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Sliding Mode Exponential H,, Synchronization of Markovian Jumping
Master-Slave Systems with Time-Delays and Nonlinear Uncertainties

Hamid Reza Karimi

Abstract— This paper investigates the problem of exponential
H,, synchronization for a class of master-slave systems with
both discrete and distributed time-delays, norm-bounded
nonlinear uncertainties and Markovian switching parameters.
Using an appropriate Lyapunov-Krasovskii functional, some
delay-dependent sufficient conditions and a synchronization law
which include the master-slave parameters are established for
designing a delay-dependent mode-dependent sliding mode
exponential H,, synchronization control law in terms of linear

matrix inequalities. The controller guarantees the H

oo

synchronization of the two coupled master and slave systems
regardless of their initial states. A numerical example is given to
show the effectiveness of the method.

Index Terms—Synchronization; master-slave systems; sliding
mode; Delay; H_ performance; Nonlinear uncertainties.

[. INTRODUCTION

The sliding mode method has been recognized as one of the
efficient tools to design robust controllers for the complex
high-order nonlinear dynamic system operating under
uncertainty conditions. The research in this area were initiated
in the former Soviet Union about 40 years ago, and then the
sliding mode control methodology has been receiving much
more attention from the international control community
within the last two decades. The major advantage of sliding
mode is low sensitivity to plant parameter variations and
disturbances which eliminates the necessity of exact modeling.
Sliding mode control enables the decoupling of the overall
system motion into independent partial components of lower
dimension and, as a result, reduces the complexity of feedback
design [1]-[2].

In recent years, more attention has been devoted to the study
of stochastic hybrid systems, where the so-called Markov
jump systems. These systems represent an important class of
stochastic systems that is popular in modeling practical
systems like manufacturing systems, power systems,
aerospace systems and networked control systems that may
experience random abrupt changes in their structures and
parameters [3]-[6]. Random parameter changes may result
from random component failures, repairs or shut down, or
abrupt changes of the operating point. Many such events can
be modeled using a continuous time finite-state Markov chain,
which leads to the hybrid description of system dynamics
known as a Markov jump parameter system [7]. Furthermore,
the delay effects problem on the stability of systems is a
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problem of recurring interest since the delay presence may
induce complex behaviors for the schemes, see for instance
[8]. The problem of nonlinear filtering for state delayed
systems with Markovian switching is proposed in [9]-[11].The
problem of robust mode-dependent delayed state feedback H,,
control is investigated for a class of uncertain time-delay
systems with Markovian switching parameters and mixed
discrete, neutral and distributed delays in [12]. Moreover, the
sliding mode control problem for uncertain systems with time
delays and stochastic jump systems are also investigated in
[13]-[15], respectively. Recently, the problem of sliding mode
control for a class of nonlinear uncertain stochastic systems
with Markovian switching is studied in [16]. More recently, in
[17], sliding mode control of nonlinear singular stochastic
systems with Markovian switching is proposed.

On another research front line, synchronization is a basic
motion in nature that has been studied for a long time, ever
since the discovery of Christian Huygens in 1665 on the
synchronization of two pendulum clocks. The results of chaos
synchronization are utilized in biology, chemistry, secret
communication and cryptography, nonlinear oscillation
synchronization and some other nonlinear fields. The first idea
of synchronizing two identical chaotic systems with different
initial conditions was introduced by Pecora and Carroll in
[18], and the method was realized in electronic circuits. The
methods for synchronization of the chaotic systems have been
widely studied in recent years, and many different methods
have been applied theoretically and experimentally to
synchronize chaotic systems; see for instance [19]-[22]. On
the synchronization problems of systems with time-delays and
nonlinear perturbation terms, we see that there have been
some research works; see for instance [23]-[28] and the
references therein. So the development of synchronization
methods for master-slave systems with Markovian switching
parameters and time-varying delays is important and has not
been fully investigated in the past and remains to be important
and challenging. This motivates the present study.

In this paper, the problem of exponential H,, synchronization
is studied for a class of master-slave systems with both
discrete and distributed time-delays, norm-bounded nonlinear
uncertainties and Markovian switching parameters. Using an
appropriate Lyapunov-Krasovskii functional, some delay-

dependent sufficient conditions and a synchronization law
which include the master-slave parameters are established for
designing a delay-dependent mode-dependent sliding mode
exponential H,, synchronization control law in terms of linear
matrix inequalities (LMIs). The controller guarantees the H,,

synchronization of the two coupled master and slave systems
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regardless of their initial states. A numerical example is given
to show the effectiveness of the method.

Notation: The notations used throughout the paper are fairly
standard. I and O represent identity matrix and zero matrix; the
superscript ‘T’ stands for matrix transposition. ||. || refers to the
Euclidean vector norm or the induced matrix 2-norm. diag{---}
represents a block diagonal matrix and the operator
sym(A) represents A+ AT. Let Rt =[0, o) and £{.} denotes the
expectation operator with respect to some probability measure
P. If x(t) is a continuous R"-valued stochastic process on
t € [-K, ), we let x, = {x(t+06): —x<0<0} for t>0 which is
regarded as a C([—x, 0];%")-valued stochastic process. The
notations g; stand for g;(i). The notation P > 0 means that P is
real symmetric and positive definite; the symbol * denotes
the elements below the main diagonal of a symmetric block
matrix.

II. PROBLEM DESCRIPTION

Consider a model of master and slave systems with Markovian
switching parameters and mixed discrete and distributed time-
varying delays and nonlinear perturbations in the form of

X, (1) =A,@(O)x,, (1) +A, (D) X, (t=h(D)+ A, (r(t) j X, (5) ds

t—7(t)
+ N, (KO, (X, (D) + N, (r(1)) £, (t,x,,(t=h(t))),
x,()=0t), tel-x0]
2(0)=C, (D)X, (0 + C, (D)X, (= h(0)+ C, (r(1) [x,,(5) ds

t=7(t)

(la-c)

X, (1) = A, (r(D))x, () + A, (r(1))x, (t—h(t)) + A, (x(1)) jxs (s)ds
t=7(t)
+ N, (r()f, (6 x, (1) + N, (r(t) £, (£, x (t —h(1)))
+B(r(t)u(t) + D(r(t)) w(t),
X () = g(D), tel-x, 0]

z,(t) = C, (r(1)x, (6) + C, (r(t))x, (t = h(t)) + C, (x(t)) j X, (s) ds

t-7(t)

(2a-c)

where & :=maxfh,,7,},Xx,(t),x(t) are the nx1 state vector of
the master and slave systems, respectively and u(t) is the rx1
control input. A, (r(t)),B(r(t)),D(r(t)) and C,(r(t)) are matrix
functions of the random jumping process {r(t)} .{r(t), t>0} is a
right-continuous Markov process on the probability space
which takes values in a finite space S={L2,....,s} with
generator /7 =[z,](i,je S) given by

T A+o(d), ifi# ]
1+ 7,4+ 0(4),
o(4)/4=0 and z;>0, for i=j, is the

P{r(t+4) = jfr(t) =i} :{ 3)

ifi=]j

where 4>0, lim

4-0

transition rate from mode i at time t to mode j attime t+ 4

and 7, =- 5 7, . The vector valued initial functions ¢(t) and

=L j#

p(t) are continuously differentiable functionals and f,(.,.) are

also time-varying vector-valued functions. The time delays are
satisfying

0<h(t)<h,,

0<z(t) <7y,

h(t)<h,
T(t) <7,

(4a)
(4b)

Assumption 1. The continuous functions f,: R*xR" — R
and the Lipschitz
f(t,xo) —fi(t,y, )" < "1—;(X0 - YO)" for all t and

for all x,,y, € R" such that 7; are some known matrices.

are unknown and satisfy f(t,0)=0

conditions, i.e.,

Definition 1. The Markovian systems (1)-(2) are said to be
globally exponentially stable in the mean square sense if,
when u(t) =0, for any finite ¢(t), dp(t) € ®R* defined on [—x,0],
and r, € S the following condition is satisfied
E{lle®I1?} < ce™* iESEO"e(S)"Z' t>0

where e(t) = x,(t) — x,(t) is the synchronization error of the
master and slave systems (1)-(2) system from initial system
state ¢$(0) — @(0) and initial mode r,, and c¢ is a positive
constant.

Definition 2. The H,, performance measure of the system (1)-
(2) is defined as ], = € (J, [z ("2 () — y*w" (Ow(D)] dt), where
7e(t) = 7., (1) — z,(t) and the positive scalar y is given.

Remark 1. The model (1)-(2) can describe a large amount of
well-known dynamical systems with time-delays, such as the
delayed Logistic model, the chaotic models with time-delays
and the artificial neural network model with discrete time-
delays. In real application, these coupled systems can be
regarded as interacting dynamical elements in the entire
system, such as physical particles, biological neurons,
ecological populations, genic oscillations, and even automatic
machines and robots. A feasible coupling design for successful
synchronization leads us to fully command the intrinsic
mechanism regulating the evolution of real systems, to
fabricate emulate systems, and even to remotely control the
machines and nodes in networks with large scales [23], [29].

Assumption 2. The full state variables x,(t) and x,(t) are
available for measurement.

Now, it is required to synchronize the slave system with the
master system at the same time. Let &(t) = e*e(t) and o is
called the exponential decay rate. Then the error dynamics,
namely synchronization error system, can be expressed by

&(1) = (A, (r(1)) + aDE() + ™ VA, (r(1)&(t ~h(1))

+A,(x(b) je”“’”é(s) ds+N, (r(t))tz1 (t;e(t))

t—=7(t)
+ N, (r(O)F, (6:8(t —h(1))) ~ B(r(1)) (1) — D(r(1)) W(t),
d=gt)-ot),  tel[-x0]
2,(1) = C, (1(1)&(t) +e™C, (r()) &(t - h(t))

(5a-c)

+C,(x(1) je“("“é(s) ds

t—7(t)

where a(t)=e“u(t), w®=e“w(), 2z, ()=2,(t)-2.(t)=

e (2, ()= 7,(1) » f(18(0) = e (£, (6%, (1) —F, (X, () — (V) ,
£, (6t =h(1) = (f, (5, (t=h()~, (X, (t=h(t) —e(t=h(1)))) .
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From Assumption 1,
denoted by

=, @)= ey i aw)| |7 s ©)

the corresponding uncertainty set is

Now the original synchronization problem can be replaced by
the equivalent problem of stabilizing the system (5) by a
suitable choice of the sliding mode control. In the following,
the sliding mode controller will be designed using variable
structure control and sliding mode control methods [1]. Let us
introduce the sliding surface as

Si(®) = Vi(®) = Vi [yT(Ay; + @l = BiK;E(s) + ") (Ay; — BiKy)e(s -
h(s)]ds — Vi fy [, €% (Ay — BK)e(r) dr ds
(7
where V; € R™", K; € R™,j=123 are real matrices to be
designed. It is clear that $;(t) = 0 is a necessary condition for
the state trajectory to stay on the switching surface S;(t) = 0.
Therefore, by $;(t) = 0 and (5), we get

t
0 = Vi[BiK;;8(t) + e*"® BK,;8(t — h(v)) + f e BiK,; &(r) dr
t—t(t)

+ Nyif; (6, 8(0) + Nyif, (6, 8(t — h(D)) — B; ()
- D; W(V)]
(8

Solving equation (8) for 6;(t) yields the equivalent control

fligq () = Kyi8(0) + MO Kyi(t — h(D) + [ e* Ky 8() dr +
UiNyify (6 8(0) + ViNyhy (4 8(t — h(D)) — ViD; w(t)

©))
where V, = (V;B;)"V;. By using (9) in (5), the error dynamics in
sliding mode is given as follows:

é(t) =(A,+ad-B,K,)ét)+e™ (A, -B,K,)é(t—h(t))

+(A, ~B,K,) [e“&(s)ds+(N, —BYN,)F (t:6(1))
t=7(t)
+(N,, =B,V.N,)f, (t:&(t—h(t)))—(1+B,V,)D, w(t),
(=g -g(t),  te[-x0]

z,(t) = C, (x(1))&(t) +e™'C, (r(t))&(t —h(t)) + C; (r(1)) I e“e(s) ds

t=7(t)

(10a-c)
The problem to be addressed in this paper is formulated as
follows: given the master-slave systems (1)-(2) with both
discrete and distributed time-delays and Markovian switching
parameters, find a mode-dependent sliding mode exponential
H,, synchronization control u(t) with any r(t) =ieS for the
slave system (2) such that the resulting closed-loop system is
stochastically stable and satisfies an H,, norm bound v, i.e.
Joo < 0.

1. MAINRESULTS

In this section, we propose sufficient conditions for the
stochastic stability of the sliding error motion (10) using the
Lyapunov method.

3.1 Hy, performance analysis
Define the following Lyapunov-Krasovskii functional

V(&(t),t,1) = V, (E(1), t,1) + V, (€(1),t,1) + V, (E(1), t,1) , (1D

with V,(&,t,i)=&(t)" P, &(t), V,(&,t,i)= je(f) S, e(&) d¢

t=h(t)

j je(s) R, &(s) dsd&, V, (@& ti)= j [je(e) deuue(e)de ds
t=h(t) & t=7(t) s

T(t) t
+ | j(a t+5)8(0)" U, &(6) dods, where Py, S,R;

mode-dependent matrix functions. The weak infinitesimal
operator £V(.) of the stochastic process {(e,r(t)),t = 0}, acting
on V e C(R™ x R+ x S) at the point {t,&(t),r(t) =i}, is given by (see
Lemma 3.1, [30])

and U; are

LV(&,ti) = Alirgl+%{5[V(é(t +A),8uat+Ar(t+A)|E®), 8, tr() =1)]
-V, i)}

S
=V,(8,t,1) + &)™V, (&,t,1) + z V(@& ))
j=1

6V(et1) OV(etl) 6V(et1)

where Vi(8,t,1) = » Ve@ ti) = (——— )T

Differentiating Vv, (&,t,1) in t we obtain

LV, (&,t,i)=2&(t)" P, (A, + A —B, K ) &(t)

-B,K,) je"’“’”é(s) ds
o (12
—-B,VIN,)L, (t; é(t —-h(1))

+e™U(A, - B, K,)e(t—h(t))+ (A,

+(N,, = B,VNf, (:8(1) + (N,

—(I+B; V )D, w(t))+ Ze(t) 7P e(t)

j=1

Differentiating other Lyapunov terms in (11) give

LV, (&,t,i)=h(t)e(t)" R, &t)—(1- h(t)) je(s) R, &(s) ds+e(t)"S, &(t)

t-h(t)

—(I-h()&(t—h(t)" S, &(t—h(1))+3] Ie(f) 7S;&(8) dg

=l h(t)
Sé(t)T (hMRl +Si) é(t)+ j é(S)T (Zﬂ-ijsj _(l_hD)Rl) é(S) ds
t=h(t) =l
—(1=hy)e(t=h(1))" S, &(t—h(t))
(13)

and

LV, @.ti)=—(1—#t)[ [&(6)" dOJU,[ [&(6) d6]

t—7(t) t=7(t)

+2 [(O-t+2(0)&(1)' U, &0) do

t-7(t)

+ j se(t)" U, e(t) ds— j je(@) U, &6) déds

0 t-s

< j(e—t+r(t))[é(t)T Ut +&6)" U @) do (14)

t-7(t)

—~a-#)[ [&0) d61U [ [&6) d6)

t=7(t) t=7(t)

+ f se(t)"U, é(t) ds— j(& t+7(t)e@)" U,&6) do

t=7(t)
=280 U, &0 -(1-7,)[ [40)" dOJU,[ [(6) de]
t-7(t) t-7(t)
According to Assumption 1, ones read

—1,(t,8(0)" £, (1, &(6) + &) I 1 &(1) 20, (15a)
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£, (t&(t=h(O))" £, (6&(t—h(©)+&1) 77 136()=0  (15b)
On the other hand, for a prescribed y > 0 and under zero initial
conditions, ], can be rewritten as

Jo <€ ( f we*z“‘[ie(t)Tie(t) —V*RTOX®)] dt+V(E, 1) o
0

- V(é, t, 1) |t=0>

<e (J e 2, (077,00 — PRTORE) + LV D) dt)
0

From the obtained derivative terms in (12)-(14) and adding the
left-hand side of the equation (15) into LV(&,t,i), we obtain
Jo < € (J; Xe(®Eer Xe(®) dt) (16)

where
%0 = "2~ h(o)", |

t—t(t)

t

e80T d, (¢ é(t))T, f, (t, 8(t

~h()) ,wOT

and
5 5 z, Z, %, -R@+BV)D,
z, e"™Me*C,C, 0 0 0
= _|F o —0-p)Ure e, 00 0 amn
N s -1 0 0
% % * EI | 0
. ® R -7 |

with X, = sym(P, (A“+0(I—Bil(“))+§7rijPlj +hyR, +S,+7 U,
+I' I+ I, T, +e?™ClC,,, X, =e"™MP (A, -B,K,)
+e™MeClC, , X,=-(1-h,)S, +e’™Me?*C]C,, ,
2, =P(A, —B,K,)+e>*CIC, , %, =P,(N,~B,V,N,), j=12.

Then, the conditions
gei < Oa

7,8, ~(1-hy)R, <0,
=

(18a)
(18b)

mean that the condition ], <0 is satisfied. Moreover, the
condition ], <0 for w(t) = 0 implies £{£V(§,t,1)} < 0. Then, we
have

E{LV(8,t,1)} < —0, E{e(®)Te(1)} (19)
where o, = min {(Apin(—Ee),i €S}, then o, >0. By Dynkin’s
formula, we have

EVE, 6 D)} — EQV(H(0) — ©(0), 10, 0)} < —0,& { f ae)Te(s) ds}
0

or
£{J; 2(5)"e(s) ds} < o7 V($(0) ~ 9(0), o) (20)
Moreover, from LKF (11) the following condition holds
E(V(&,t,1)} = 0,E{e(®)Te(t)} 2D

where o, = min {A,;,(P;;),i € S}. From (19)-(21), we obtain
t

Ee(®Te®)} < —olcgle{f 8(s)Te(s) ds} + 031V($p(0) — @(0), o).
0

Hence
t
£ {f &(s)Te(s) ds} < o7lf1- e"’ic’z_lt] V($(0) — ¢(0),0,1ry)
0
or
lime.o £{[; 8(©)Te(®) ds} < o7V ~0(0),0r)  (22)

Moreover, from the Chebyshev integral inequality and
considering e* > 1 + at, it is clear that

Lté(s)Té(s) ds > %Jtem ds .Lte(s)Te(s) ds > %e“t .Lte(s)Te(s) ds

0

Therefore, from (22) and the inequality above, we have

lim_, S{fote(s)Te(s) ds} < 207'e ™ V($(0) — ¢(0),0,1y) (23)
which indicates that, from Definition 1, the system in (10)
with Markovian switching parameters in (3) is globally
exponentially stable in the mean square sense and has the
exponential decay rate o«. The following result is now
concluded for the H, performance analysis of the error
dynamics (10) with Markovian switching parameters.

Theorem 1. Let the matrices V;, K; (i=0,1,--,N;j =1,2,3) with
det (V; B) # 0 be given. The master-slave time-delay systems
(1)-(2) with Markovian switching parameters in (3) is
synchronized exponentially with a degree @ and an H,,
performance level y > 0 at least in the sense of Definition 1, if
there exist some positive definite matrices P, U,, S; satisfying
the LMIs (18).

Remark 2. If the switching modes are not considered, i.e.
S={1}, the jumping master-slave systems (1)-(2) are
simplified into a general linear system with nonlinearities and
time delays. Then it is easy to conclude a criterion from
Theorem 1, which can be used to determine the stability of
such master-slave systems.

Now we are in the position to solve the synchronization
problem of the systems (1)-(2). Based on Theorem 1, we can
obtain a mode-dependent delayed H,, synchronization law in
the form of (9) in the following theorem.

Theorem 2. Under Assumptions 1-2, a synchronization law
given in the form (9) exists such that the Markovian jumping
synchronization error system (5) with time-varying delays in
(4) is stochastically exponentially stable with a degree ¢ and
an H, performance level y>0 at least in the sense of
Definition 1, if there exist some matrices K;;,¥; and positive
definite matrices P;,U;,Ry, S;(i=1,--,s;j=12,3) satisfying the
following LMIs

le EIZ - Zl} 2‘]4 ZIS efm(ﬁh_(:;l; 2‘]7
¥ —(1-hpy)S; 0 0 0 e”’(h“"f'dPucg1 0
x * ~(1-7)U, 0 0 e*PCL, 0
# % % z, 0 0 0 |[<0
* * * * -1 0 0
* * * * * -1 0
% * * * * % 277
(24a)
7,8 —(1-hy)R, <0, (24b)
j=l
VB, =1, (244)

where X =sym (A, +al)P,-B, K ,)+h R, +S, +72U,,
2, = e (Azxﬁu -B; IZZi) y 2y = A3i§h -B, 123‘ 5= [I_)lirlT E‘];T] ’

2, =[Ny _B‘\N/i Ny, Ny _B‘\N/iNzn _(I+B1\N/i)D1] , 2, =diag {-1-1,
o A VD [\/ Ty Ei T _PllJ

2, = diag{—\/ﬂ'_“_P“,"',— i _Pll’_ T Es’“.’_\/ﬂ._is_Pls} .

Then, the equivalent control in (9) is given by

”iifl Pli ”ii+l Pli

and
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ﬁieq(t) = Kh?ﬂlé(t) +exh® Kziﬁliil’é(t - h(t))
t
+ f et DR P 8(r) dr + VNy;f, (4 8(1)
t—t(t)

+ TN (6 8t — (D))

(25)
Proof. By performing a congruence transformation
diag{P\} 1, ..., 1}, where P,;:= P;?, to both sides of (18a), applying

Schur complements and considering K, =K, P, result in (24a).

The other two conditions (24b)-(24c) are easily concluded
from Theorem 1. m

Remark 3. By setting § = y? and minimizing § subject to (24),
we can obtain the optimal H,, performance index y* (by y = vy)
and the corresponding control gains as well.

3.2 Sliding model control design

After designing the switching surface, in this section, an
appropriate control law will be constructed such that the
system state trajectories from arbitrary initial values are
globally attracted to the switching surface in a finite time and
maintain them on the surface afterwards.

Theorem 3. Under Assumptions 1-2, it is supposed that the
sliding surface function is given as (7), where V; is chosen to
satisfy Vi(1-B;V;)=0 and VB; is nonsingular. Then, the
trajectories of the error dynamics (5) can be driven onto the
sliding mode surface if the control is designed as follows
0;(t) = Ky;Pte(t) + e* MO Ky Pte(t — h(b)
t
[ eI RP e dr 4 T + 6o
t=t(t)

+ €il[e(t — h(®)|| + 2 pillW(OI] sign(V;'S;(V))
(26)
where 1, is a positive constant, ;= |[N;| ||| i=12 and
Pi = MaXies (Amax(DiD]))** With K;; , ¥ can be found from (24).
Proof. Choose the following Lyapunov function
W;(t) = 0.5 ST (D) S;(V) (27)
By considering the time derivate of the sliding mode surface
S;(t) and (7), we obtain
Wi(®) = ST () $i(®)
= ST(O[Vi8(t) = Vi(Axi + a1 = BiK1)(0) — e O Vi(Ay —
BiK,)é(t—h(®) - V; ftt_r(t) e* (=D (A,; — BiK4)8(r) dr ]
= ST(®) [Vi Nyify (6 8(D) + Vi Naifo (8, 8(t — h(D) — 2V; D@ ()
= Vi [t + &R + 2p; [V OII] sign(Vi'Si(1))]
< IS; OV Il TINg T HTEEON + IN T N1 [E(t = h(®) ||
+ 2[IDilHIw (O]
— ISi®Vill[t; + ey Bl + ez][e(t = h(®)]|
+ 20, I l]
< -1 ISiOVl
= =2 [Vill W (©°°
(28)
It is shown from (28) that the system trajectories can be driven
onto the predefined sliding surface in a finite time, t; =
V2 W;(0)°5/(t; IV;[). In other words, the sliding mode surface
S;(t) must be reachable. m

Remark 4. In order to eliminate the chattering behavior
caused by sign(VS;(t)), a boundary layer is introduced around
each switch surface by replacing sign(Vs;(t)) in (26) by

saturation function. Hence, the control law (26) can be
expressed as
0;(0) = KyPite(r) + e*"® Ky Prte(t — h(D)
t
+f e ED R PITE() dr+ Y [t + I8 (0|
t—t(t)
+ eulle(e~h)] + paOI] sat
(29)
visi 230 is described as
if [V'S;(D]; >6;,j=1,..,m

The j-th element of sat(=="=
T
<[ViTSi(t)]j> [sign(V;' S;(©)]; ,
at( ———) =
8,
j

Vi's; (0] .

r— otherwise
where §; is a measure of the boundary layer thickness around
the j-th switching surface.

IV. SIMULATION RESULTS

In this section, we will verify the proposed methodology by
giving an illustrative example.

Consider a continuous-time master-slave system (1)-(2) with
two Markovian switching modes and the following state-space
matrices

Mode I:
-5 06 -24 0.1 -0.1 1
AD=[0 -2 -08 ;A2(1)=10A3(1)= 02 0.1 01;
0 0 0.5

0.15 0.3
Mode 2:
-1 0.8 1 [ 0.1
AQ=l0 -1
0 0

-0.04
0.02
0.02

~0.6|;A,(2)=10A,2)=| 0.1

=25 10.01

0.25 0.2 Ut
B()=| 0.1 |;D1)=|0.1 ;Cl(l):{o X } ()= (1)_
ooj

2 0.5 Lo ol 1
B(2)=|3|:D(2)=|0.1 ;CI(Z){0 L 1 PN@=NO) =T
2 1 - 1

with nonlinear functions f, (t, x(t)) = f, (t,x(t)) =0. 5(1 x(b)]+ q Hx(t)\ q
The delays h(t)=7(t)=(1—¢™")/(1+e™) satisfy 0<h(t)=7(t)<1

and h(t)=7#(1)<0.5.
considered

The following transition matrix is

~_[-033 033
0.53 —0.53F
for the system with two operating modes and the initial mode

ro = 1. It is required to design the sliding mode exponential
H, synchronization signal (26) such that the trajectories of the
slave subsystem and master subsystem (1)-(2) can be
synchronized. To this end, in light of Theorem 3, we solved
the LMIs (24) for y=0.25, =0 and obtained

K, =[52.2850 49.8348 377.7906];K,, =[5.8019 6.1163 7.6750];
K, =[-0.1336 0.1643 0.4344];K,, =[-0.0067 0.0121 0.0138];
K,, =[-0.0120 0.0145 0.0484];K,, =[0.0029 0.0001 0.0029].
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Fig. 1. Synchronization error signals.

Synchronization signal

u(t)

t[s]

Fig. 2. Synchronization control signal.

Now, by applying the synchronization signal (26) and the
parameters above, the temporal evolution of the master-slave
synchronization errors, i.e., e(t)=x,(t)—x,,(t), are shown in
Figure 1. Moreover, the synchronization control signal u(t) is
depicted in Figure 2.

V. COCLUSION

In this paper, the problem of exponential H,, synchronization
was studied for a class of master-slave systems with both
discrete and distributed time-delays, norm-bounded nonlinear
uncertainties and Markovian switching parameters. Using an
appropriate Lyapunov-Krasovskii functional, some delay-
dependent sufficient conditions and a synchronization law
which include the master-slave parameters were established
for designing a delay-dependent mode-dependent sliding
mode exponential H,, synchronization control law in terms of
linear matrix inequalities. The controller guarantees the H.,

synchronization of the two coupled master and slave systems
regardless of their initial states. A numerical example was
given to show the effectiveness of the method.
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