
Increasing Efficiency of Optimization-based Path Planning

for Robotic Manipulators

Hao Ding†∗, Gunther Reißig⋆, and Olaf Stursberg†

Abstract— Path planning for robotic manipulators interact-
ing with obstacles is considered, where an end-effector is to
be driven to a goal region in minimum time, collisions are to
be avoided, and kinematic and dynamic constraints are to be
obeyed. The obstacles can be time-varying in their positions, but
the positions should be known or estimated over the prediction
horizon for planning the path. This non-convex optimization
problem can be approximated by Mixed Integer Programs
(MIPs), which usually leads to a large number of binary
variables, and hence, to inacceptable computational time for
the planning. In this paper, we present a geometric result whose
application drastically reduces the number of binary decision
variables in the aforementioned MIPs for 3D motion planning
problems. This leads to a reduction in computational time,
which is demonstrated for different scenarios.

I. INTRODUCTION

Path planning of robotic manipulators has been investi-

gated taking into account safety, efficiency, and optimality.

In general, the task can be summarized as follows: Given an

initial configuration, the best way (with respect to a given

performance criterion) of driving the end effector of a robotic

manipulator into a specified goal region has to be deter-

mined. Kinematic and dynamic constraints, including those

that guarantee the avoidance of collisions with obstacles,

must be obeyed. The obstacles can be time-varying in their

positions, but the positions should be known or estimated

over the prediction horizon for planning the path.

Since this non-convex optimization problem is hard to be

solved efficiently, several motion planning algorithms have

been proposed which are based on solving approximations

to the original problem. A real-time motion planning method

using potential fields by combining repulsive potentials for

obstacles with an attractive potential of the goal was pro-

posed in [1]. Such a method can be applied online, but opti-

mality of motion is not considered and the inclusion of robot

kinematics and dynamics is difficult. Methods operating in

the configuration space, such as cell decomposition [2] and

mixed-integer programming [3], take advantage of the fact

that the configuration of the robot reduces to a single point.

However, to find proper and efficient obstacle representation

is a big challenge for robots with many degrees of freedom

†Institute of Control and System Theory, Dept. of Electrical Engineering
and Computer Science, University of Kassel, Germany, {hao.ding,
stursberg}@uni-kassel.de.

⋆Chair of Control Eng. (LRT-15), Dept. Aerospace Eng., University of
the Federal Armed Forces Munich, D-85577 Neubiberg (Munich), Germany,
http://www.reiszig.de/gunther/

∗Group of Robotics and Manufacturing, ABB Corporate Research,
Ladenburg, Germany

This work is partially supported by the project EsIMiP funded by the
Bavarian Research Foundation (AZ-852-08).

[4]. To account for the drawbacks of these two classes of

methods, sampling-based approaches like rapidly-exploring

random trees (RRTs, [5]) and probabilistic roadmaps (PRMs,

[6]) have been proposed. The idea is to plan the path

in the configuration space, but checking collisions in the

workspace using forward kinematics. As variants, kinody-

namic planning [7], RRT∗ [8], elastic roadmaps [9], and

model-based optimization embedded into RRTs [10] have

been investigated. However, all sampling-based approaches

rely on a quantization of the configuration space, of which

only a finite number of samples is considered during motion

planning.

In addition to the previously mentioned techniques, it has

been proposed to solve mixed-integer linear program (MILP)

approximations of path planning problems directly in the

workspace, where selected points on the links (particles)

are used to represent the robot geometry as well as ob-

stacle avoidance constraints [11]. The technique has been

extended in [12] to incorporate state-dependent and time-

varying constraints. Depending on the number of particles

used, this approach often leads to a large number of binary

variables, and hence, to inacceptable computational time for

the planning. For 2D scenarios, we have recently presented

a geometric result whose application to the aforementioned

MILPs drastically reduces the number of binary variables

as well as the computational effort for solving path planning

problems. In this paper, we extend that result to 3D scenarios.

For the sake of simplicity, only time-optimal control will be

considered, i.e., the time for steering the end effector from

a prescribed initial position to a goal is to be minimized,

but the approach we propose also applies to more general

cost functions. We represent the dynamics of the robot by

bounds on the joint velocities. This is justified because the

joint positions of industrial robots are usually controlled by

built-in lower-level controllers. Depending on the capability

of the latter, bounds on velocities can be chosen to guarantee

that the robot can successfully track the optimized trajec-

tories. This simple dynamic model is also useful, e.g. for

human robot interaction and collaboration, where additional

constraints on the joint velocities are imposed depending on

the obstacle movement.

The remainder of this paper is organized as follows:

In Section II, the problem of optimal motion planning

for robotic manipulators in the workspace is defined and

approximated by an MILP. In Section III, we present our

main result, a theorem related to the three dimensional

geometric aspects of collision avoidance, whose application

yields equivalent MILPs with a drastically reduced number

2011 50th IEEE Conference on Decision and Control and
European Control Conference (CDC-ECC)
Orlando, FL, USA, December 12-15, 2011

978-1-61284-799-3/11/$26.00 ©2011 IEEE 1399

of binary decision variables. This leads to savings in the

computational effort for solving motion planning problems,

which is demonstrated in Section IV for a 2-link robotic

manipulator interacting with obstacles in three dimensions.

II. MOTION PLANNING PROBLEM IN THE WORKSPACE

The following notation is used throughout the paper:

• Workspace: the Euclidean space Z = R
3 with points

(z1, z2, z3)T ∈ Z .

• Configuration space: C = R
n; points

(q1, q2, . . . , qn)T ∈ C represent joint angles of

the robotic manipulator with n degrees of freedom.

• zj ∈ Z denotes the position of joint j including the

position of the end effector in the workspace with j ∈
{1, . . . , n + 1}.

The idea of motion planning considered in the paper is

to determine optimized trajectories of joint positions in the

workspace in order to drive the end effector to the goal set.

The paths of all robot links has to be free of collisions with

the obstacles. Accordingly, the motion planning problem in

the workspace can be formulated as:

min

g∑

τ=0

J(z(τ), τ) (1a)

s.t. (zj(t + 1) − zj(t)) ∈

[V −

j (z(t), F (t)), V +
j (z(t), F (t))] · ∆t, (1b)

∀t ∈ {0, 1, . . . , g − 1}, ∀j ∈ {1, . . . , n + 1} (1c)

zj(0) = (z1,0
j (0), z2,0

j (0), z3,0
j (0))T , zn+1(g) ∈ G,

(1d)

H(z(t)) ∩ F (t) = ∅, ∀t ∈ {0, 1, . . . , g}, (1e)

where z = (z1, . . . , zn+1) and:

• the joint velocities in the workspace are bounded to

[V −

j (z(t), F (t)), V +
j (z(t), F (t))];

• ∆t denotes the sampling time;

• the initial joint positions in the workspace zj(0) and the

goal set G for the end effector zn+1(g) are specified;

• H(z(t)) represents the geometry of the robotic ma-

nipulator (including the kinematics), which must not

intersect with the forbidden region F (t).

The above optimization problem is non-convex. We here

follow the approach initially proposed in [11], where selected

points of the robot geometry (particles) are used to formulate

obstacle avoidance constraints, and the overall non-convex

optimization problem is approximated by a mixed-integer

linear program (MILP).

A. Collision Avoidance

1) For a Single Point: The condition that a point lies

outside a polyhedral obstacle can be formulated as a mixed-

integer linear constraint, as is explained below.

Let the obstacle P ⊆ Z = R
3 be a polyhedron, i.e., a

finite intersection of half-spaces,

P = {ξ |A · ξ < b}, (2)

where A ∈ R
N×3 is a matrix with rows Ak, k ∈ {1, . . . , N},

and b = (b1, . . . , bN)T . The condition that the point ξ
lies outside the obstacle P , ξ /∈ P , is equivalent to the

requirement that at least one among the N scalar inequalities

in A · ξ ≥ b is satisfied. This, in turn, is equivalent to the set

of constraints

A · ξ ≥ b + (v − 1) · M, (3)

N∑

k=1

vk = 1, (4)

where v = (v1, . . . , vN)T is a vector of binary variables

vk ∈ {0, 1} and 1 = 1N×1 is a vector of ones. M is a

sufficiently large constant1, hence the name ‘big-M method’

[13]. The constraint (3) says that the kth scalar inequality in

A ·ξ ≥ b is enforced if and only if vk = 1, and the constraint

(4) ensures that the latter equality holds for exactly one k.

If (3) and (4) are constraints in an optimization problem,

points ξ (e.g. joint positions) in the obstacle P are infeasible,

and hence, collision is avoided. In the presence of multiple

obstacles, an analogous set of constraints, with separate

matrices A and b and separate binary variables v for each

obstacle, can be used.

2) For Robotic Manipulators: The constraints in (1e) have

been introduced to avoid collisions with obstacles. Assuming

that the links form straight lines between adjacent joints, a

finite number of particles are chosen along the link in order

to represent the geometry of the robot, namely H(z(t)) in

(1e). The particles are chosen by:

psj = λs · zj + (1 − λs) · zj+1, (5)

where psj denotes the sth particle on link j. By selecting

λs ∈ [0, 1] with s ∈ {1, . . . , S}, where S is the number of

particles per link, the position psj of the particle is defined.

In order to guarantee that none of the introduced particles is

contained in P , we substitute psj for ξ in (3) to arrive at the

constraint

Ak · psj(t) ≥ bk + (vj,s,k(t) − 1) · M (6)

for each face k of the obstacle P , each link j, each particle

s associated with link j, and each time t ∈ {0, . . . , g}. In

addition, the constraint

N∑

k=1

vj,s,k(t) = 1 (7)

is required for each j, s and t. Here, vj,s,k(t) is a binary

variable to be introduced in the MILP as a decision variable,

whereas psj(t) is just an abbreviation for the term (5)

containing the decision variables zj(t).
The number of particles has to be chosen such that the

geometry of any link is represented with sufficient accuracy.

For compensating the error made by approximating collision

avoidance constraints with the help of particles, the obstacle

P is to be enlarged by a suitable safety margin, which will

be discussed in Sec. IV.

1The way of choosing the value of M can be found in [13, p. 205].

1400

B. Kinematic and Dynamic Constraints

Since the joints of the robot are connected by straight

links, the kinematic constraints imply that the distance be-

tween the joints qj and qj+1 is equal to the length rj,j+1 of

the corresponding link. This requirement can be represented

by the constraints

(zj+1(t) − zj(t))
T · (zj+1(t) − zj(t)) = r2

j,j+1 (8)

with j ∈ {1, . . . , n} and t ∈ {0, 1, . . . , g}. See [11].

The quadratic constraints in (8) may be approximated by

a circumscribing polyhedron and an inscribing polyhedron

[14], [12]. If zj+1(t) − zj(t) lies in the region between

the polyhedra, the kinematic constraints are satisfied ap-

proximately. The fact that zj+1(t) − zj(t) lies inside the

circumscribing polyhedron is expressed by:

Acs · (zj+1(t) − zj(t)) ≤ Bcs, (9)

where Acs and Bcs specify the circumscribing polyhedron.

Likewise, zj+1(t) − zj(t) must lie outside the inscribing

polyhedron which is formulated by:

Ais · (zj+1(t) − zj(t)) ≥ Bis + (u(t) − 1) · M, (10)

where u(t) = (u1(t), . . . , uNis
(t))T is a vector of binary

variables uk ∈ {0, 1}, Nis the number of faces of the

inscribing polyhedron, 1 = 1N×1 a vector of ones, and M a

large constant. In complete analogy to Section II-A.1, the kth

scalar inequality in Ais · (zj+1(t)− zj(t)) ≥ Bis is enforced

if and only if uk(t) = 1. To guarantee that zj+1(t) − zj(t)
lies outside the polyhedron specified by (10), at least one

among the Nis inequalities must be satisfied, which can be

ensured by the following condition:

Nis∑

k=1

uk(t) = 1. (11)

The conjunction of (9), (10), and (11) approximates the

quadratic equality constraint (8) using linear inequalities and

binary decision variables.

As mentioned before, the dynamic constraints considered

here are the velocity limits of the joints in the workspace.

Varying velocity limits in different regions to account for

the safety of operation or for time and energy efficiency

can also be formulated using binary variables [12]. In the

paper, for simplification, velocity limits (compare to (1b))

are considered as constants for each joint in the workspace:

V −

j · ∆t ≤ (zj(t + 1) − zj(t)) ≤ V +
j · ∆t. (12)

The velocity limits may be different for different joints in Z .

C. Objective Function

Different criteria like average kinetic energy or transition

time may be used [11], [12]. Here, only the minimization of

the transition time is considered, which can be realized by

the following cost function [15], [12]:

J = −

g∑

t=0

a(t) (13)

with

a(0) ≤ a(1) ≤ · · · ≤ a(g), (14)

where the binary variable a(t) satisfies the constraint

zn+1(t) /∈ G ⇒ a(t) = 0. (15)

III. MAIN RESULT

Using constraints of the form (3) to avoid collisions, as

explained in Sections II-A.1 and II-B, may introduce a huge

number of binary variables. This, in turn, often leads to intol-

erable computational effort for solving the resulting MILPs.

In this section we extend the two-dimensional geometric

result in [15] to the three-dimensional case, which will allow

us to drastically reduce the number of binary variables. To

this end, we first introduce some basic concepts from the

theory of linear programming [16]:

Let the polyhedron P be given by P = {ξ ∈ R
m|A ·

ξ ≤ b}, where A ∈ R
N×m and b ∈ R

N . The system

A · ξ ≤ b is redundant if one of its scalar inequalities is

implied by the others, and non-redundant, otherwise. The

polyhedron P itself as well as any intersection of P with

one of its supporting hyperplanes is called a face of P . A

face containing a single point is called a vertex, and each

compact one-dimensional face is called an edge. A face of

maximal dimension among the faces of P that are different

from P is called a facet, and a face that does not contain

any other face of P is said to be minimal. Finally, P is full-

dimensional if its interior is non-empty, and P is simple if

each of its vertices is contained in exactly m facets of P .

III.1 Theorem. Let P = {ξ ∈ R
3|A · ξ ≤ b} be a full-

dimensional, simple polyhedron, A ∈ R
N×3, b ∈ R

N , N >
2, and assume that the system A ·ξ ≤ b of linear inequalities

is non-redundant. Let x, y ∈ R
3, x 6= y. Then exactly one of

the following two statements holds.

(i) The line segment Jx, yK joining x and y intersects the

interior of P .

(ii) There exists a one-dimensional face E of P with the

following property: If f1, f2 ∈ {1, . . . , N} are (the

uniquely determined) indices that satisfy

E = {ξ ∈ P |Af1
· ξ = bf1

, Af2
· ξ = bf2

} , (16)

then for each point p ∈ Jx, yK it holds that

Af1
p ≥ bf1

or Af2
p ≥ bf2

. (17)

Obviously, the two statements are mutually exclusive.

What we need to show is that (ii) holds whenever (i) does

not hold. We sketch a proof which works by reduction to the

two-dimensional case.

Assume that the line segment Jx, yK =
J(x1, x2, x3), (y1, y2, y3)K ⊆ R

3 does not intersect the

interior of P . By means of a linear change of coordinates,

one may obtain from P ⊆ R
3 a full-dimensional polyhedron

P̃ ⊆ R
2 with non-redundant representation

P̃ =
{
ξ ∈ R

2
∣∣∣ Ã

(
ξ1

ξ2

)
≤ b̃

}
, (18)

1401

such that the line segment J(x1, x2), (y1, y2)K ⊆ R
2 does

not intersect the interior of P̃. It can be shown that our

claim follows from the two-dimensional result given below

provided that (18) involves more than two inequalities, which

is the most difficult case.

III.2 Theorem ([15]). Let (18) be a full-dimensional poly-

hedron, Ã ∈ R
N×2, b̃ ∈ R

N , N > 2, and assume that

the system Ã · ξ ≤ b̃ of linear inequalities is non-redundant

and that the rows of Ã are ordered counterclockwise. Let

x̃, ỹ ∈ R
2, x̃ 6= ỹ. Then exactly one of the following two

statements holds.

(i) The line segment Jx̃, ỹK joining x̃ and ỹ intersects the

interior of P̃ .

(ii) There is some i ∈ {1, . . . , N} such that for each point

p ∈ Jx̃, ỹK it holds that Ãip ≥ b̃i or Ãi+1p ≥ b̃i+1.

Here, Ãi denotes the ith row of Ã, and Ãi+1 stands for

Ã1 if i = N .

A direct application of Theorem III.1 shows that in order

to avoid collisions it suffices to introduce two constraints

Af1(E)psj(t) ≥ bf1(E) + (vj,E(t) + wj,s(t) − 2)M, (19a)

Af2(E)psj(t) ≥ bf2(E) + (vj,E(t) − wj,s(t) − 1)M (19b)

for each one-dimensional face E of the obstacle P , each

link j, each particle s associated with link j, and each time

t ∈ {0, . . . , g}. In addition, a constraint

∑

E

vj,E(t) = 1 (20)

is required for each j and t, where the sum is over all

one-dimensional faces E of P . Here, vj,E(t), wj,s(t) ∈
{0, 1} are binary variables to be introduced in the MILP as

decision variables, and for each one-dimensional face E of

P , f1(E) and f2(E) denote the uniquely determined indices

that satisfy (16).

In the above formulation (19)-(20), the binary variable

vj,E(t) can be seen as selecting a pair of adjacent facets

of the obstacle P that share a common edge, rather than a

facet of P as with the formulation in Sections II-A.1 and II-

A.2, and the binary variable wj,s(t) selects one of the facets

of the already selected pair. Indeed, (19a) is only enforced

if vj,E(t) = wj,s(t) = 1, and (19b) is only enforced if

vj,E(t) = 1 and wj,s(t) = 0.

The crucial point here is that v does not anymore depend

on the particle index s, which greatly reduces the number

of binary decision variables. In fact, the number of binary

variables introduced for the purpose of formulating collision

avoidance constraints is

n · (g + 1) · (S + Ne)

in contrast to

n · (g + 1) · S · N

for the method of Sections II-A.1 and II-A.2, where Ne

denotes the number of one-dimensional faces of P .

IV. COMPUTATIONAL RESULTS

The proposed method is applied to a 2-link robotic ma-

nipulator in R
3 interacting with two and three obstacles,

respectively. Its performance is compared to that of the

method from [12].

For the 2-link scenario of Fig. 1, the robotic manipulator

interacts with two obstacles. One of them is the 8-face

polyhedron P shown in Fig. 1, and the other is a table-

like obstacle represented by the constraint zj ≥ −0.2 for

j ∈ {1, 2}.

Our computational results are based on the following

parameters. The sampling time is ∆t = 0.2, the link length

is 0.3, and the bounds on the velocities in the workspace

of the middle joint and the end-effector are 0.2 and 0.3,

respectively. The end effector is to be driven to the goal

region G = [0.19, 0.21] × [0.49, 0.51] × [−0.01, 0.01] from

the initial position determined by z1 = (0, 0, 0)T (base joint),

z2 = (0.3, 0, 0)T (middle joint), and z3 = (0.6, 0, 0)T (end-

effector). Particles are equally distributed on each link, which

include the end-effector of the corresponding link.

Base Joint

Start

G

P

z
3

z
2

z
10.1 0 0.1 0.2 0.3 0.4 0.5

−0.1

0

0.1

0.2

0.3

0.4

0.5

−0.2

0

0.2

Fig. 1. A 2-link robotic manipulator interacting with a 8-face obstacle P .
The final configurations are shown in blue, and the computed motion of
the end effector which reaches the goal within 12 steps, is illustrated by a
sequence of green dashed line segment.

The method proposed in this paper is capable of planning

the motion of sampled systems only. However, the resulting

motion can be forced to satisfy the constraints between the

sampling instants if the method is applied to a robust version

of the original specification, e.g. [17]. For the scenario con-

sidered here, such a robust version is obtained by enlarging

the obstacles by a suitable safety margin, which is shown

as the larger polyhedron in Fig. 1. That margin is chosen to

additionally account for the error made by approximating the

link length constraint (8), the error made by approximating

collision avoidance constraints with the help of particles, as

well as the error made by neglecting the links’ width.

The method proposed in the present paper and the previous

method from [12] have been implemented in C++ using

Concert Technology libraries in CPLEX Studio Academic

Research 12.2 and run on a single thread of an i5-CPU with

1402

Particles S

B
in

ar
ie

s

1000

2000

3000

4000

5000

10000

0 5 10 15 20 25 30
Particles S

1

100

1000

10000

0 5

10

10 15 20 25 30

C
o
m

p
u
ta

ti
o
n
al

T
im

e
(s

e
c
)

Fig. 2. Number of binary variables in the MILP (left) and the computational time (right), as a function of the number S of particles per link for the
scenario of the 2-link robot interacting with the 8-face obstacle. (• corresponds to the methods proposed in the present paper, and ◦, to that from [12]).

Base Joint

P3

P2

P1

Start

G

z
3

z
2

z
1

0.4

0.2

0

0.2

0.4

0.6 −0.4

−0.2

0

0.2

0.4

−0.5

0

0.5

(a) Side view.

Base Joint

P3

P2P1

Start

G

z
1

z
2

0.4

0.3

0.2

0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

−0.4−0.3−0.2−0.100.10.20.30.40.5

(b) Top view.

Fig. 3. A 2-link robotic manipulator interacting with 3 obstacles.

2.67 GHz clock rate. In order to separate the effects of dif-

ferent MILP formulations from unknown heuristics that are

built in to CPLEX, the MIP Strategy Probe2 is turned off. The

quadratic constraints of each link length are approximated

by two inscribing and circumscribing polyhedra of 14 faces

each, see Section II-B. The ‘big-M method’ of Section II-

A.1 is applied with M = 100. We use the horizon g = 14,

and the goal can be reached within 12 steps.

The results presented in Fig. 2 show that the MILP

formulation proposed in the present paper drastically reduces

the number of binary decision variables. In addition, the

computational time has been reduced in most of the cases,

especially when the number of particles is large.

A more challenging scenario of a 2-link robot with 3
obstacles of 6 faces each is illustrated in Fig. 3. We choose

a prediction horizon of g = 16, and the goal is reached at

the 15-th step. Specifically, for S = 5 and g = 9 in this

2Probe determines the extent by which variables should be probed prior
to the branching phase. Depending on the particular optimization problem,
that option may have a dramatic influence on the solution time [18].

scenario, the solution was determined within 0.497 seconds

using 4 threads.

Further tests which we do not report here in detail have

shown that the computational effort may vary widely even

for scenarios that look quite similar. In addition, if all the

powerful built-in heuristics are used, CPLEX often shows

an excellent performance regardless of any specific MILP

formulation, especially if the number of particles is small.

In this paper, we have combined the idea of reducing

the number of binary variables with some but not all of

the aforementioned built-in heuristics. Our results on 2D

planning problems [15] show that a combination with a

larger set of built-in heuristics leads to even more impressive

reductions in computational effort.

V. CONCLUSIONS AND FUTURE WORK

Motion planning for robotic manipulators with polyhedral

obstacles and velocity constraints for the joint positions

is considered in the paper. It has been approximated by

Mixed-Integer Linear Programs (MILPs). We have presented

1403

and proved a geometric theorem in R
3 whose application

drastically reduces the number of binary decision variables

in the MILPs, compared to previous results from [12]. In

addition, computational time during the MILP solution is

reduced in most cases, especially with larger number of

particles, over previous methods.

The combination of the proposed theorem in R
3 with

suitable heuristics in CPLEX is a matter of current research.

An ambitious goal is to generate the path of the robotic

manipulator online with identification of dynamic obstacles

(like human operators [19]) from measured data, which has

been realized in a human-robot-interaction scenario in [20].

The computation will be accelerated by using the moving

horizon scheme known from model predictive control rather

than optimizing at once over the complete time span required

to reach the goal. Our results indicate that the method

proposed in this paper can be successfully applied in this

setting in order to plan a robot’s motion online.

We also work on extending the method to cover more

general dynamic constraints than just velocity bounds, by

combining our results with a recently proposed method for

computing reachable sets of nonlinear systems [21].

REFERENCES

[1] O. Khatib, “Real-time obstacle avoidance for manipulators and mobile
robots,” Int. J. of Robotics Research, vol. 5, no. 1, pp. 90–98, 1986.

[2] J. Latombe, Robot Motion Planning. Kluwer, 1991.

[3] H. Ding, M. Zhou, and O. Stursberg, “Optimal Motion Planning for
Manipulators with Dynamic Obstacles using Mixed Integer Linear
Programming,” in IEEE Mediterranean Conf. on Control and Automa.,
2009, pp. 934–939.

[4] M. W. Spong, S. Hutchinson, and M. Vidyasagar, Robot Model and

Control. John Wiley & Sons, Inc., 2006.

[5] J. Kuffner and S. LaValle, “RRT-connect: An efficient approach to
single-query path planning,” in Proc. IEEE Int. Conf. on Robot. and
Autom., 2000, pp. 995–1001.

[6] L. Kavraki, P. Svestka, J. Latombe, and M. Overmars, “Probabilistic
roadmaps for path planning in high-dimensional configuration space,”
IEEE Transactions on Robot. and Autom., vol. 12, no. 4, pp. 566–580,
1996.

[7] D. Hsu, R. Kindel, J.-C. Latombe, and S. Rock, “Randomized kin-
odynamic motion planning with moving obstacles,” Int. J. of Robot.
Research, vol. 21, no. 3, pp. 233–255, 2002.

[8] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” Int. J. of Robot. Research, vol. 30, no. 7, pp. 846–
894, 2011.

[9] Y. Yang and O. Brock, “Elastic roadmaps - motion generation for
autonomous mobile manipulation,” Autonomous Robots, vol. 28, pp.
113–130, 2010.

[10] H. Ding, G. Schnattinger, B. Passenberg, and O. Stursberg, “Improving
motion of robotic manipulators by an embedded optimizer.” in IEEE

Conf. on Autom. Sci. and Eng., 2010, pp. 204–209.

[11] L. Blackmore and B. Williams, “Optimal manipulator path planning
with obstacles using disjunctive programming,” in Proc. of the Amer-
ican Control Conference, 2006, pp. 3200–3202.

[12] H. Ding, M. Zhou, and O. Stursberg, “Optimal path planning in the
workspace for articulated robots using mixed integer programming,” in
IEEE/RSJ Int. Conf. on Intell. Robots and Syst., 2009, pp. 5770–5775.

[13] H. P. Williams, Model building in mathematical programming, 2nd ed.
WILEY, 1985.

[14] A. Richards and J. How, “Mixed-integer programming for control,” in
Proc. of the American Control Conference, 2005, pp. 2676–2683.

[15] H. Ding, G. Reißig, D. Gross, and O. Stursberg, “Mixed-integer
programming for optimal path planning of robotic manipulators,” in
IEEE Conf. on Autom. Sci. and Eng., 2011, accepted.

[16] A. Schrijver, Theory of linear and integer programming. Chichester:
John Wiley & Sons Ltd., 1986, a Wiley-Interscience Publication.

[17] G. E. Fainekos, A. Girard, H. Kress-Gazit, and G. J. Pappas, “Temporal
logic motion planning for dynamic robots,” Automatica J. IFAC,
vol. 45, no. 2, pp. 343–352, 2009.

[18] IBM, User’s Manual for CPLEX, 2010.
[19] H. Ding, G. Reißig, K. Wijaya, D. Bortot, K. Bengler, and O. Sturs-

berg, “Human arm motion modeling and long-term prediction for safe
and efficient human-robot-interaction,” in IEEE Int. Conf. Robot. and

Autom., 2011, pp. 5875–5880.
[20] H. Ding, K. Wijaya, G. Reißig, and O. Stursberg, “Optimizing motion

of robotic manipulators in interaction with human operators,” in Int.

Conf. on Intell. Robot. and Appl., ser. Lecture Notes in Computer
Science (LNCS), S. Jeschke, Ed. Springer, 2011.

[21] G. Reißig, “Computing abstractions of nonlinear systems,” IEEE

Trans. Automat. Control, vol. 56, 2011, accepted, avail. via
http://www.reiszig.de/gunther/pubs/i11abs.html.

1404

