
  

Stability and Convergence Analysis for a Class of                 

Nonlinear Passive Systems 

George C. Konstantopoulos, Member, IEEE and Antonio T. Alexandridis, Member, IEEE 

� 

Abstract—A systematic and general method that proves state 

boundedness and convergence to nonzero equilibrium for a 

class of nonlinear passive systems with constant external inputs 

is developed. First, making use of the method of linear-time-

varying approximations, the boundedness of the nonlinear 

system states is proven. Next, taking advantage of the passivity 

property, it is proven that a suitable switching storage function 

can be always obtained to show convergence to the nonzero 

equilibrium by using LaSalle’s Invariance Principle. Numerical 

and simulation results illustrate the proposed theoretical 

analysis. 

I. INTRODUCTION 

HE majority of physical systems found in nature can be 

modeled as inherently nonlinear systems. In general, 

nonlinear systems are difficult to be solved while their 

dynamic performance may sometimes be unexpected. 

Therefore, stability analysis of nonlinear dynamic systems is 

of great importance [1]. 

Stability analysis based on Lyapunov methods is widely 

used as a standard technique. Unfortunately, this analysis is 

mainly applied on nonlinear systems without external inputs 

and it proves stability at the origin [2]. In the cases wherein 

a nonzero equilibrium exists or an external input appears, 

Lyapunov techniques need the error dynamics model of the 

system. However, for nonlinear systems there does not exist 

a systematic, general method to obtain the error dynamics 

model since every system has its own nonlinearities. 

On the other hand, the most useful tool for the analysis of 

nonlinear systems with external inputs is the passivity theory 

[3]. This is directly related to Lyapunov and L2 stability [4] 

and can provide a general frame for the analysis, but it fails 

when the input does not vanish as time passes. 

Many Euler-Lagrange [5] or Hamiltonian [3] systems 

such as electrical, mechanical and electromechanical 

systems are described by nonlinear dynamic equations 

which often include a constant input, usually a constant 

voltage, external force or torque. Even after applying a 

control law, a constant external input remains on the closed-

loop dynamic model [5] and the desired equilibrium is not 

the origin. Since damping is a common property of all these 

systems, the passivity can be easily proven with respect to 

the system output and the constant external input. However, 

state boundedness is difficult to be proven, while 

convergence to a specific equilibrium cannot be directly 

concluded from the general passivity analysis. 
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In this paper, we connect the passivity analysis with 

stability and convergence to equilibrium for a class of 

nonlinear dynamic systems with constant inputs and distinct 

nonzero equilibriums. In order to prove that the system 

states remain bounded, the approach that is based on a 

sequence of linear-time-varying approximations to nonlinear 

systems is used, as proposed by Tomas-Rodriguez and 

Banks in [6,7]. This approach avoids using local 

linearizations in phase space or Lie algebra and replaces the 

bounded-input-bounded-output (BIBO) and input-to-state 

(ISS) stability theorems [8,9]. 

Furthermore, we prove that under some assumptions, 

often met in real nonlinear systems, passivity is adequate to 

provide convergence of the states to nonzero equilibriums. 

To this end, we prove that for this class of nonlinear, passive 

systems, one can always determine a general, bounded, 

differentiable, nonincreasing storage function. Particularly, 

this storage function is constructed as a switching storage 

function by using as generic function the original storage 

function easily obtained from the system passivity analysis. 

The approach of switching storage functions is based on a 

new efficient idea that has been developed to construct 

Lyapunov functions for difficult nonlinear systems [10, 11] 

or hybrid systems [12]. Indeed, this approach effectively 

overcomes a fundamental problem in nonlinear stability 

analysis that is the construction of suitable storage functions. 

Thus, exploiting this possibility, we continue by applying 

LaSalle’s Invariance Principle [1] to prove convergence to 

the equilibrium. 

In Section II, the basic preliminaries used for passivity, 

stability and convergence analysis are underlined and the 

basic assumptions needed for our development are provided. 

In Section III, the state boundedness of the system is proven. 

In Section IV, an appropriate switching storage function is 

developed and the convergence analysis is addressed. In 

Section V, a numerical example is analyzed and simulated to 

confirm the proposed approach while in Section VI a final 

conclusion is given. 

II. PRELIMINARIES, DEFINITIONS AND ASSUMPTIONS 

A. Passivity of nonlinear system 

Let the nonlinear system 

T
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Theorem 1. [1] Assume that there is a continuous function 

 such that ( ) 0V t t

0
( ) (0) ( ) ( )

t
T

V t V y u dW W W� d ³  

for all functions , for all  and all . Then the 

system with input  and output  is passive. 

( )u t

( )u t

0t t (0)V

( )y t

 

The storage function  at a future time  is equal 

or less than the sum of the available storage function 

 at an initial time  plus the total energy 

supplied to the system from the external sources in the 

interval , i.e. there exists a nonnegative definite 

function, , such that 

( ( ))V x t

0
t  

t

( (0))V x 0

[0, ]t

D x� �( ) 0t t

� � � � � �
0 0

( ) (0) ( ) ( ) ( )

t t

T
V x t V x D x d y u dW W W W�  � �³ ³ W  

which can be equivalently written in the derivative form 

� � � �( ) ( ) ( ) ( )T
V x t D x t y t u t � �� .                   (2) 

B. Linear approximations 

In a variety of nonlinear systems, (1) may put in the 

following form 

0( ) ( ) , (0)

( )

x A x x B x u x x

y C x x

 �  

 

�
                (3) 

 

Theorem 2. [6,7] Consider the nonlinear control system (3) 

with 0(0) n
x x R � . We introduce the sequence of linear, 

time-varying approximations 
[0] [0] [0] [0]

0 0( ) ( ) ( ) ( ) ( ) , (0) 0x t A x x t B x u t x x ��     (4a) 

and for , 1i t
[ ] [ 1] [ ] [ 1] [ ] [ ]

0( ) ( ( )) ( ) ( ( )) ( ) , (0)i i i i i i
x t A x t x t B x t u t x x

� � ��   (4b) 

If A  and  are locally Lipschitz, then system (4) 

converges to the nonlinear system (3) as i  and 

B

( )

of
[ ]

m
i

li ( )
i

x t t
of

o x . 

C. Stability of linear time-varying systems 

Consider the dimensional linear time-varying 

dynamic equation 

n �

0( ) ( ) , (0)x A t x B t u x x �  �           (5) 

where x  is the  state vector, u  is the  input vector 

and 

1nu 1mu
A ,  are  and  matrices respectively. Let B nun num

( ,t )W)  be the transition matrix of system (5). 

Definition 1. [13] A dynamic system of the form of (5) is 

said to be totally stable with respect to the state variable x , 

or T-stable for short, if and only if for any initial state and 

for any bounded input, the state variables are bounded. 

 

Theorem 3. [13] A system that is described by the linear 

dynamical equation (5) is totally stable if and only if 

0( , )t t)  is bounded and  

0

( , ) ( )

t

t

t B d kW W W) d � f³  

for any  and for all . 0t 0t tt

 

Consider now a linear time-varying system without 

external input: 

0 0( ) , ( )x A t x x t x  �             (6) 

and assume that ( )A t  is continuous and ( ) lim ( )
t

A A t
of

f   

exists. Then the following Lemma holds true. 

 

Lemma 1. [6] System (6) is asymptotically stable if the 

eigenvalues of ( )A f  have negative real parts. 

D. Convergence 

Definition 2. [1] We say that ( )x t  approaches a set Q  as t  

approached to infinity, if for each 0H !  there is a T  

such that 

0!

� �( ), ,dist x t Q t TH� � !  

where � �,dist p Q  denotes the distance from a point p  to 

the set Q , that is, the smallest distance fro  p  to any point 

 Q . More precisely

m

in , 

� �, inf
x Q

dist p Q p x
�

 � . 

E. Assumptions 

In this paper, we will discuss the stability and 

convergence of a certain class of nonlinear systems given in 

the form of (3). 

The main assumptions needed for the analysis are the 

following: 

 

Assumption 1. For nonlinear system (3) it holds: 

x For any trajectory ( ) n
x t R�: � , for all 0t t , matrix 

( )A x  is locally Lipchitz and has eigenvalues with 

negative real parts. 

x Matrix ( )B x  is constant, i.e. ( )B x B . 

x Input u  is assumed to be constant, i.e. ( )
c

u t u , 0t t . 

 

Assumption 2. It holds true that: 

x System (3) is passive with respect to the input u  and 

output y , for some storage function � �( ) 0V x t t , in 

accordance to Theorem 1. 

x There exist nonzero equilibrium points for (3): 

e
x M� � :  that are distinct, each satisfying the 

equation ( ) 0
e

V x  � , with � �( )V x t�  given by (2), for 
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some  ( ) 0cu t u z

x No limit cycles exist in :  

 

It is noted that the above assumptions are common for a 

wide class of dynamical systems while model description (3) 

represents a majority of electrical, mechanical and 

electromechanical systems. 

Since Assumption 2 holds true, input u  of system (1) (or 

(3) equivalently) is constant and the system actually is a 

nonlinear autonomous system of the form: 

0( ), ( )x 0f x x t x ��          (7) 

with nonzero equilibrium ex . Therefore, several stability 

theorems such as the Invariance Principle (LaSalle’s 

Theorem) or Local Invariant Set Theorem [1] can be 

applied. 

III. STABILITY ANALYSIS 

Since the nonlinear system (3) includes an input  which 

is constant, i.e. bounded, then the first step is to prove 

boundedness of the solution 

u

( )x t  of system (3). 

According to the Assumption 1, ( )A x  and  are locally 

Lipchitz functions and therefore Theorem 2 can be applied. 

As a result, one can consider the sequence of linear time-

varying approximations given by (4a) and (4b). 

B

Consider first the linear time invariant system (4a): 
[0] ( ) ( ) [0] [0]

0 ( ) , (0)c 0x t A x�

( )

x t Bu x x �            (8) 

Since A x  has eigenvalues with negative real parts for 

any  then the eigenvalues of matrix x�: 0( )A x  have 

negative real parts. As a result it is obvious that state [0] ( )x t  

of system (8) is bounded. 

Consider, now, the first system ( ) of the sequence 

given by (4b): 

1i  

[1] [0]( ) ( ( ) [1] [1]

0) ( ) , (0)
c

x t A x t

[1] [0]( ) ( (

x t Bu x x ��          (9) 

First, we will examine system (9) without the external 

input, i.e. 
[1] [1]

0)) ( ) , (0)x t A x�

[0] ( )

t x t x x          (10) 

Since x t  is bounded, then � �[0]( ) lim ( )
t

A A x t
of

f  

0

 

exists and according to the conditions mentioned, the 

eigenvalues of this  have negative real parts. Then, 

according to Lemma 1, system (10) is asymptotically stable. 

One can see, that any initial condition 

(A f)

x  will result to an 

asymptotically stable system at the origin independently of 

. In other words, there is a positive constant c , 

independent of  and for each 

0t

0t 0K ! , there is ( ) 0T K ! such 

that 
[1] ( ) , [1]

0 0
( ), ( )x t t� � t T x t cK Kt � � � . 

As a result, the origin is uniformly asymptotically stable and 

therefore for the transition matrix � �[1] ,t W)  of (9) or (10), it 

holds true that 

[1]
02

0

( )[1] [1] [1] [1] [1]

1 2 0 1

[1] [1]

0

, , 0 : ( , )

( , ) , 0

k t t

t

t

k k m t t k e

t d m t tW W

� �� t ) d

) d � t t³
       (11) 

Since  is constant, then Theorem 3 can be applied to 

prove that system (9) is totally stable. Therefore, the solution 

B

[1] ( )x t  is bounded. 

Now, proceeding with any , a similar analysis can be 

sequentially applied on (4b) which results in the 

boundedness of  and into the condition 

1i !

[ ]

0
( , )i
t t)

0

[ ] [ ]

0( , ) , 0

t

i i

t

t d m t tW W) d � t t³  for some . [ ] 0i
m t

Thus, applying Theorem 3, it is proven that any system in 

the sequence is totally stable producing a bounded state 
[ ] ( )i

x t . 

Eventually, as , then i of ( )x t  is bounded since 

[ ]( ) lim ( )i

i
x t x

of
 t . 

Thus we have established the following Lemma. 

 

Lemma 2. Under Assumption 1 and for any 0x , the 

trajectories ( )x t  of the original nonlinear system (3) are 

bounded in :  for all . 0t t

IV. CONVERGENCE TO EQUILIBRIUM 

State boundedness proven in the previous Section is a 

fundamental property for a nonlinear system with external 

input. In the analysis that follows, we prove that under the 

above assumptions, the bounded solution of system (3) 

converges to any equilibrium ex M� . Thus, we proceed 

with the following Lemma. 

 

Lemma 3. Consider nonlinear system (3) satisfying 

Assumptions 1 and 2. Let  be the set of all 

points of 

^ * *

1 2
, ,...

V
R V V `

� �( )V x t  on the trajectory ( )x t  satisfying 

� �( ) 0V x t  � . Then, there always exists a continuous, 

differentiable bounded switching storage function � �( )W x t : 

� �

� � > @
� � > @

� � > @
� � > @

0 0

1 1

1 1

1

( ) ,

( ) ,

( )
( ) ,

( ) ,

1

2

K K K

K K

W x t when t t t

W x t when t t t

W x t
W x t when t t t

W x t when t t t

� �

�

­ �
° �°
°°

 ®
�°

° �
°
°̄

�

�

K

                 (12) 

with  

� � � �� �2

0

1
( ) ( ) (1 )

2
M m

W x t V x t sV s V � � � , 
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� � � �� �
2

*
2

1

1 *

1

(1 )1
( ) ( ) (1 )

2 (1 )

M m

m M

m M

V sV s V
W x t V x t sV s V

V sV s V

§ ·� � �
 � � � ¨ ¸

� � �© ¹
, 

� � � �� �

� ��
� ��

�
�

2

1

2
* *

2
1

* *
1,3,5,... 1

1
( ) ( ) (1 )

2

(1 ) (1 )

(1 ) (1 )

K M m

K
i m M i M m

i i m M i M m

W x t V x t sV s V

V sV s V V sV s V

V sV s V V sV s V

�

�
�

 �

 � � � u

§ ·� � � � � �
¨ ¸
¨ ¸� � � � � �© ¹

�
, 

� � � �� �

� ��
� ��

�
�

2
*

2

*

2
* *

2
1

* *
1,3,5,... 1

(1 )1
( ) ( ) (1 )

2 (1 )

(1 ) (1 )

(1 ) (1 )

K M m

K m M

K m M

K
i m M i M m

i i m M i M m

V sV s V
W x t V x t sV s V

V sV s V

V sV s V V sV s V

V sV s V V sV s V

�
�

 �

§ ·� � �
 � � � u¨ ¸

� � �© ¹

§ ·� � � � � �
¨ ¸
¨ ¸� � � � � �© ¹

�
, 

where switching parameter s  is used for initialization and is 

calculated once at : 0t t 

� � � �
� � � �

0 0 0

0 0 0

1, ( ) ( ) ( ) 0

0, ( ) ( ) ( ) 0

T

c

T

c

if V x t D x t y t u
s

if V x t D x t y t u

­  � � t°
 ®

 � � �°̄

�

�
 

and 
M

V

minV

,  are constant values such that , 

 with  and  be the maximum and 

minimum values of  and  represents the time 

instant on which V x  wherein 

m
V maxM

V V!

m
V � maxV minV

�
*

i i
V �

� ( )V x t

� �( )t

i
t

V
R � �i

V t  changes 

its sign. 

�

Then, the derivative of the storage function � �( )W x t�  is 

nonpositive for any ( )x t  in . :

 

Proof. System (3) is passive and let  be the storage 

function which proves passivity. Since Assumption 1 holds 

true, then Lemma 2 implies that the solution 

� ( )V x t �

( )x t

� ( )V x t

0

 remains 

bounded in :  from which it follows that  is also 

bounded, i.e. . Without loss of 

generality assume that initially V x , i.e. 

�
� �min m( )V V x td

�

axVd

� �0( )t t 1s  . 

Then the following storage function can be used (12): 

� �

� �� � > @

� �� � > @

� �� �
� � � �
� �� �

> @

� �� �
� �� �
� �� �

2

0 1

2
*

2
1

1 2*

1

2
* *

2
2 1

1* *
1,3,5,... 1

2 * **
2 1

* * *

1

1
( ) , ,

2

1
( ) , ,

2

( )
1

( ) , ,
2

1
( )

2

M

M

m

m

K
i m i M

M K K

i i m i M

i m i MK M

m

K m i m i M

V x t V t t t

V V
V x t V t t t

V V

W x t V V V V
V x t V t t t

V V V V

V V V VV V
V x t V

V V V V V V

�
�

�
 �

�

�

� �

§ ·�
� �¨ ¸

�© ¹

 § ·� �
¨ ¸� �
¨ ¸� �© ¹

§ ·� �§ ·� ¨� ¨ ¸ ¨� � �© ¹ ©

�

�

> @
2

2

1

1,3,5,...

, ,
K

K K

i

t t t
�

�
 

­
°
°
°
°
°
°
°°
®
°
°
°
°
° ¸ �
° ¸

¹°
°̄

�

�

�

 

which obviously is continuous and bounded. The time 

derivative of  in every interval >� ( )W x t @1,
K K

t t�  is: 

� � � � � �� �

� �� �
� �� �

2
* *

2
1

* *
1,3,5,... 1

( ) ( ) ( )

0

M

K
i m i M

i i m i M

W x t V x t V x t V

V V V V

V V V V

�
�

 �

 �

§ ·� �
¨ ¸ d
¨ ¸� �© ¹

�

� �

     (13) 

while in every interval > @1,
K K

t t �  it is: 

� � � � � �� �

� �� �
� �� �

2
*

*

2
* *

2
1

* *
1,3,5,... 1

( ) ( ) ( )

0

K M

m

K m

K
i m i M

i i m i M

V V
W x t V x t V x t V

V V

V V V V

V V V V

�
�

 �

§ ·�
 � ¨ ¸

�© ¹

§ ·� �
¨ ¸ d
¨ ¸� �© ¹

�

� �

  (14) 

Inequalities (13) and (14) hold true since � �( )V x t  is 

monotonic in every interval. Furthermore, one can see that 

� �( ) 0
i

W x t  �  at every switching time instant since 

� � � �* 0
i

x( )
i

V x t V  �� . As a result  is uniformly 

continuous and obviously  is differentiable in 

� ( )W x t�

�

�

� ( )W x t : . 

Therefore the solution ( )x t  is bounded in a region :  in 

which � � 0( )W x t d� , as shown by (13) and (14). 

Note that if initially � �0( ) 0V x t �� , i.e. 0s  , a similar 

analysis shows that the same properties hold true for 

� �( )W x t  and it is again true that W x  in � �( )t d 0� : . 

Therefore, in any case (for  or 1s  0s  ) one can 

determine a continuous, differentiable, bounded storage 

function � �( )W x t  with derivative � �( )t 0W x d�  in : .                     

� 

 

Now, we are ready to apply Lemma 3 to prove 

convergence to equilibrium. 

 

Theorem 4. The state trajectories , of the passive 

system (3), satisfying Assumptions 1 and 2, converge to an 

equilibrium 

( )x t �:

e
x M� . 

 

Proof. Since Assumptions 1 and 2 hold true, Lemma 3 can 

be applied to provide a  which satisfies all the 

demands required by LaSalle’s Invariance Principle [1]. Let 

� ( )W x t �

^ `* *

1 2, ,...R x x  be the set of all points of ( )x t  within :  

such that � �... :
i V

R R
* , 1,2, oV i  and let R R M �  

constitutes the set wherein . Since � �( )W x t� 0 M  is the 

largest invariant set in R , according to LaSalle’s Invariance 

Principle, every solution ( )x t  originating in :  tends to M  

as .  As a result the solution converges to some 

equilibrium point 

t of

e
x , i.e. ( )

e
x t xo  as .      � t of

 

From the analysis of Theorem 4, the following remark 

can be derived. 
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Remark 1. Convergence of ( )x t  to the equilibrium implies 

that for each 0H !  there is  such that (Definition 2): 0T !

� �( ), ,dist x t M t TH� � ! .                   (15) 

Therefore, one can easily prove that there exists a ( )G H  for 

the storage function  such that: � �( )V x t

� � � �� �( ) , ( ),
e

dist V x t V x t TG H� � ! .           (16) 

Taking into account the structure of the switching storage 

function , this means that for each � ( )W x t � 0H !  there 

always exists a last time-instant  after which  

 remains at , for all , i.e. 

N
t Td

N
t tt� ( )W x t � � ( )

N
W x t � � �( )tW x  

is determined by a finite sequence of switching functions 

, ( ). � �( )
i

W x t 0,1, 2,...,i N

V. NUMERICAL EXAMPLE 

A. Model description and analysis 

In order to investigate the theoretical analysis mentioned 

in the previous Section, we illustrate a numerical example of 

a nonlinear system given by the following dynamic model: 
2

1 1 2 1

2 1 2 2 2 3

2

3 2 3

3 10

10 2 5

10 2

x x x u

2x x x x x x u

x x x

 � � �

 � � �

 �

�

�

�

                 (17) 

where > @1 2 3

T
x x x x  and  are the state 

vector and input vector respectively. 

> 1 2

T
u u u @

»
»

Assume that the input vector is constant, i.e. 

1 25, 3, 0u u t  � t                       (18) 

Then, one can derive the unique equilibrium point of 

system (17) given as: 

0.5345

0.5828

1.6983

e
x

ª º
« «
« »¬ ¼

                                  (19) 

First, we prove that system (17) is passive. Let the 

continuous differentiable storage function V  as: 

� � 2 2

1 2

1 1 1
( )

2 2 4
V x t x x x � � 2

3
                     (20) 

Taking the time derivative of V  it yields: 

1 1 2 2 3 3

1

2
V x x x x x x � �� � � �                           (21) 

and substituting x�  from the dynamic model (17), equation 

(21) becomes: 

� �2 2 2

1 2 3 1 1 2 23 2 T
V x x x x u x u D x y � � � � �  � �� u

@

@ 2

3

     (22) 

where we consider as output , as input 

 and function . Then 

(22) implies that . 

> 1 2

T
y x x 

2 2

1 2
( ) 3 2x x �> 1 2

T
u u u D x x�

T
V y ud�

Integrating the last expression from zero to t , it yields: 

 
0

( ) (0) ( ) ( )
t

T
V t V y u dW W W� d ³                  (23) 

According to Theorem 1, inequality (23) proves that 

system (17) is passive. 

Continuing, system (17) can be written in the form (3) as 

follows: 

1 2 1

1

2 2 2 2

2

3 2 3

3 10 0 1 0

10 2 5 0 1

0 10 2 0 0

x x x
u

x x x x
u

x x x

� �ª º ª º ª º ª º
ª º« » « » « » « » � � � « »« » « » « » « » ¬ ¼« » « » « » « »�¬ ¼ ¬ ¼ ¬ ¼ ¬ ¼

�

�

�

   (24) 

with ( )A x , ( )B x B  being locally Lipschitz functions. 

Furthermore, it should be noted that matrix ( )A x  depends 

only on the state variable 2x  and one can easily prove that 

the eigenvalues of ( )A x  have negative real parts for any 

2x �: .  Assuming that in  no limit cycle exists, then 

both Assumptions mentioned in Section II.E hold true and in 

accordance to Theorem 4, system states converge to 

:

e
x , 

given by (19), as t . of

B. Simulation results 

System (17) with constant inputs ,  given by (18) is 

simulated by assuming zero initial condition for 

1u 2u

0x . 

Since the theoretical analysis proves that trajectory ( )x t  

is bounded, then for the storage function � �( )V x t

max) Vd

 given by 

(20), it holds true that . Choosing � �0 (V x td

max50
M

V V !  and min0.001V
m

V � �

� �( )W x t

, an appropriate 

switching storage function  in accordance with 

Lemma 2 can be determined as follows: � �( )W x t   

� �� � > @

� �� � > @

� �� �

> �

2

2
2

2 2
2

1
( ) 50 , 0,0.353

2

1 0.6251 50
( ) 0.001 , 0.353,0.4931

2 0.6251 0.001

1 0.5939 0.001 0.6251 50
( ) 50 ,

2 0.6251 0.001 0.5939 50

0.4931,

V x t t

V x t t

V x t

t

­
°
°

� �°
°
° �§ ·� �® ¨ ¸�© ¹°
° � �§ · §° � ¨ ¸ ¨� �° © ¹ ©
° � f¯

·
¸
¹

(25) 

Figure 1 shows the time response of the storage function 

� �( )V x t  which is bounded. Figure 2 illustrates the time 

response of the storage function  given by (25) 

which is continuous, decreasing and bounded. We note that 

that three time intervals are adequate to prove convergence 

of the solution to the unique equilibrium. 

� ( )W x t �

Figures 3, 4 and 5 illustrate the time responses of the 

three state variables. It can be observed that all states 

converge to the unique equilibrium point 
e

x  given by (19) 

verifying the stability analysis and convergence described in 

Sections III and IV. 
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VI. CONCLUSION 

In this paper, we have proven that under some mild 

assumptions, the states of every passive system having 

distinct equilibrium points converge to one of the 

equilibriums. 
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