
 

  
Abstract— This paper investigates the problem of exponential ۶ஶ synchronization for a class of master-slave systems with 
both discrete and distributed time-delays, norm-bounded 
nonlinear uncertainties and Markovian switching parameters. 
Using an appropriate Lyapunov-Krasovskii functional, some 
delay-dependent sufficient conditions and a synchronization law 
which include the master-slave parameters are established for 
designing a delay-dependent mode-dependent sliding mode 
exponential ۶ஶ synchronization control law in terms of linear 
matrix inequalities. The controller guarantees the ∞H  
synchronization of the two coupled master and slave systems 
regardless of their initial states. A numerical example is given to 
show the effectiveness of the method. 
 

Index Terms—Synchronization; master-slave systems; sliding 
mode; Delay; ∞H  performance; Nonlinear uncertainties. 

I. INTRODUCTION 
The sliding mode method has been recognized as one of the 
efficient tools to design robust controllers for the complex 
high-order nonlinear dynamic system operating under 
uncertainty conditions. The research in this area were initiated 
in the former Soviet Union about 40 years ago, and then the 
sliding mode control methodology has been receiving much 
more attention from the international control community 
within the last two decades. The major advantage of sliding 
mode is low sensitivity to plant parameter variations and 
disturbances which eliminates the necessity of exact modeling. 
Sliding mode control enables the decoupling of the overall 
system motion into independent partial components of lower 
dimension and, as a result, reduces the complexity of feedback 
design [1]-[2].  
In recent years, more attention has been devoted to the study 
of stochastic hybrid systems, where the so-called Markov 
jump systems. These systems represent an important class of 
stochastic systems that is popular in modeling practical 
systems like manufacturing systems, power systems, 
aerospace systems and networked control systems that may 
experience random abrupt changes in their structures and 
parameters [3]-[6]. Random parameter changes may result 
from random component failures, repairs or shut down, or 
abrupt changes of the operating point. Many such events can 
be modeled using a continuous time finite-state Markov chain, 
which leads to the hybrid description of system dynamics 
known as a Markov jump parameter system [7]. Furthermore, 
the delay effects problem on the stability of systems is a 
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problem of recurring interest since the delay presence may 
induce complex behaviors for the schemes, see for instance 
[8]. The problem of nonlinear filtering for state delayed 
systems with Markovian switching is proposed in [9]-[11].The 
problem of robust mode-dependent delayed state feedback ܪ∞ 
control is investigated for a class of uncertain time-delay 
systems with Markovian switching parameters and mixed 
discrete, neutral and distributed delays in [12]. Moreover, the 
sliding mode control problem for uncertain systems with time 
delays and stochastic jump systems are also investigated in 
[13]-[15], respectively. Recently, the problem of sliding mode 
control for a class of nonlinear uncertain stochastic systems 
with Markovian switching is studied in [16]. More recently, in 
[17], sliding mode control of nonlinear singular stochastic 
systems with Markovian switching is proposed.  
On another research front line, synchronization is a basic 
motion in nature that has been studied for a long time, ever 
since the discovery of Christian Huygens in 1665 on the 
synchronization of two pendulum clocks. The results of chaos 
synchronization are utilized in biology, chemistry, secret 
communication and cryptography, nonlinear oscillation 
synchronization and some other nonlinear fields. The first idea 
of synchronizing two identical chaotic systems with different 
initial conditions was introduced by Pecora and Carroll in 
[18], and the method was realized in electronic circuits. The 
methods for synchronization of the chaotic systems have been 
widely studied in recent years, and many different methods 
have been applied theoretically and experimentally to 
synchronize chaotic systems; see for instance [19]-[22]. On 
the synchronization problems of systems with time-delays and 
nonlinear perturbation terms, we see that there have been 
some research works; see for instance [23]-[28] and the 
references therein. So the development of synchronization 
methods for master-slave systems with Markovian switching 
parameters and time-varying delays is important and has not 
been fully investigated in the past and remains to be important 
and challenging. This motivates the present study. 
In this paper, the problem of exponential H∞ synchronization 
is studied for a class of master-slave systems with both 
discrete and distributed time-delays, norm-bounded nonlinear 
uncertainties and Markovian switching parameters. Using an 
appropriate Lyapunov-Krasovskii functional, some delay-
dependent sufficient conditions and a synchronization law 
which include the master-slave parameters are established for 
designing a delay-dependent mode-dependent sliding mode 
exponential H∞ synchronization control law in terms of linear 
matrix inequalities (LMIs). The controller guarantees the ∞H  
synchronization of the two coupled master and slave systems 
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regardless of their initial states. A numerical example is given 
to show the effectiveness of the method. 

Notation: The notations used throughout the paper are fairly 
standard. I and 0 represent identity matrix and zero matrix; the 
superscript ԢTԢ stands for matrix transposition. ԡ. ԡ refers to the 
Euclidean vector norm or the induced matrix 2-norm. diagሼڮ ሽ 
represents a block diagonal matrix and the operator symሺAሻ represents A  AT. Let Ըା ൌ ሾ0, ∞ሻ  and ࣟሼ. ሽ denotes the 
expectation operator with respect to some probability measure ࣪. If xሺtሻ is a continuous Ը୬-valued stochastic process on t א ሾെκ, ∞ሻ, we let x୲ ൌ ሼxሺt  θሻ: െ κ  θ  0ሽ  for t  0 which is 
regarded as a  Cሺሾെκ, 0ሿ; Ը୬ሻ-valued stochastic process. The 
notations ԭ୨୧ stand for ԭ୨ሺiሻ. The notation P  0  means that P is 
real symmetric and positive definite; the symbol ∗  denotes 
the elements below the main diagonal of a symmetric block 
matrix. 

II. PROBLEM DESCRIPTION 
Consider a model of master and slave systems with Markovian 
switching parameters and mixed discrete and distributed time-
varying delays and nonlinear perturbations in the form of 
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where },h{max: mM τκ = , )t(x),t(x sm are the 1n ×  state vector of 
the master and slave systems, respectively and )t(u  is the 1r ×  
control input. ))t(r(D)),t(r(B)),t(r(A i  and ))t(r(C i are matrix 
functions of the random jumping process )}t(r{ . }0t),t(r{ ≥  is a 
right-continuous Markov process on the probability space 
which takes values in a finite space }s,,2,1{S …=  with 
generator )Sj,i(][ ij ∈= πΠ given by 
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where 0>Δ , 0/)(olim 0 =→ ΔΔΔ  and 0ij ≥π , for ji ≠ , is the 
transition rate from mode i  at time t  to mode j  at time Δ+t  

and ∑
=

≠=
−=

sj

ij,1j
ijii ππ . The vector valued initial functions )t(φ  and 

)t(ϕ  are continuously differentiable functionals and (.,.)fi  are 
also time-varying vector-valued functions. The time delays are 
satisfying 

DM h)t(h,h)t(h0 ≤≤< �
                                  (4a) 

DM )t(,)t(0 ττττ ≤≤< �                                   (4b) 

 
Assumption 1. The continuous functions nn

i :f ′+ ℜ→ℜ×ℜ  
are unknown and satisfy 0)0,t(f i =  and the Lipschitz 
conditions, i.e., )yx()y,t(f)x,t(f 00i0i0i −≤− Γ  for all t  and 
for all nyx ℜ∈00 ,  such that iΓ  are some known matrices. 
 
Definition 1. The Markovian systems (1)-(2) are said to be 
globally exponentially stable in the mean square sense if, 
when uሺtሻ ൌ 0, for any finite φሺtሻ, Ԅሺtሻ א Ը୬ defined on ሾെκ, 0ሿ, 
and r א S the following condition is satisfied ࣟሼԡeሺtሻԡଶሽ  ceି ୲ supିசஸୱஸԡeሺsሻԡଶ,   t  0 

where  eሺtሻ ൌ x୫ሺtሻ െ xୱሺtሻ is the synchronization error of the 
master and slave systems (1)-(2) system from initial system 
state Ԅሺ0ሻ െ φሺ0ሻ and initial mode r, and c is a positive 
constant. 
 
Definition 2. The Hஶ performance measure of the system (1)-
(2) is defined as Jஶ ൌ ࣟ ൫ ሾzୣሺtሻTzୣሺtሻ െ γଶwTሺtሻwሺtሻሿஶ  dt൯, where zୣሺtሻ ൌ z୫ሺtሻ െ zୱሺtሻ and the positive scalar γ is given. 
 
Remark 1. The model (1)-(2) can describe a large amount of 
well-known dynamical systems with time-delays, such as the 
delayed Logistic model, the chaotic models with time-delays 
and the artificial neural network model with discrete time-
delays. In real application, these coupled systems can be 
regarded as interacting dynamical elements in the entire 
system, such as physical particles, biological neurons, 
ecological populations, genic oscillations, and even automatic 
machines and robots. A feasible coupling design for successful 
synchronization leads us to fully command the intrinsic 
mechanism regulating the evolution of real systems, to 
fabricate emulate systems, and even to remotely control the 
machines and nodes in networks with large scales [23], [29]. 
 
Assumption 2. The full state variables xୱሺtሻ and x୫ሺtሻ are 
available for measurement. 
 
Now, it is required to synchronize the slave system with the 
master system at the same time. Let eොሺtሻ ൌ e୲eሺtሻ and α is 
called the exponential decay rate. Then the error dynamics, 
namely synchronization error system, can be expressed by 
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where )t(ue)t(û tα= , )t(we)t(ŵ tα= , =−= )t(ẑ)t(ẑ)t(ẑ sme  

))t(z)t(z(e sm
t −α , ))t(x;t(f(e:))t(ê;t(f̂ m1

t
1

α= )))t(e)t(x;t(f m1 −− , 

)))t(ht(ê;t(f̂ 2 − ))))t(ht(e))t(ht(x;t(f)))t(ht(x;t(f(e: m2m2
t −−−−−= α . 
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From Assumption 1, the corresponding uncertainty set is 
denoted by 

}ê))t(ê,t(f̂:))t(ê,t(f̂{:))t(ê( iiii ΓΞ ≤=                    (6) 

 
Now the original synchronization problem can be replaced by 
the equivalent problem of stabilizing the system (5) by a 
suitable choice of the sliding mode control. In the following, 
the sliding mode controller will be designed using variable 
structure control and sliding mode control methods [1]. Let us 
introduce the sliding surface as 
 S୧ሺtሻ ൌ V୧eොሺtሻ െ V୧  ሾሺAଵ୧  α I െ B୧Kଵ୧ሻeොሺsሻ  e ୦ሺୱሻሺAଶ୧ െ B୧Kଶ୧ሻeොሺs െ୲hሺsሻሻሿ ds െ V୧   e ሺୱି୰ሻሺAଷ୧ െ B୧Kଷ୧ሻeොሺrሻୱୱିதሺୱሻ  dr ds୲   

(7) 
where V୧ א  ࣬୫ൈ୬, K୨୧ א  ࣬୰ൈ୬, j ൌ 1,2,3 are real matrices to be 
designed. It is clear that Sሶ ୧ሺtሻ ൌ 0 is a necessary condition for 
the state trajectory to stay on the switching surface S୧ሺtሻ ൌ 0. 
Therefore, by Sሶ ୧ሺtሻ ൌ 0 and (5), we get 
 0 ൌ V୧ሾB୧Kଵ୧eොሺtሻ  e ୦ሺ୲ሻ B୧Kଶ୧eො൫t െ hሺtሻ൯  න e ሺ୲ି୰ሻ B୧Kଷ୧ eොሺrሻ୲

୲ିதሺ୲ሻ  dr Nଵ୧fመଵሺt, eොሺtሻሻ  Nଶ୧fመଶሺt, eො൫t െ hሺtሻ൯ሻ െ B୧ uො୧ሺtሻെ D୧ wෝሺtሻሿ 
(8) 

Solving equation (8) for uො୧ሺtሻ yields the equivalent control 
 uො୧ୣ୯ሺtሻ ൌ Kଵ୧eොሺtሻ  e ୦ሺ୲ሻ Kଶ୧eො൫t െ hሺtሻ൯   e ሺ୲ି୰ሻKଷ୧ eොሺrሻ୲୲ିதሺ୲ሻ  dr V෩୧Nଵ୧fመଵሺt, eොሺtሻሻ  V෩୧Nଶ୧fመଶሺt, eො൫t െ hሺtሻ൯ሻ െ V෩୧D୧ wෝሺtሻ  

(9) 
where V෩୧ ൌ ሺV୧B୧ሻିଵV୧. By using (9) in (5), the error dynamics in 
sliding mode is given as follows: 
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(10a-c) 
The problem to be addressed in this paper is formulated as 
follows: given the master-slave systems (1)-(2) with both 
discrete and distributed time-delays and Markovian switching 
parameters, find a mode-dependent sliding mode exponential Hஶ synchronization control uሺtሻ with any rሺtሻ ൌ i א S  for the 
slave system (2) such that the resulting closed-loop system is 
stochastically stable and satisfies an Hஶ norm bound γ, i.e. Jஶ ൏ 0.  

III. MAIN RESULTS 
In this section, we propose sufficient conditions for the 
stochastic stability of the sliding error motion (10) using the 
Lyapunov method.  
 
  ஶ performance analysisܪ 3.1
Define the following Lyapunov-Krasovskii functional 
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where Pଵ୧, S୧, R୧  and  U୧ are 

mode-dependent matrix functions. The weak infinitesimal 
operator  ࣦVሺ. ሻ of the stochastic process ሼሺe୲, rሺtሻሻ, t  0ሽ, acting 
on V א CሺԸ୬ ൈ Ըା ൈ Sሻ at the point ሼt, eොሺtሻ, rሺtሻ ൌ iሽ, is given by (see 
Lemma 3.1, [30]) 
 ࣦVሺeො, t, iሻ ൌ lim∆՜శ 1∆ ሼࣟሾVሺeොሺt  ∆ሻ, eො୲ା∆, t  ∆, rሺt  ∆ሻ|eොሺtሻ, eො୲, t, rሺtሻ ൌ iሻሿെ Vሺeො, t, iሻሽ ൌ V୲ሺeො, t, iሻ  eොሶ ሺtሻTVୣ ሺeො, t, iሻ   π୧୨Vሺeො, t, jሻୱ

୨ୀଵ  

 

where V୲ሺeො, t, iሻ ൌ பVሺොୣ,୲,୧ሻப୲   , Vୣ ሺeො, t, iሻ ൌ ሺபVሺොୣ,୲,୧ሻபොୣభ , ڮ , பVሺොୣ,୲,୧ሻபොୣ ሻT. 
Differentiating Vଵሺeො, t, iሻ in t we obtain 
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Differentiating other Lyapunov terms in (11) give  
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According to Assumption 1, ones read 
0)t(ê)t(ê))t(ê,t(f̂))t(ê,t(f̂ 1
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0)t(ê)t(ê)))t(ht(ê;t(f̂)))t(ht(ê;t(f̂ 2
T

2
T

2
T

2 ≥+−−− ΓΓ     (15b) 
On the other hand, for a prescribed γ  0 and under zero initial 
conditions,  Jஶ  can be rewritten as Jஶ  ࣟ ቆන eିଶ୲ሾzොୣሺtሻTzොୣሺtሻ െ γଶwෝ Tሺtሻwෝሺtሻሿஶ

  dt  Vሺeො, t, iሻ|୲՜ஶെ Vሺeො, t, iሻ|୲ୀቇ 

 ࣟ ቆන eିଶசሾzොୣሺtሻTzොୣሺtሻ െ γଶwෝ Tሺtሻwෝሺtሻ  ࣦVሺeො, t, iሻሿஶ
  dtቇ 

From the obtained derivative terms in (12)-(14) and adding the 
left-hand side of the equation (15) into ࣦVሺeො, t, iሻ, we obtain 

 Jஶ  ࣟ ൫ χୣሺtሻTΞ෨ୣ୧ χୣሺtሻஶ  dt൯                         (16) 
where  χୣሺtሻ ൌ ሾeොሺtሻT, eොሺt െ hሺtሻሻT, න e ሺ୲ିசሻ eොሺκሻT dκ ,୲

୲ିதሺ୲ሻ  fመଵ൫t, eොሺtሻ൯T, fመଶ ቀt, eො൫tെ hሺtሻ൯ቁT , wෝሺtሻTሿT 
and 
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with 1
2
Mi1M

s

1j
j1iji1ii1i111 USRhP))KBIA(P(sym: τπαΣ ++++−+= ∑

=
 

i1
T
i1

2
2

T
21

T
1 CCe ακΓΓΓΓ −+++ , )KBA(Pe: i2ii2i1

Mh
12 −= αΣ

i2
T

i1
2Mh CCee ακα −+ , i2

T
i2

2Mh2
iD22 CCeeS)h1(: ακαΣ −+−−= ,

i3
T
i1

2
i3ii3i113 CCe)KBA(P: ακΣ −+−= , )NV

~
BN(P: jiiijii1)j3(1 −=+Σ , j=1,2. 

Then, the conditions Ξ෨ୣ୧ ൏ 0,                                                        (18a) 
0R)h1(S 1D

s

1j
jij ≤−−∑

=
π ,                                           (18b) 

mean that the condition Jஶ ൏ 0 is satisfied. Moreover, the 
condition  Jஶ ൏ 0  for wሺtሻ ൌ 0 implies ࣟሼࣦVሺeො, t, iሻሽ ൏ 0. Then, we 
have ࣟሼࣦVሺeො, t, iሻሽ  െσଵࣟሼeොሺtሻTeොሺtሻሽ                                      (19) 
where σଵ ൌ min ሼλ୫୧୬൫െΞ෨ୣ୧൯, i א Sሽ, then σଵ  0. By Dynkin’s 
formula, we have ࣟሼVሺeො, t, iሻሽ െ ࣟሼVሺԄሺ0ሻ െ φሺ0ሻ, r, 0ሻሽ  െσଵࣟ ቊන eොሺsሻTeොሺsሻ ds୲

 ቋ 

or ࣟቄ eොሺsሻTeොሺsሻ ds୲ ቅ  σଵି ଵVሺԄሺ0ሻ െ φሺ0ሻ, rሻ                  (20) 
Moreover, from LKF (11) the following condition holds  ࣟሼVሺeො, t, iሻሽ  σଶࣟሼeොሺtሻTeොሺtሻሽ                                           (21) 
where σଶ ൌ min ሼλ୫୧୬ሺPଵ୧ሻ, i א Sሽ. From (19)-(21), we obtain ࣟሼeොሺtሻTeොሺtሻሽ  െσଵσଶି ଵࣟ ቊන eොሺsሻTeොሺsሻ ds୲

 ቋ  σଶି ଵVሺԄሺ0ሻ െ φሺ0ሻ, rሻ. 
Hence ࣟ ቊන eොሺsሻTeොሺsሻ ds୲

 ቋ    σଵି ଵൣ1 െ eିభమషభ୲൧ VሺԄሺ0ሻ െ φሺ0ሻ, 0, rሻ 

or  lim୲՜ஶ ࣟቄ eොሺsሻTeොሺsሻ ds୲ ቅ    σଵି ଵVሺԄሺ0ሻ െ φሺ0ሻ, 0, rሻ          (22) 
Moreover, from the Chebyshev integral inequality and 
considering e୲  1  αt, it is clear that න eොሺsሻTeොሺsሻ ds୲

   1t න eଶୱ ds୲
  . න eሺsሻTeሺsሻ ds୲

   12 e୲ . න eሺsሻTeሺsሻ ds୲
  

Therefore, from (22) and the inequality above, we have lim୲՜ஶ ࣟቄ eሺsሻTeሺsሻ ds୲ ቅ    2σଵି ଵeି୲ VሺԄሺ0ሻ െ φሺ0ሻ, 0, rሻ          (23) 
which indicates that, from Definition 1, the system in (10) 
with Markovian switching parameters in (3) is globally 
exponentially stable in the mean square sense and has the 
exponential decay rate α. The following result is now 
concluded for the Hஶ performance analysis of the error 
dynamics (10) with Markovian switching parameters. 
 
Theorem 1. Let the matrices V୧, K୨୧ ሺi ൌ 0,1, ڮ , N; j ൌ 1,2,3ሻ  with det ሺV୧ B୧ሻ ് 0  be given. The master-slave time-delay systems 
(1)-(2) with Markovian switching parameters in (3) is 
synchronized exponentially with a degree ߙ  and an Hஶ 
performance level γ  0 at least in the sense of Definition 1, if 
there exist some positive definite matrices Pଵ୧, Uଵ,  S୧ satisfying 
the LMIs (18). 
 
Remark 2. If the switching modes are not considered, i.e. S ൌ ሼ1ሽ, the jumping master-slave systems (1)-(2) are 
simplified into a general linear system with nonlinearities and 
time delays. Then it is easy to conclude a criterion from 
Theorem 1, which can be used to determine the stability of 
such master-slave systems. 
 
Now we are in the position to solve the synchronization 
problem of the systems (1)-(2). Based on Theorem 1, we can 
obtain a mode-dependent delayed Hஶ  synchronization law in 
the form of (9) in the following theorem. 
 
Theorem 2. Under Assumptions 1-2, a synchronization law 
given in the form (9) exists such that the Markovian jumping 
synchronization error system (5) with time-varying delays in 
(4) is stochastically exponentially stable with a degree ߙ  and 
an Hஶ performance level γ  0 at least in the sense of 
Definition 1, if there exist some matrices K෩୨୧,V෩୧ and positive 
definite matrices  Pഥଵ୧, U෩ଵ, R෩ଵ,  S෨୧ ሺi ൌ 1, ڮ , s; j ൌ 1,2,3ሻ satisfying the 
following LMIs 
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(24a) 

 
0R~)h1(S

~
1D

s

1j
jij ≤−−∑

=
π  ,                                  (24b) 

IBV~ ii = ,                                               (24d) 
where 1

2
Mi1Mi1ii1i111 U~S

~
R~h)K~BP)IA((sym: ταΣ +++−+= ,

)K~BPA(e: i2ii1i2
Mh

12 −= αΣ , i3ii1i313 K~BPA: −=Σ , [ ]T
2i1

T
1i115 PP: ΓΓΣ = ,

]D)V~BI(,NV~BN,NV~BN[: iiii2iii2i1iii114 +−−−=Σ , ,I,I{diag:44 −−=Σ

}Ie 22 ακγ −− , [ ]i1isi11iii11iii11i17 PPPP: ππππΣ "" +−=  

and
 

}P,,P,P,,P{diag: s1iss11ii111ii111i77 ππππΣ −−−−= +− "" . 
Then, the equivalent control in (9) is given by 
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uො୧ୣ୯ሺtሻ ൌ K෩ଵ୧Pഥଵ୧ିଵeොሺtሻ  e ୦ሺ୲ሻ K෩ଶ୧Pഥଵ୧ିଵeො൫t െ hሺtሻ൯ න e ሺ୲ି୰ሻK෩ଷ୧Pഥଵ୧ିଵ eොሺrሻ୲
୲ିதሺ୲ሻ  dr  V෩୧Nଵ୧fመଵሺt, eොሺtሻሻ V෩୧Nଶ୧fመଶሺt, eො൫t െ hሺtሻ൯ሻ 

(25) 
Proof. By performing a congruence transformation diagሼPഥଵ୧T, I, … , Iሽ, where Pଵ୧: ൌ Pଵ୧ିଵ,  to both sides of (18a), applying 
Schur complements  and considering i1i1i1 PKK~ =  result in (24a). 
The other two conditions (24b)-(24c) are easily concluded 
from Theorem 1. ■ 
 
Remark 3. By setting δ ൌ γଶ and minimizing δ subject to (24), 
we can obtain the optimal Hஶ performance index γכ (by γ ൌ √γ) 
and the corresponding control gains as well. 
 
3.2 Sliding model control design 
After designing the switching surface, in this section, an 
appropriate control law will be constructed such that the 
system state trajectories from arbitrary initial values are 
globally attracted to the switching surface in a finite time and 
maintain them on the surface afterwards. 
 
Theorem 3. Under Assumptions 1-2, it is supposed that the 
sliding surface function is given as (7), where V୧ is chosen to 
satisfy V୧൫I െ B୧V෩୧൯ ൌ 0 and V୧B୧ is nonsingular. Then, the 
trajectories of the error dynamics (5) can be driven onto the 
sliding mode surface if the control is designed as follows uො୧ሺtሻ ൌ K෩ଵ୧Pഥଵ୧ିଵeොሺtሻ  e ୦ሺ୲ሻ K෩ଶ୧Pഥଵ୧ିଵeො൫t െ hሺtሻ൯ න e ሺ୲ି୰ሻ K෩ଷ୧Pഥଵ୧ିଵ eොሺrሻ୲

୲ିதሺ୲ሻ  dr  V෩୧ ሾτ୧  Ԗ୧ԡeොሺtሻԡ Ԗଶ୧ฮeො൫t െ hሺtሻ൯ฮ  2 ρ୧ԡwෝሺtሻԡሿ signሺV୧TS୧ሺtሻሻ 
(26) 

where τ୧ is a positive constant, Ԗ୨୧ ؔ ฮN୨୧ฮ ฮΓ୨ฮ, j ൌ 1, 2 and ρ୧ ؔ max୧אS  ሺλ୫ୟ୶ሺD୧D୧Tሻሻ.ହ with K෩୨୧ , V෩୧ can be found from (24). 
Proof. Choose the following Lyapunov function  W୧ሺtሻ ൌ 0.5 S୧Tሺtሻ S୧ሺtሻ                           (27) 
By considering the time derivate of the sliding mode surface S୧ሺtሻ and (7), we obtain Wሶ ୧ሺtሻ ൌ S୧Tሺtሻ Sሶ ୧ሺtሻ ൌ S୧TሺtሻሾV୧eොሶ ሺtሻ െ V୧ሺAଵ୧  α I െ B୧Kଵ୧ሻeොሺtሻ െ e ୦ሺ୲ሻ V୧ሺAଶ୧ െB୧Kଶ୧ሻeො൫t െ hሺtሻ൯ െ V୧  e ሺ୲ି୰ሻሺAଷ୧ െ B୧Kଷ୧ሻeොሺrሻ୲୲ିதሺ୲ሻ  dr ] ൌ S୧Tሺtሻ ሾV୧ Nଵ୧fመଵሺt, eොሺtሻሻ  V୧ Nଶ୧fመଶሺt, eො൫t െ hሺtሻ൯ െ 2V୧ D୧wෝ ሺtሻെ V୧ ሾτ୧  Ԗ୧ԡeොሺtሻԡ  2ρ୧ԡwෝሺtሻԡሿ signሺV୧TS୧ሺtሻሻሿ  ԡS୧ሺtሻV୧ԡ ሾԡNଵ୧ԡԡΓଵԡԡeොሺtሻԡ  ԡNଶ୧ԡԡΓଶԡฮeො൫t െ hሺtሻ൯ฮ 2ԡD୧ԡԡwෝ ሺtሻԡሿെ ԡS୧ሺtሻV୧ԡൣτ୧  Ԗଵ୧ԡeොሺtሻԡ  Ԗଶ୧ฮeො൫t െ hሺtሻ൯ฮ 2ρ୧ԡwෝሺtሻԡ൧  െτ୧ ԡS୧ሺtሻV୧ԡ ൌ െ√2τ୧ ԡV୧ԡ W୧ሺtሻ.ହ 

(28) 
It is shown from (28) that the system trajectories can be driven 
onto the predefined sliding surface in a finite time, t୧כ ൌ√2 W୧ሺ0ሻ.ହ ሺτ୧⁄ ԡV୧ԡሻ. In other words, the sliding mode surface S୧ሺtሻ must be reachable. ■ 
 
Remark 4. In order to eliminate the chattering behavior 
caused by signሺV୧TS୧ሺtሻሻ, a boundary layer is introduced around 
each switch surface by replacing signሺV୧TS୧ሺtሻሻ in (26) by 

saturation function. Hence, the control law (26) can be 
expressed as uො୧ሺtሻ ൌ K෩ଵ୧Pഥଵ୧ିଵeොሺtሻ  e ୦ሺ୲ሻ K෩ଶ୧Pഥଵ୧ିଵeො൫t െ hሺtሻ൯ න e ሺ୲ି୰ሻ K෩ଷ୧Pഥଵ୧ିଵ eොሺrሻ୲

୲ିதሺ୲ሻ  dr  V෩୧ ሾτ୧  Ԗ୧ԡeොሺtሻԡ
 Ԗଶ୧ฮeො൫t െ hሺtሻ൯ฮ  ρ୧ԡwෝሺtሻԡሿ satሺV୧TS୧ሺtሻδ ሻ 

(29) 
The j-th element of satሺVTSሺ୲ሻஔ ሻ is described as 

sat ቆሾV୧TS୧ሺtሻሿ୨δ୨ ቇ ൌ ൞ሾsignሺV୧TS୧ሺtሻሻሿ୨  ,    if   ሾV୧TS୧ሺtሻሿ୨   δ୨ , j ൌ 1, … , m ሾV୧TS୧ሺtሻሿ୨δ୨ ,                                                   otherwise  

where δ୨ is a measure of the boundary layer thickness around 
the j-th switching surface. 

IV. SIMULATION RESULTS 
In this section, we will verify the proposed methodology by 
giving an illustrative example.  
Consider a continuous-time master-slave system (1)-(2) with 
two Markovian switching modes and the following state-space 
matrices 
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with nonlinear functions )1)t(x1)t(x(5.0))t(x,t(f))t(x,t(f 21 −−+== . 
The delays )e1()e1()t()t(h tt −− +−== τ satisfy 1)t()t(h0 ≤=≤ τ  
and 5.0)t()t(h ≤=τ�� . The following transition matrix is 
considered π ൌ ቂെ0.33 0.330.53 െ0.53ቃ, 
for the system with two operating modes and the initial mode r ൌ 1. It is required to design the sliding mode exponential Hஶ synchronization signal (26) such that the trajectories of the 
slave subsystem and master subsystem (1)-(2) can be 
synchronized. To this end, in light of Theorem 3, we solved 
the LMIs (24) for 0,25.0 == αγ  and obtained  

[ ]377.790649.834852.2850K11 = ; [ ]7.67506.11635.8019K12 = ; 
[ ]0.43440.1643-0.1336K 21 = ; [ ]0.01380.0121-0.0067K 22 = ;

 [ ]0.04840.0145-0.0120K 31 = ; [ ]0.00290.00010.0029K 32 = . 
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Fig. 1. Synchronization error signals. 
 

Fig. 2. Synchronization control signal. 
 
Now, by applying the synchronization sign
parameters above, the temporal evolution of
synchronization errors, i.e., (x)t(x)t(e ms −=
Figure 1. Moreover, the synchronization cont
depicted in Figure 2.  

V. COCLUSION 
In this paper, the problem of exponential Hஶ 
was studied for a class of master-slave sys
discrete and distributed time-delays, norm-bo
uncertainties and Markovian switching param
appropriate Lyapunov-Krasovskii functiona
dependent sufficient conditions and a sync
which include the master-slave parameters w
for designing a delay-dependent mode-de
mode exponential Hஶ synchronization contro
linear matrix inequalities. The controller gua
synchronization of the two coupled master an
regardless of their initial states. A numeric
given to show the effectiveness of the method
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