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Abstract— The problem of reverse engineering the topology
of a biological network from noisy time–series measurements
is one of the most important challenges in the field of Systems
Biology. In this work, we develop a new inference approach
which combines the Regularized Least Squares (RLS) technique
with a technique to avoid the introduction of bias and non-
consistency due to measurement noise in the estimation of the
parameters in the standard Least Squares (LS) formulation, the
Instrumental Variables (IV) method. We test our approach on a
set of nonlinear in silico networks and show that the combined
exploitation of RLS and IV methods improves the predictions
with respect to other standard approaches.

I. INTRODUCTION

A large number of conceptually different approaches have

been proposed in the literature to reverse engineer biolog-

ical systems at the molecular level using their measured

responses to external perturbations (e.g. drugs, signalling

molecules, pathogens) and changes in environmental con-

ditions (e.g. change in the concentration of nutrients or in

the temperature level). A significant difficulty for all of

these approaches is the detrimental effect of measurement

noise on the reliability of the inference results. Indeed, the

performance of many current approaches has been shown to

degrade significantly in the presence of even limited amounts

of noise in the measurement data [1], [2].

While statistical methods are currently the most widely-

used tools for network inference in biology, we are convinced

that methods based on dynamical systems identification

theory have great potential for application to network in-

ference problems in Systems Biology. Approaches based

on statistical models, such as Bayesian networks [3] and

Mutual Information theory [4], usually require large data

sets and/or assume that the samples are independent. In

certain situations, however, only a small number of experi-

mental data points may be available, and the assumption of

independent samples is clearly not true when we consider

the measurements of the expression of the same gene at

two consecutive time–points. For such problems, the family

of inference methods that use dynamical systems theory to

identify linear models interpolating experimental data, [5],

[6], [7], [1], [8], have been shown to be a useful alternative

or complement to statistical approaches, especially when the
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size of the network to be reconstructed is moderate. In the

recent literature, several authors have proposed techniques

based on regression algorithms for the identification of linear

models interpolating experimental data [9], [5], [6], [10], [7],

[11].

A common limitation to the practical application of these

methods, as noted above, is the detrimental effect of mea-

surement noise. In a recent work, we addressed this issue by

developing a novel approach, named PACTLS [12], which is

devised to a) optimally deal with the presence of correlated

noise in the measurements, by using the Constrained Total

Least Squares (CTLS) algorithm (see [13]) and b) take into

account qualitative prior knowledge about the network topol-

ogy by representing this information as additional constraints

for the reconstruction problem. While this approach appears

to be highly promising, its computational complexity limits

its application to relatively small-scale networks. In this

work, we propose an alternative approach which allows us to

explicitly take into account the effect of measurement noise

within the inference process while minimising computational

overheads so that much larger scale networks can be inferred.

In order to avoid the introduction of bias and non-consistency

due to measurement noise in the estimation of the parameters

of a dynamical system by the Least Square (LS) method,

we devised a new inference algorithm based on the use

of Instrumental Variables (IV) [14], an extension of the

standard LS. We investigated the possibility of using reg-

ularized techniques to deal with over-parameterized models

and with the related problem of under-determination of the

model structure. These techniques aim to reduce the model

complexity by restricting the degrees of freedom in the

model. As a result, only a small number of parameters

(named effective parameters) are optimised, whereas the

other spurious parameters are set to zero. In particular we

combined the Regularized LS (RLS) technique, called ridge

regressions in statistics, with the IV, to produce a novel

approach named RLS-IV.

A statistical evaluation of the RLS-IV method has been

performed by testing it over a set of in silico nonlinear

networks, that have been generated by using GeneNetWeaver

(GNW), an open-source tool for the automatic generation of

in silico gene networks and reverse engineering benchmarks

[15], [16], [17]. We compare the results with those obtained

by the classical LS technique and by two extensions of the

LS algorithm, an approach based on LS that only exploits

the IV method, named LS-IV, and the RLS method or ridge

regressions, in order to show that the combined exploitation

of RLS and IV methods improves the predictions with
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respect to other approaches based on LS.

The paper is structured as follows: Section II describes

the network model and the generation of simulated data sets.

Section III describes the novel inference technique proposed

in this paper. The results obtained in the numerical tests are

reported in Section IV. Finally, some conclusions and ideas

for future extensions of our approach are given in Section V.

II. METHODS

A. Dynamical models for network inference

A standard approach to model the dynamics of biomolecu-

lar interaction networks is by means of a system of ordinary

differential equations (ODEs) that describes the temporal

evolution of the various compounds [18], [19]. Typically,

the network is modeled as a system of rate equations in the

form

ẋi(t) = fi(x(t), p(t),u(t)) , (1)

for i = 1, . . . ,n with x = (x1, . . . ,xn)
T ∈ R

n, where the state

variables xi denote the quantities of the different compounds

present in the system (e.g. mRNA, proteins, metabolites) at

time t, fi is the function that describes the rate of change

of the state variable xi and its dependence on the other state

variables, p is the parameter set and u is the vector of external

perturbation signals.

The level of detail and the complexity of these kinetic

models can be adjusted, through the choice of the rate

functions fi, by using more or less detailed kinetics, i.e.

specific forms of fi (linear or specific types of nonlinear

functions). Moreover, it is possible to adopt a more or less

simplified set of entities and reactions, e.g. choosing whether

to take into account mRNA and protein degradation, delays

for transcription, translation or diffusion time [18].

When the order of the system increases, nonlinear ODE

models quickly become intractable in terms of parametric

analysis, numerical simulation and especially for identifi-

cation purposes. Indeed, if the nonlinear functions fi are

allowed to take any form, determination of the network

topology becomes impossible. Due to the above issues, al-

though biomolecular networks are characterized by complex

nonlinear dynamics, many network inference approaches are

based on linear models or are limited to very specific types

of nonlinear functions.

B. Generation of in silico nonlinear networks and data sets

The in silico networks used in this paper for benchmarking

purposes have been generated by using GeneNetWeaver, an

open-source tool for in silico benchmark generation and

performance profiling of network inference methods [15],

[16], [17]. The gene network is modelled by the following

ODE system:

d[xi]

dt
=mi · fi(y)−λi

RNA · xi

d[yi]

dt
=ri · xi −λi

Prot · yi ,

where xi and yi are the mRNA and protein concentrations of

every gene respectively, the mi is the maximum transcription

rate, ri the translation rate, λi
RNA

and λi
Prot

are the mRNA

and protein degradation rates, respectively. fi(·) is the so-

called input function of gene i, which determines the relative

activation of the gene, modulated by the binding of transcrip-

tion factors (TFs) to cis-regulatory sites, and is approximated

using Hill-type terms. For our tests we used five networks of

10 nodes and used these networks to generate the datasets

used in our statistical analysis of the performance of the

different inference algorithms.

For each network we simulated time–courses showing how

the network responds to a single perturbation consisting

of the modification of the basal transcription rate of a

single gene. For each experiment we generated a number

of single perturbations, m, (corresponding to the number

of time–series), equal to the number of nodes, n: the i-th

perturbation consists of slightly increasing or decreasing the

basal activation of the i-th node by a random amount. We

simulated 50 experiments for each network and added noise

to each simulation using the model of noise in microarrays

[20], which is similar to a mix of normal and log-normal

noise.

C. Linear model–based inference

Linear models are valid approaches for the network infer-

ence problem because, at least for small excursions of the

relevant quantities from the equilibrium point, the dynamical

evolution of almost all biological networks can be accurately

described by means of linear systems, made up of ODEs

in the continuous–time case, or difference equations in the

discrete–time case (see [6], [10], [21], [8] and references

therein).

Consider the continuous–time LTI model

ẋ(t) = Ax(t)+ Bu(t) , (2)

where x(t) = (x1(t), . . . ,xn(t))
T ∈ R

n, the state variables

xi, i = 1, . . . ,n, denote the quantities of the different com-

pounds present in the system (e.g. mRNA concentrations

for gene expression levels), A ∈ R
n×n is the state transition

matrix (the Jacobian of f (x)) and B ∈ R
n×m is a matrix

that determines the direct targets of external perturbations

u(t) = (u1(t), . . . ,um(t))T ∈ R
m (e.g. drugs, overexpression

or downregulation of specific genes), which are typically

induced during in vitro experiments.

Note that the derivative (and therefore the evolution) of

xi at time t is directly influenced by the value x j(t) iff

Ai j 6= 0. Moreover, the type (i.e. promoting or inhibiting)

and extent of this influence can be associated with the sign

and magnitude of the element Ai j, respectively. Thus, if we

consider the state variables as quantities associated with the

nodes of a network, the matrix A can be considered as a

compact numerical representation of the network topology.

Therefore, the topological reverse engineering problem can

be recast as the problem of identifying the dynamical sys-

tem (2). A possible criticism of this approach could be raised

with respect to the use of a linear model, which is certainly

inadequate to capture the complex nonlinear dynamics of

certain molecular reactions. However, this criticism would
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be reasonable only if the aim was to identify an accurate

model of large changes in the states of a biological system

over time, and this is not the case here. If the goal is simply

to recover the qualitative functional relationships between

the states of the system when the system is subjected to

perturbations then a first–order linear approximation of the

dynamics represents a valid choice of model.

III. RLS-IV INFERENCE ALGORITHM

A. Least Squares for dynamical systems

The basic step of the inference process consists of es-

timating, from time–course experimental data, the weighted

connectivity matrix A and the exogenous perturbation matrix

B of the in silico network model (2).

Assume that h+1 experimental observations, x( j)(k)∈R
n,

k = 0, . . . ,h, are available, for each external perturbation

u( j)(k), j = 1, . . . ,m. Then we can recast the problem in the

discrete–time domain as

x( j)(k + 1) = Ax( j)(k)+ B⋆, ju
( j)(k) , (3)

where B⋆, j ∈ R
n is the j-th column of B. Let

Y ( j) =









x
( j)
1 (1) · · · x

( j)
1 (h)

...
. . .

...

x
( j)
n (1) · · · x

( j)
n (h)









∈ R
n×h ,

X ( j) =









x
( j)
1 (0) · · · x

( j)
1 (h−1)

...
. . .

...

x
( j)
n (0) · · · x

( j)
n (h−1)









∈ R
n×h ,

The identification model is then

Ξ :=
(

Y (1) . . . Y (m)
)

= ΘΩ , (4)

where

Θ =
[

Â B̂
]

, Ω :=

(

X (1) . . . X (m)

Im ⊗11×h

)

,

Im ∈ R
m×m is the identity matrix, 1 ∈ R

1×h is a vector of

ones and ⊗ is the Kronecker product.

Each row, Θi,⋆, of the connectivity matrix Θ can be

identified by using a multiple regression model

Ξi = Z ·β + ε , (5)

where Ξi = (Y
(1)
i,⋆ , . . . ,Y

(m)
i,⋆ )T ∈ R

hm, Y
( j)
i,⋆ , j =

1, . . . ,m is the i-th row of the Y ( j) matrix,

Z = ΩT ∈ R
mh×(n+m), β = ΘT

i,⋆ ∈ R
n+m and

ε = (ε(1)(1), . . . ,ε(1)(h), . . . ,ε(m)(1), . . . ,ε(m)(h))T ∈ R
mh

be the measurement noise. The (5) by the standard least

squares (LS) method admits the following solution

β̂LS =
(

ZT Z
)−1

ZT Ξi . (6)

The matrix
(

ZT Z
)−1

ZT is called the (Moore-Penrose)

pseudo-inverse of Z and is often denoted by Z†. Note that,

to compute Z†, it is necessary that ZT Z is invertible; this is

possible if the n + m columns of Z (the regression vectors)

are linearly independent, which requires (m×h)≥ n+m, i.e.,

one should have at least as many measurements as regression

coefficients. Note that the regressor matrix is not made up

of independent variables: the columns of Z (the rows of Ω)

are the state vectors at the steps 0,1, . . . ,h− 1, while the

rows of Ξ are the same state vectors but shifted one step

ahead. Thus, Ω and Ξ have m× (h− 1) identical rows and

differ only for m rows. A second point, which stems from

the first, is that, in the LS formulation for dynamical system

identification, the regressor variables are affected by noise: Z

(or ΩT ) contains measured process outputs x( j)(k), that are

non-deterministic owing to the noise, so the parameters are

estimated biased and non-consistent. A bias means that the

parameters systematically deviate from their optimal values;

non-consistency means that the bias does not even approach

zero as the number of data samples h goes to ∞. A final

consideration concerns the correlation between the regressor

columns of Z: examining (3) and considering a typical step

response of a dynamical system, we can clearly see that the

value of the state vector at the k-th step is dependent on the

value at the previous step. If the dynamics of the system

are smooth and slow, then x( j)(k) can be approximated

by a linear combination of its values at the previous step,

x( j)(k−1), . . . ,x( j)(0). This fact is quite unfortunate, because

it means the columns of ZT Z are almost linearly dependent,

which produce a high sensitivity in the LS solution to noise

and round-off errors.

We note that two standard strategies for improving the

identification results when using time–series measurements,

i.e. increasing the number of measurements by either re-

ducing the sample time or by considering a longer time

interval, are basically not useful in this context: indeed,

having x( j)(k) too close in time to x( j)(k−1) just increases

the approximate linear dependence between the regression

vectors. On the other hand, if we carry on taking mea-

surements after the signals have reached their steady–state

values, this will again introduce new regression vectors that

are linearly dependent on the others (the value of x( j)(k)
is almost equal to x( j)(k − 1)). Hence, the only chance

to improve the inference performance is by making many

different experiments, possibly using different perturbation

inputs which affect different nodes of the network.

Finally, note that, since the system evolution is sampled,

Â and B̂ are not actually the estimates of A and B in (2),

but rather of the corresponding matrices of the discrete–

time system. We showed (see Appendix in [8]) that, if the

sampling time is suitably small, in order to reconstruct the

original sparsity pattern of the continuous–time system’s

matrices, one can set to zero the elements of the estimated

matrices whose values are below a certain threshold.

B. Instrumental Variables Method

A promising approach to avoid the non-consistency of the

parameter estimates, caused by the measurement noise, is

the Instrumental Variables (IV) method (see [14], p. 486).

We construct a matrix V that has the same dimensions of

Z (V ∈ R
mh×(n+m)), whose columns are called instrumental
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variables and are chosen to be uncorrelated with the noise,

V T ε = 0. Multiplying the (5) with V T we have

V T Ξi −V T Zβ = V T ε = 0,

and consequently

V T Ξi = V T Zβ . (7)

The (7) admits the following solution:

β̂LS−IV =
(

V T Z
)−1

V T Ξi . (8)

The IV estimate (8) is equivalent to the estimate of the least

square regression (6), if V T = ZT . Note that the columns of Z

cannot be used as instrumental variables since Z is correlated

with the noise (ZT ε 6= 0).

In the following, a criterion which can be used in order

to choose V is illustrated. The instrumental variables (IV)

should be highly correlated with the regressors in order

to make the variance error small. Good IV should be the

measurements x( j)(k) without the noise. Then they can be

approximated by filtering x( j)(k) through the process model

and the following algorithm can be used:

P1) Estimate each row, Θi,⋆, of the connectivity matrix Θ

by solving (6)

P2) Compute the evolution x̂( j)(k) of the identified model

ΘLS in step P1).
P3) Construct V from the simulated data x̂( j)(k):

V :=

(

X̂ (1) . . . X̂ (m)

Im ⊗11×h

)T

,

where

X̂ ( j) =









x̂
( j)
1 (0) · · · x̂

( j)
1 (h−1)

...
. . .

...

x̂
( j)
n (0) · · · x̂

( j)
n (h−1)









∈ R
n×h ,

for j = 1, . . . ,m.

P4) Solve (8) with the IV in step P3). Compute the data

x̂
( j)
IV (k) obtained by the evolution of the identified model

ΘLS−IV . Update x̂( j)(k) with x̂
( j)
IV (k) in P3).

P5) Compute the error matrix, defined as

E = Ξ−ΘLS−IV Ω ∈ R
n×mh.

Define the residuals vector as

eIV =(e(1)(1)T , . . . ,e(1)(h)T . . .

e(m)(1)T , . . . ,e(m)(h)T )T ∈ R
nmh,

where e( j)(k) = E⋆,i ∈R
n is the i-th column of E , where

i = j · k for k = 1, . . . ,h and for j = 1, . . . ,m.

P6) Construct an autoregressive (AR) model for the residu-

als to extract the remaining information from eIV . For

each j = 1, . . . ,m we have the following model:

e( j)(k)+a1e( j)(k−1)+ · · ·+ale
( j)(k− l)= v( j)(k) , (9)

where v( j)(k) ∈ R
n is the white noise and l is the

dynamic order of the AR model. If we introduce the

backward shift operator q−1 by

q−1e( j)(k) = e( j)(k−1)

and

L(q) = 1 + a1q−1 + · · ·+ alq
−l ,

the (9) can be rewritten as

e( j)(k) =
1

L(q)
v( j)(k) .

By using the regression model in the form

Xe = Λ ·a + v ,

where

Xe =(e(1)(h), . . . ,e(1)(2), . . . ,

e(m)(h), . . . ,e(m)(2))T ∈ R
n(h−1)m

v =(v(1)(h), . . . ,v(1)(2), . . . ,

v(m)(h), . . . ,v(m)(2))T ∈ R
n(h−1)m

a = (−a1, . . . ,−al)
T ∈ R

l , and

Λ =









Z
(1)
e

...

Z
(m)
e









Z
( j)
e =

















e( j)(h−1) · · · e( j)(h− l)
...

. . .
...

e( j)(h− l−1) · · · e( j)(1)
...

. . . 0

e( j)(1) 0 0

















,

the optimal estimator for the vector a through the

standard LS is given by

âLS =
(

ΛT Λ
)−1

ΛT Xe .

P7) Filter the x̂
( j)
IV (k) computed in step P4) with the filter

L̂(q) estimated in step P6):

x̂i
( j)
IV−L(k) = L̂(q)x̂i

( j)
IV (k) , i = 1, . . . ,n . (10)

P8) Construct the matrix V L from x̂
( j)
IV−L(k) obtained by (10):

V L :=

(

X̂
(1)
L . . . X̂

(m)
L

Im ⊗11×h

)T

,

where

X̂
( j)
L =









x̂1
( j)
IV−L(0) · · · x̂1

( j)
IV−L(h−1)

...
. . .

...

x̂n
( j)
IV−L(0) · · · x̂n

( j)
IV−L(h−1)









∈ R
n×h ,

for j = 1, . . . ,m.

P9) Solve (8) by using as IV the matrix V L. Update x̂( j)(k)
in P3) with the new data obtained by the evolution of

the identified model ΘLS−IV−L. Repeat steps P3)−P9)
for three iterations (the procedure converges very fast).
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C. Regularized Least Squares

The matrix H = ZT Z in (6) is identical to the Hessian of

the loss function of the least squares problem (see [14], pp.

40–43) and it has to be well conditioned in order to obtain

accurate parameter estimates. It is well known the probability

of poor conditioning increases with the matrix dimension and

increases the variance of the worst estimated parameters. The

condition of the Hessian matrix, χ , can be defined by the

eigenvalue spread of the matrix by the formula χ = λmax

λmin
,

where λmax and λmin are the largest and smallest eigenvalue

of H, respectively. A method for controlling the condition of

the Hessian is called ridge regression. It consist of adding a

factor α to all diagonal entries of the Hessian, (ZT Z + αI).
Then, the eigenvalues of H are changed, in particular the

significant eigenvalues (λi ≫ α) are not influenced by the

addition of α , whereas the small eigenvalues (λi ≪α) are set

to α . Therefore the condition of the Hessian can be directly

controlled via χreg = λmax
α , where χreg is the regularized

eigenvalue spread. Then, to solve (5), the Regularized Least

Squares (RLS) problem leads to the following parameter

estimate

β̂RLS =
(

ZT Z + αI
)−1

ZT Ξi , (11)

where I ∈ R
mh×mh is the identity matrix. The method of

generalized cross-validation (GCV) is used for choosing a

good estimate of α from the data (see [22]).

Then the RLS is combined with IV. The estimation of each

row of Θ is computed by solving the following formula:

β̂RLS−IV =
(

V T Z + αI
)−1

V T Ξi . (12)

For choosing V , the same procedure illustrated above is used.

For the estimation of the vector a of the AR filter defined

by (9) the RLS approach is also used.

D. Edges selection

Independently from the chosen method used for the esti-

mation of the connectivity matrix, all the elements of Â are

usually nonzero, whereas biological networks exhibit loose

connectivity, that is, the number of connections per node

is much lower than the total number of nodes. To evaluate

the estimation of Â in terms of network inference we have to

normalise each element, by dividing it by the geometric mean

of the norms of the row and column containing that element.

Thus, we compute the normalised estimated adjacency matrix

Ã, where

Ãi j =
Âi j

(

‖Â⋆, j‖ · ‖Âi,⋆‖
)1/2

. (13)

To translate this estimated matrix into an inferred network,

we sort the list of edges in descending order according to the

absolute value of their corresponding estimated parameters.

Then, the elements at the top of the list will correspond to

high-confidence predictions, i.e., edges with high probability

of actually existing in the original network. We also tested

the cases where each element of Â is normalized by dividing

it only by the geometric mean of the row containing that

element, or where the list of edges is generated by simply

0

1

2

3
OVERALL SCORE

 

 

LS LS−IV RLS RLS−IV

0

2

4
AUPR SCORE

tps=11 Ts=50 tps=21 Ts=25 tps=6 Ts=50 tps=11 Ts=25
0

1

2

AUROC SCORE

Fig. 1. Results for the LS approaches with four tests using different number
of time points (t ps) and of the sample time (T s).

considering the absolute value of the Â. The best solution is

obtained by using (13).

IV. RESULTS

The performance of the proposed algorithm has been

evaluated by computing the AUPR index, which represents

the area under the precision (or Positive Predictive Value,

PPV) and recall (or sensitivity) curve (see [23], p.138, for

computing the PPV and sensitivity indexes) and the AUROC

index, that represents the area under the receiver operating

characteristic (ROC) curve and summarizes the tradeoff

between the true positive rate and the false positive rate. To

compute these performance indexes, we do not consider the

weight (sign) of an edge, but only its existence and direction.

The performance of the various methods based on LS is

assessed by applying them to a set of 5 in silico nonlinear

networks, each with ten nodes, generated by using GNW (see

Section II-B). We assume that the perturbation targets and

the qualitative effects of the perturbation are known, thus the

pattern (but not the values of the non-zero elements) of B̂ is

preassigned. Each experiment, as explained above, consists

of ten time–series (each one corresponding to a perturbation

of a single node, n = m) and for each test we generated

50 experiments. Different tests have been conducted using

different number of time points (t ps) and of the sample time

(Ts). To obtain a single performance measure for each test,

we adopt the procedure used in [16] and compute the p-

values for the AUPR and AUROC median values for each

network. P-values for these assessments were obtained from

the empirical distributions, estimated from 100,000 instances

of random network link permutations. The overall AUPR p-

value is computed by the geometric mean of the five AUPR

p-values (denoted by P1) and the same procedure is used

for computing the overall AUROC p-value (denoted by P2).

Then a log-transformed average of the two overall AUROC

and AUPR p-values, computed as −0.5log10(P1 ·P2), gives

us the OVERALL SCORE. Larger scores indicate greater

statistical significance of the prediction and thus higher

inference performance.

Fig. 1 shows the results of the different LS methods.

We denote with 1) LS the approach based on standard
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Least Squares, with 2) LS-IV the approach that exploits the

iterative IV method, with 3) RLS the approach that uses

the regularized technique, and with 4) RLS-IV the approach

that combines the RLS with IV. The first column of Fig. 1

shows the OVERALL, AUPR and AUROC SCORES for

the first test, using time–series data obtained by evolving

the networks until most nodes reach a new steady–state

(t ps = 11 ,Ts = 50), and we can see that the best SCORE

(OVERALL, AUPR and AUROC) is obtained by the RLS-

IV approach. The other columns report the results obtained

by the other tests. In particular, for the second column, we

increase the t ps by reducing the Ts, but the performance does

not improve, in fact, as noted in Section. III-A, increasing

the number of points by reducing the sample time is often

not useful, because having the data points too close in time

just increases the approximate linear dependence between

the regression vectors, mainly in the last part of time–series.

The last two columns of Fig. 1 show the results obtained

by using the first part of the time–series, i.e. that containing

the transient dynamics, and sampling with two different T s.

Also in this case, in terms of AUPR, the RLS-IV approach

performs better than the others, whereas the AUROC SCORE

is similar for all approaches. The performance, moreover,

does not significantly degrade by decreasing the t ps.

From the presented results, it is clear that the combined

exploitation of the IV and RLS technique significantly im-

proves the inference power of the standard LS algorithm.

Note finally that in this paper, we have focussed our at-

tention on network inference using only time–series data.

If additional sources of data, such as steady–state data, are

available, then the methods discussed in [16], [24] can also

be used to further improve the inference capability.

V. CONCLUSIONS AND FUTURE WORKS

The results from numerical tests show that the RLS-IV

approach, obtained by combing the Regularized LS technique

and IV method, achieves a significantly improved inference

capability. Compared to other approaches in the literature,

the proposed approach efficiently minimizes computational

overheads, and so in future work we will investigate the pos-

sibility of inferring large scale networks using this algorithm.

This approach will then be combined with edge selection

heuristics to exploit prior knowledge about some aspects of

the network, in order to reconstruct large-scale networks with

desired topologies, as illustrated for smaller-scale networks

in our recent papers [8], [12].
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