe-

riodic solutions. An example of this is shown in the next

section. A periodic solution of the prediction variance corre-

sponds to fixed, periodic sending sequences for the sensors

given by (17), and hence provides a straight-forward way

for implementing the reduced communication state estimator.

The definition of a periodic solution, and an immediate

property that is useful for practical implementation, are given

in the following:

Definition 1: A symmetric positive definite matrix P̃ is

called a κ-periodic solution to (21) if P̃ = Gκ(P̃ ), where

Gκ denotes the κ times application of G.

Proposition 1: Let P̃ be a κ-periodic solution. If P̌ (1) =
P̃ , then ∀k P̌ (k) = Gmod(k−1,κ)(P̃ ).

Proof: From the definition of a κ-periodic solution it

follows that ∀m ∈ N, P̌ (mκ+ 1) = P̃ . Furthermore, Gi(P̃ )
for i = 0, 1, . . . , κ− 1 are also κ-periodic solutions. Hence,

∀m ∈ N and ∀i ∈ {0, 1, . . . , κ−1}, P̌ (mκ+i+1) = Gi(P̃ ),
from which the claim follows.

A. Seeking a Periodic Solution

One practical way to find a periodic solution is to simply

simulate the Kalman filter iteration (21) initialized with

P̌ (0) = P̄ , and observe if a periodic solution exists for some

κ. This practical approach is pursued in Sec. IV.

The question of existence of a periodic solution is an

interesting theoretical question, but is, however, beyond the

scope of this paper. Even in the absence of a known peri-

odic solution, one may be able to approximate a switching

sequence with a periodic solution and analyze in advance if

it performs satisfactorily.

B. State Estimator with Periodic Sending

This section addresses how the communication logic and

estimator blocks of Fig. 1 can be implemented when a

periodic solution for the estimator variance is known. This

implementation is used in the experimental demonstration in

Sec. IV.

Communication logic. With a known κ-periodic solution

P̃ , the implementation of the sending decision becomes

particularly straight-forward. One simply has to store the
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sending sequence {γj(k)}k for each sensor j over κ steps;

that is, defining for k = 1, . . . , κ,

γj(k) :=

{

1 if Cj(G
k−1(P̃ )− P̄ )CT

i ≥ δjP̄yj

0 otherwise ,

and using Proposition 1, the transmit decision (17) becomes

transmit yj(k) ⇔ γj
(

mod(k − 1, κ) + 1
)

= 1, (22)

which is simply a check of a binary condition.

State estimator. The state estimator is given by the Kalman

filter (10)–(14), which handles the arrival of varying numbers

of measurements. In an ideal network, the variance and gain

matrices can be computed off-line. However, in order to cope

with non-idealities in physical networks such as imperfect

synchronization and communication delays, the estimator

node checks which measurements have arrived at every step

k, builds the output and measurement noise matrices of

output equation (9), and performs the Kalman filter update

steps (10)–(14).

IV. EXPERIMENTAL DEMONSTRATION ON THE

BALANCING CUBE

We applied the reduced communication state estimator to

a networked control system with unstable dynamics. In this

section we present the experimental results, and compare

the closed-loop performance of the reduced communication

estimator to that of the full communication Kalman filter.

The testbed for the estimation algorithm is the Balancing

Cube – a dynamic sculpture that can balance on any of its

edges or corners through the action of six rotating bodies

located on its inner faces, see Fig. 2 and 3. Each rotating

body is rigidly mounted to the cube structure and we refer to

the body together with its housing as a module. Each module

is identically equipped with local actuation, sensors, power,

and a computation unit. Sensor data can be shared between

the modules over a broadcast network. Even though the cube

can balance on its corners (as has been shown in [12]), for

the purpose of this work, it balances on one of its edges.

The experimental setup is the same as the one presented

in [6], and we therefore keep the description of the system in

Sec. IV-A to the essentials. Further details and, in particular,

an explanation of the feedback controller design (a static gain

LQR controller) may be found in the mentioned reference.

The design of the reduced communication state estimator

is addressed in Sec. IV-B and experimental results of its

application on the Balancing Cube are shown in Sec. IV-C.

A. System Description and Linear Model

The active building blocks of the Balancing Cube are the

six rotating modules on its faces. Each one is actuated by

a DC motor, which tracks velocity commands by a local

high gain feedback controller. The angular position of a

module relative to the cube body is measured by an absolute

encoder. An inertial measurement unit (IMU) with tri-axis

accelerometer and tri-axis rate gyroscope (gyro) is mounted

on each face of the cube and associated with a module. A

single-board computer (SBC) on each module reads data

from the local encoder and IMU and issues commands

to the motor. The SBCs exchange data with each other

over a Controller Area Network (CAN), whose wires run

through slip rings and along the cube structure. The low-

level CAN protocols allow each module to broadcast its local

measurements to all other modules on the network.

The networked control architecture of the Balancing Cube

is shown in Fig. 4. The modules with local actuation, sensing,

and computation constitute the agents of the NCS (the terms

module and agent are therefore used synonymously below).

The broadcast protocol ensures that all agents receive the

same data from the network (if one agent sends data, it is

received by all other agents).

For the purpose of demonstrating the reduced communica-

tion state estimation technique, only two sensors are used per

module: the absolute encoder and the rate gyro measurement

that is parallel to the axis of rotation of the cube.

A linear discrete-time model of the Balancing Cube with

sampling time Ts = 1/60 s is given by

x(k) = Ax(k−1) +B1 u(k−1) +B2 u(k−2) + v(k−1),
(23)

y(k) = C x(k) + w(k), (24)

where u(k) are the velocity commands issued to the motor

and originating from a stabilizing feedback controller. The

model captures the dynamics of the cube about the equilib-

rium configuration shown in Fig. 2 and 3. The matrices of

the state space model may be found in [6]; the states and

outputs of the system are summarized in Table I.

The special structure of the state update equation (23)

with the additional delayed input u(k − 2) is due to an

approximation of the module velocity states as the previously

issued velocity commands. This approximation is legitimate

due to the high gain inner velocity feedback on the motors,

which ensures fast command tracking. It reduces the state

dimension, and hence, the complexity of the state estimation

problem. The Kalman filter equations (3) and (10) are

adapted accordingly by adding the extra input.

System

. . .Algorithm Algorithm

S A S A S A

Algorithm

Broadcast Network

Fig. 4. The networked control architecture testbed: the blocks A and S

denote actuator and sensor units; the Algorithm block runs estimation and
control algorithms as well as the communication logic. An actuator and
a sensor unit together with the associated Algorithm block are considered
as an agent of the NCS. Solid lines denote continuous and dashed lines
discontinuous data flow.
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TABLE I

STATES AND MEASUREMENTS OF THE BALANCING CUBE MODEL.

state physical meaning

x1 angle module 1
x2 angle module 2
x3 angle module 3
x4 angle module 4
x5 angle module 5
x6 angle module 6
x7 cube angle
x8 cube ang. vel.

meas. sensor

y1 encoder module 1
y2 rate gyro module 1
y3 encoder module 2
y4 rate gyro module 2
y5 encoder module 3
... ...
y11 encoder module 6
y12 rate gyro module 6

B. Design and Implementation of the Reduced Communica-

tion State Estimator

We first design the full communication Kalman filter (3)–

(7) for the system (23), (24). We treat the noise variance

matrices as tuning parameters of the estimator. The following

values provide acceptable performance in experiments:

Q = diag ([1 1 1 1 1 1 0.01 1]) (25)

R = diag ([0.1 1 0.1 1 0.1 1 0.1 1 0.1 1 0.1 1]) . (26)

The full communication Kalman filter provides an upper

bound on the achievable performance for the reduced com-

munication counterpart; the performance of the two is com-

pared in Sec. IV-C. The solution of the DARE (8) for full

communication and the parameters (25) and (26) is2

P̄ =





















1.09 0 0 0 0 0 0 0
0 1.09 0 0 0 0 0 0
0 0 1.09 0 0 0 0 0
0 0 0 1.09 0 0 0 0
0 0 0 0 1.09 0 0 0
0 0 0 0 0 1.09 0 0
0 0 0 0 0 0 0.72 0.13
0 0 0 0 0 0 0.13 1.17





















.

The only additional tuning parameters required for the

reduced communication Kalman filter are the threshold pa-

rameters δj in (17), which were chosen as δj = 40 for

the absolute encoder measurements (j = 1, 3, . . . , 11), and

δj = 2 for the rate gyro measurements (j = 2, 4, . . . , 12).

In order to extract a periodic solution for the Kalman

filter variance iteration, (21) is simulated3 with initial value

P̌ (0) = P̄ . From the simulation data (shown for some

diagonal elements of P̌ (k) in Fig. 5), a periodic solution

with κ = 50 can be identified. The fixed point iteration

P̃ (k+ 1) = G50(P̃ (k)) converges to the κ-periodic solution

P̃ =





















1.10 0 0 0 0 0 0 0
0 1.10 0 0 0 0 0 0
0 0 1.10 0 0 0 0 0
0 0 0 4.10 0 0 0 −0.01
0 0 0 0 1.10 0 0 0
0 0 0 0 0 4.10 0 0.01
0 0 0 0 0 0 0.75 0.14
0 0 0 −0.01 0 0.01 0.14 1.19





















.

2For easier reading, the elements of P̄ and P̃ (below) are rounded to two
decimal places.

3The files to run the simulation may be requested from the first author or
downloaded at http://www.idsc.ethz.ch/Research DAndrea/

Cube/downloads.
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Fig. 5. Simulation result of the reduced communication Kalman filter
iteration (21) after 1000 steps. Shown are some diagonal elements of P̌ (k).
The solution is periodic with κ = 50.

The corresponding fixed transmit sequences in (22) are

γi(k) = 150(k), for i = 1, 3, 5, 9 (encoder)

γi(k) = 147(k), for i = 7, 11 (encoder)

γi(k) = 15(k) + 110(k) + · · ·+ 150(k),

for i = 2, 4, . . . , 12 (gyro),

(27)

for k = 1, . . . , 50 and with

1k̄(k) :=

{

1 if k̄ = k

0 otherwise .

Hence, the absolute encoders transmit their measurements

once every 50 steps and the gyros once every five steps.

The reduced communication state estimator is imple-

mented on each module of the Balancing Cube as described

in Sec. III-B. Using the decision rule (22), each module

decides at every time step whether or not to transmit a

measurement for its associated sensors. Furthermore, each

module gathers all measurements ỹ(k) that have arrived over

the network, constructs the matrices of the corresponding

output equation (9), and updates its state estimate according

to (10)–(14).

To keep the exposition of the state estimation method

simple, local sensor measurements are used to update the

estimator subject to the same constraint (22) as is used for
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the transmit decision (that is, a local sensor measurement is

used to update the estimate if and only if it is transmitted),

even though there is no communication cost involved in

using the local measurements at every step (this approach

is pursued in [6]). Since, furthermore, the network is a

broadcast network, all agents have access to the same sensor

data ỹ(k) and therefore run a copy of the same state estimator

(10)–(14). This also implies that each agent can compute

all agents’ control inputs u(k), which makes their exchange

unnecessary.

C. Experimental Results

The presented state estimator is used in the feedback

control system of the Balancing Cube. The control perfor-

mance and communication rates of the reduced communi-

cation estimator are compared in experiments to those of

the full communication estimator: their state estimates are

used as input to the same state feedback controller. The

control objective is the stabilization of the system about the

equilibrium x(k) = 0.

In order to evaluate the experimental control performance,

we use a truth model that is based on the nonlinear state

estimation method for the Balancing Cube presented in [12],

and augmented with further non-causal post-processing. For

this purpose, all sensor data (including, in particular, the

accelerometer data) is recorded and the truth model state

xtruth(k) is obtained in post-processing. The estimate of the

cube tilt obtained from this method has been verified with a

camera-based motion capture system (cf. results in [12]) and

has proven to work well on the cube.

The same measures for control performance and commu-

nication rate are used as in [6]. The performance P of the

control system is measured as the root mean square (RMS)

value of the system state,

P :=

√

√

√

√

1

K

K
∑

k=1

(x̄truth(k))T x̄truth(k),

for data of length K and where x̄truth(k) is the full state vec-

tor that also includes the angular velocities of the modules.

The communication rate Rj(k) of sensor j is defined as the

moving average of transmissions over the last M steps; that

is,

Rj(k) :=
number of yj(k) transmits in [k−M+1, k]

M
.

Furthermore, the total communication rate R is defined as

R :=
1

p

p
∑

i=1

(

1

K

K
∑

k=1

Ri(k)

)

.

The communication rates Rj(k) and R are in the interval

[0, 1] by definition. In particular, R = 1 corresponds to the

case where at each time step all data is exchanged between

the agents, while R = 0 means no data is exchanged. For

M > κ the rates of the reduced communication Kalman filter

are constant: Rj(k) = 0.02 for the encoder measurements

TABLE II

EXPERIMENTAL COMMUNICATION AND PERFORMANCE MEASURES.

R P

full communication Kalman filter 1.000 0.2095
reduced communication Kalman filter 0.110 0.3855

(j = 1, 3, . . . , 11) and Rj(k) = 0.2 for the rate gyro

measurements (j = 2, 4, . . . , 12).

Experiment: balancing about an equilibrium. The cube

was balanced in two separate experiments: one using the full

communication Kalman filter, the other using the reduced

communication Kalman filter for control. The experimental

data presented below originates from module 1 (the other

modules’ estimates are essentially the same except for small

deviations caused by imperfections of the physical commu-

nication network such as delays).

The obtained performance P and total communication

rate R for experimental runs of 2 minutes are shown in

Table II. As expected, reducing the number of measurements

negatively affects the control performance. However, the

performance decrease is less than a factor of 2, while only

11% of the total measurement data was used.

For a 30-second sequence, module 1’s estimates of is

own angle, module angle 4, and both cube states are shown

in Fig. 6 together with the reference state xtruth(k). The

corresponding estimation error is given in Fig. 7.

V. CONCLUDING REMARKS

The approach for reducing communication requirements

for state estimation in a networked control system presented

herein follows the same basic idea as the approach in [6]:

a sensor measurement is employed for updating a state

estimate (and hence transmitted from sensor to estimator)

if it is required to meet a certain estimator performance –

or, loosely speaking, if the measurement cannot be predicted

well enough by the state estimator. Unlike [6], however, the

sensor transmission decision used in this paper is not based

on the real time measurement, but on its prediction variance.

This has the benefit that, just as for the standard Kalman fil-

ter, the variance evolution can be computed and analyzed off-

line. The adaptation of the communication requirements to

unmodeled, real time events such as external disturbances is,

however, not possible. A promising approach is to combine

the two approaches by augmenting fixed minimum sensor

communication rates with bounds on real time prediction

errors.

A periodic solution to the reduced communication Kalman

filter corresponds to periodic sensor transmission rates,

which gives rise to a very efficient implementation of the

sensor’s communication logic. The resulting state estimator

is a periodic Kalman filter with possibly different sensor

arrival rates. This method can therefore also be used as a

design tool for a multi-rate Kalman filter, where the required

sensor update rates are determined from tolerable bounds

on the estimation error variance selected by the designer.

The question of the existence of a periodic solution and cor-
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Fig. 6. State estimates x̌(k|k) (blue) compared to the truth model state
xtruth(k) (red). From top to bottom: angle of module 1, angle of module 4,
cube angle, and cube angular velocity.

responding analysis of the reduced communication Kalman

filter iteration (21) are interesting theoretical problems for

future study.

In the example of Sec. IV, some of the sensors transmit

at the same time step (cf. equation (27)). In order to reduce

the required network capacity, it may be desirable to extend

the method to avoid multiple sensors transmitting data at

the same time. Regardless, the presented method reduces

the average communication rate, which allows to use the

network for data of different purpose (such as higher level

adaptation) when it is not in use for state estimation.
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