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Abstract— This paper presents a distributed algorithmic solu-
tion to achieve network configurations where agents cluster
into coincident groups that are distributed optimally over the
environment. The motivation for this problem comes from
spatial estimation tasks executed with unreliable sensors. We
propose a probabilistic strategy that combines a repeated
game governing the formation of coalitions with a spatial
motion component governing their location. We establish the
convergence of the agents to coincident groups of a desired size
in finite time and the asymptotic convergence of the overall
network to the optimal deployment, both with probability 1.
The algorithm is robust to agent addition and subtraction. From
a game perspective, the algorithm is novel in that the players’
information is limited to neighboring clusters. From a motion
coordination perspective, the algorithm is novel because it
brings together the basic tasks of rendezvous (individual agents
into clusters) and deployment (clusters in the environment).

I. INTRODUCTION

This paper is motivated by optimal spatial sampling problems

under possibly failing communications. Consider a group of

mobile robotic sensors that take point measurements of a

random field over an environment and relay them back to a

data fusion center. Assume that because of the features of the

medium and the limited agent communication capabilities, it

is known that only a fraction of these packets will arrive

at the center, but it is not a priori known which ones will.

Given that some sensors are not working and their identity is

unknown, a reasonable strategy consists of grouping sensors

together into clusters so that the likelihood of obtaining a

measurement from the position of each cluster is higher. In

this paper, our aim is to design a distributed algorithm that

makes the network autonomously create groups of a desired

size such that (i) members of each individual group become

coincident, and (ii) the groups deploy in an optimal way with

regards to the spatial estimation objective.

Literature review: There is an increasing body of research

that deals with spatial estimation problems with possibly

failing communications where packets are either received

without corruption or not received at all, see e.g., [1], [2], [3],

[4]. In particular, [4] shows that, for the problem motivating

our algorithm design, the clustering strategy outlined above

is not only reasonable but optimal in some cases: the con-

figurations that maximize the expected information content

of the measurements retrieved at the center correspond to

agents grouping into clusters, and the resulting clusters being

deployed optimally. Achieving such desirable configurations

is challenging because of the spatially distributed nature of

the problem and the agent mobility. Our technical approach
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combines elements of spatial facility location [5], rendezvous

and deployment of multi-agent systems [6], and coalition

formation games [7], [8]. From a game-theoretic perspective,

our analysis of the coalition formation dynamics is novel

because of the consideration of evolving and partial inter-

action topologies. From a motion coordination perspective,

the novelty relies on the coupled dynamics between the

coalition formation, the clustering, and the network deploy-

ment. Other works in cooperative control that employ game-

theoretic ideas to solve tasks such as formation control, target

assignment, self-organization for efficient communication,

consensus, and sensor coverage include [9], [10], [11], [12].

Statement of contributions: The main contribution of the

paper is the design and analysis of the COALITION FOR-

MATION AND DEPLOYMENT ALGORITHM. The aim of this

synchronous, distributed strategy is to allow robotic agents

to autonomously form groups of a given desired size while

clustering together and deploying optimally in the envi-

ronment. The deployment objective is encoded through a

locational optimization function whose optimizers corre-

spond to circumcenter Voronoi configurations. The algorithm

design combines a repeated game component that governs

the dynamics of coalition formation with a spatial motion

law that determines how agents’ positions evolve. In the

game, agents seek to join the nearby coalition closest to

the desired size. According to the motion coordination law,

agents not yet in a well-formed coalition cluster together

while agents in a coalition of the desired size also move

towards the circumcenter of their Voronoi cell. Our main

result, cf. Theorem IV.4, establishes that the executions of the

COALITION FORMATION AND DEPLOYMENT ALGORITHM

converge in finite time to a configuration where agents

are coincident with their own coalition and all coalitions

are the desired size, and asymptotically converge to an

optimal deployment configuration, each with probability 1.

The algorithm does not require the agents to have a common

reference frame, and is robust to agent addition and deletion.

Finally, we illustrate these properties in simulations. Proofs

are omitted for reasons of space and will appear elsewhere.

II. PRELIMINARIES

We present some facts on computational geometry and

coalition games that play a key role in the discussion.

A. Basic geometric notions

We denote by R and Z the sets of real and integer numbers,

respectively. Let ‖ · ‖ be the Euclidean distance. Given a

set S ⊂ X , let F(S) denote the collection of finite subsets

of S and Sc = X \ S its complement. Let |S| denote the
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cardinality of the set S. Let vr : R
d → R

d be defined by

vr(u) = u/‖u‖ for u ∈ R
d \ {0}, and vr(0) = 0. We let

B(x, r) = {p ∈ R
d | ‖x−p‖ ≤ r}. The circumcenter of a set

of points P , denoted CC(P ), is the center of the ball of mini-

mum radius, denoted CR(P ), which encloses all points in P .

Next, we introduce the get-together-toward-goal

function gttg : S × F(S) × S → S that will help us later

to get a set of points P closer to each other while moving

towards a goal q. Define

gttg(p, P, q) = p + w1 + w2,

where we use the shorthand notation P0 = P ∪ {p},

w1 = min{‖CC(P0) − p‖, d1(r)} vr(CC(P0) − p),

w2 = min{‖q − (p + w1)‖, d2(r)} vr(q − (p + w1)),

and r = CR(P0)
/

‖q −CC(P0)‖. Here, d1 : R≥0 → R≥0 is

a continuous, increasing function on (0,∞) that satisfies

d1(0) = 0, lim
s→∞

d1(s) = dmax, lim
s→0+

d1(s) = dmin,

for dmax > dmin > 0, and d2 : R≥0 → R≥0 is defined by

d2(s) = dmax − d1(s). Fig. 1 illustrates the gttg function.

p

p + w1

gttg(p, P, q)CC(P0)

q

Fig. 1. Illustration of the action of the function gttg.

B. Voronoi partitions and deployment objective

Here, we introduce some computational geometric notions

that play an important role in the formalization of the

deployment problem. Given Q ⊂ R
d and a finite set of points

P = {p1, . . . , pN} ⊂ Q, the Voronoi partition V (P ) =
{V1(P ), . . . , VN (P )} of Q is defined by

Vi(P ) = {q ∈ Q | ‖ q − pi‖ ≤ ‖ q − pj‖, ∀ pj ∈ P}.

Note that Vi(P ), the Voronoi cell of pi, is the set of points

in Q closer to pi than to any of the other points in P . The

points pi and pj are (Voronoi) neighbors if the boundaries

of their cells intersect. To compute the Voronoi cell of pi,

all that is required is the location of its neighbors in P . The

work [13] introduces a procedure, that we term the ADJUST

RADIUS strategy, which does the following: starting from

r = 0, it repeatedly grows r until all Voronoi neighbors

of pi are guaranteed to be contained in B(pi, r).

Given a partition {W1, . . . ,WN} of Q, the disk-covering

function HDC,N is defined by

HDC,N (p1, . . . , pN ,W1, . . . ,WN ) = max
i∈{i,...,N}

max
q∈Wi

‖q − pi‖2.

The value of HDC,N solves the following problem: cover

the whole environment with balls centered at the points

in P = {p1, . . . , pN} with minimum common radius

such that Wi ⊂ B(pi, r), for i ∈ {1, . . . , N}. For

convenience, we use the notation HDC,N (p1, . . . , pN ) =
HDC,N (p1, . . . , pN , V1, . . . , VN ). Two properties are worth

noting [6]: for a fixed configuration, the Voronoi partition is

optimal among all partitions,

HDC,N (p1, . . . , pN , V1(P ), . . . , VN (P )) ≤

HDC,N (p1, . . . , pN ,W1, . . . ,WN ),

and, for a fixed partition, the cells’ circumcenters are optimal,

HDC,N (CC(W1), . . . ,CC(WN ),W1, . . . ,WN ) ≤

HDC,N (p1, . . . , pN ,W1, . . . ,WN ).

Under certain technical conditions, optimizing HDC,N cor-

responds to minimizing the maximum error variance in the

estimation of a random spatial field [14]. The deployment

objective function that motivates our algorithm is given by

HN,g(p1, . . . , pN ) =

1
(

N
g

)

∑

{s1,...,sg}∈C(N,g)

HDC,g(ps1
, . . . , psg

), (1)

where C(N, g) denotes the set of unique g-sized combina-

tions of elements in {1, . . . , N}. This function corresponds

to the expected disk-covering performance of a network of N
agents where only g of them are working and their identity

is unknown. Optimizers of HN,g correspond to grouping

agents into coincident clusters of a specific size, say κ, that

themselves are optimally deployed according to HDC,⌈N
κ
⌉,

see [4]. The cluster size κ is a function of N , g, and Q.

For our problem, we assume that the optimal cluster size κ
is known, and so forming coincident clusters of size κ and

deploying these groups appropriately optimizes (1).

C. Hedonic coalition games

Hedonic coalition formation games [7] are N -player nonco-

operative games [15], [16] where players attempt to join/stay

in preferable coalitions. Each player is hedonic because the

utility it assigns to a given network coalition partitioning is

only a function of its own coalition. Each player’s action set

is finite: it can stay in the current coalition or join another

coalition. For a finite set of players A = {1, . . . , N}, a

finite coalition partition is a set Π = {Sk}
K
k=1, K ∈ Z≥1,

that partitions A. The subsets Sk are called coalitions. For

player i and partition Π, let SΠ(i) be the set Sk ∈ Π such

that i ∈ Sk. Agent i’s preference is defined by an ordering

�i over the set Si = {S ∈ F(A) | i ∈ S}. A coalition

partition Π is called Nash stable if, for each i ∈ A,

SΠ(i) �i Sk ∪ {i}, ∀Sk ∈ Π ∪ {∅}. (2)

In coalition formation games, a player has full information

about which coalitions all other players are in and may

join any of them. This is in contrast to our scenario, where

coalition information is only partial (and possibly incorrect),

due to the limited capabilities of individual agents. Let us

introduce definitions which help capture the spatially-limited

nature of coalition information. We say that (S1, . . . , SN ) is

a consistent coalition state if i ∈ Si and Sj = Si, for each
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j ∈ Si, for each i ∈ A. Note that for a consistent coalition

state, {S1, . . . , SN} reduces to a finite coalition partition of

A. Let τi ⊆ A denote the set of agents whose coalition

information i has access. Letting S0 = ∅, the function

best-set defines the players whose coalitions i most prefers

to be a member of,

best-set(�i, {(k, Sk)}k∈τi
) =

{j ∈ τi ∪ {0} | Sj ∪ {i} �i Sk ∪ {i}, ∀ k ∈ τi ∪ {0}}.

III. PROBLEM STATEMENT

Consider a group of robotic sensors with unique identifiers

A = {1, . . . , N} moving in a convex polygon Q ⊂ R
2.

Let pi denote the location of agent i and P = (p1, . . . , pN )
denote the overall network configuration. We consider arbi-

trary agent dynamics, assuming each agent can move up to

a distance dmax ∈ R>0 within one timestep,

pi(ℓ + 1) ∈ B(pi(ℓ), dmax), ℓ ∈ Z.

Through either sensing or communication, we assume each

agent i can get the relative position and identity of agents

within distance ri ∈ R>0. During the coalition formation

process, agents can communicate with other agents within

this radius. Agent i can adjust ri but the cost of acquiring

information is an increasing function of it. Inter-agent com-

munication occurs instantaneously.

Given the problem scenario described in Section I, the

network’s objective is dual. On the one hand, agents want to

cluster into groups of a predefined size κ. Equivalently, the

network wants to self-assemble into ⌊N
κ ⌋ clusters of size κ,

with possibly one additional cluster of size z, 0 ≤ z < κ,

with N = ⌊N
κ ⌋κ + z. On the other hand, the resulting

clusters should be positioned in the environment so as to

minimize HDC,⌈N
κ
⌉. As discussed in Section II-B, such

deployments correspond to optimizers of (1) for a class

of spatial estimation problems with unreliable sensors. For

convenience, we define a partition to be a goal coalition

partition if the cardinality of m of its coalitions is κ, with

the cardinality of the remaining one equal to z, if it exists.

A trivial solution to this problem would be to first elect ⌈N
κ ⌉

leaders and have each leader recruit κ − 1 followers. Then

each group could rendezvous, and afterwards, the overall

network would deploy. However, this method is neither

distributed nor robust to agent failures. Our aim is to create

a distributed algorithm that accomplishes the dual network

objective in a robust and efficient way.

IV. COALITION FORMATION AND DEPLOYMENT

ALGORITHM

In this section, we solve the spatial deployment problem

posed in Section III with the COALITION FORMATION AND

DEPLOYMENT ALGORITHM. This distributed, synchronous

strategy specifies for each agent the dynamics of coalition

formation and spatial motion. Section IV-A outlines the logic

used by agents to determine which coalition to join as well

as the supporting inter-agent communication and Section IV-

B discusses how agents decide how to move depending on

their coalition size and the deployment objective.

Before describing the dynamics, we begin with descriptions

of the required memory of each agent i and appropriate

initializations. The memory Mi of agent i is composed of

• the coalition set Ci. Elements of this set are of the

form (j, pj), i.e., identity and position of the member.

For convenience, we set (i, pi) ∈ Ci and C0 = ∅;

• the communication radius ri at which the agent interacts

with other agents not necessarily in its coalition set;

• the neighboring set Ni corresponding to agents within

distance ri, i.e., (j, pj) ∈ Ni iff pj ∈ B(pi, ri);
• the farthest-away radius ri, corresponding to the max-

imum distance to members of its coalition set.

• the flag last, which indicates if an agent belongs to

the single final coalition not of size κ when ⌈N
κ ⌉ 6= N

κ .

The operators id(·) and pos(·) extract identities and po-

sitions, respectively, from sets with elements of the form

(i, pi). Initialization requires a consistent coalition state

(id(C1), . . . , id(CN )), ri ∈ R≥0, and last = False.

A. Coalition formation game

The formation of coalitions evolves according to a

simultaneous-action hedonic coalition game with partial in-

formation. Let us start with an informal description.

[Informal description]: The agents’ objective is to

be in a κ-sized coalition. There are two rounds

of communication per timestep. In the first one,

each agent acquires information to determine if

any neighboring coalition is more attractive than its

current one. In the second one, the agents involved

in a coalition change (either because they have

decided to switch or because someone else decided

to join their coalition) exchange information to

update the coalition membership.

Next, we formally describe the hedonic coalition formation

game. The agent i’s preference ordering �i over Si is

{S ∈ Si | |S| = κ} ≻ {S ∈ Si | |S| = κ − 1} ≻ . . .

≻ {S ∈ Si | |S| = 1} ≻ {S ∈ Si | |S| = κ + 1} ≻ . . .

≻ {S ∈ Si | |S| = N}. (3)

Next, we specify the two rounds of communication that take

place per timestep. Agents who already are in a coalition of

size κ do not actively take part in this process; they only

respond to other agents’ messages. First, agents execute the

BEST NEIGHBOR COALITION DETECTION strategy described

as Algorithm 1. According to this strategy (cf. step 5), an

agent that finds a neighboring coalition better than its own

will decide to join it with probability given by

P
(

|Ci|, κ
)

= 1 − (1 − b)1/|Ci| if |Ci| 6= κ. (4)

If |Ci| = κ, the player i will surely not switch coalitions. The

design parameter b ∈ (0, 1) corresponds to the probability
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Algorithm 1: BEST NEIGHBOR COALITION DETECTION

Executed by: Agents i with |Ci| 6= κ

1 Acquire Ni % get location of neighbors

2 Send (query, ri) at ri to id(Ni \ Ci)
3 Receive id(Cj) from all j ∈ id(Ni \ Ci)

% request/receive coalition sizes

4 if i 6∈ best-set(�i, {k, id(Ck)}k∈id(Ni)) then

% better coalitions exist

5 with probability P
(

|Ci|, κ
)

do

6 Set j∗ from best-set(�i, {k, id(Ck)}k∈id(Ni))
% identify best coalition to join

7 if j∗ 6= 0 then ri := ‖pj∗ − pi‖
8 end

9 end

that at least one agent in a non-κ coalition has the ability to

act. The choice of b influences the rate of coalition changes.

Remark IV.1 (Justification for probabilistic actions) The

probabilistic model for actions in (4) helps avoid deadlock

situations that may result from the decentralized nature of the

game. As an example, in a situation with two groups of size

κ−1, all agents desire to join the other group. If this were the

case, a group of size κ would never form. Instead, under (4),

there is a positive probability 2b(1 − b) that agents in only

one of the groups act, breaking the deadlock. In contrast with

a one-agent-acting-per-timestep policy, (4) allows multiple

agents to switch coalitions simultaneously. •

Next, all agents execute the COALITION SWITCHING strat-

egy described in Algorithm 2. This strategy builds on the

input j∗ provided to i by the BEST NEIGHBOR COALITION

DETECTION strategy. Agents with j∗ 6= i switch coalitions.

If j∗ = 0, i forms its own coalition. Otherwise, i interacts

with agent j∗ to join its coalition. The strategy updates

coalition memberships and the communication radii required

to determine the position of other members so that the

coalition state is consistent after the switches have occurred.

B. Motion control law

Here, we describe how agents move at each timestep, begin-

ning with an informal description:

[Informal description]: At each timestep, agents

adjust their communication radius and move. Both

of these actions are dependent on the size of their

coalition. Agents not yet in a coalition of size κ
increase their radius to improve the chances of

finding a better coalition and move towards their

coalition members. Agents in a coalition of size κ
adjust their radius to ensure they can calculate their

Voronoi cell and move towards both their coalition

members and the circumcenter of their cell.

Formally, the RADIUS ADJUSTMENT AND MOTION strategy

is described as Algorithm 3. Its interaction with the coali-

tion formation dynamics is described in steps 10-16, which

Algorithm 2: COALITION SWITCHING

Executed by: All agents i

1 if j∗ 6= i then

2 Send (leave, i) at ri to id(Ci)
3 if j∗ 6= 0 then

4 Send (join, i, ri) at ri to j∗

5 end

% alert old and new coalitions

6 end

7 M := {k ∈ A | i received join from k}
% agents relying on i to aid switching

8 foreach m ∈ M do Send (join,m, rm) to id(Ci)
% alert coalition members of m via ri

9 L := {k ∈ A | i received leave from k}
10 J := {k ∈ A | an m ∈ id(Ci) got join from k}

% agents leaving/joining i’s coalition

11 id(Ci) := (id(Ci) ∪ J) \ L and ri := ri + max{rj}j∈J

% update current coalition and radius

12 foreach m ∈ M do Send (ri, id(Ci)) at rm to m
% update agents joining i’s coalition

13 if j∗ 6= i then

14 if j∗ = 0 then

15 Ci = {(i, pi)} % form a new coalition

16 else

17 id(Ci) := id(Cj∗) and ri := ‖pj∗ − pi‖ + rj∗

% update coalition and radius

18 end

19 end

20 if J 6= ∅ ∨ j∗ 6= i then

21 Acquire Ni, pos(Ci)
22 j∗ := i % reset switching variable

23 end

governs the set of agents that a robot not yet in a κ-sized

coalition may interact with. The next result ensures that the

agent communication radius is kept at the smallest value

guaranteeing a successful formation of coalitions.

Lemma IV.2 For each i ∈ A such that |Ci| 6= κ, let ki be

the closest agent which is in a coalition different from i’s
with size different from κ. Let ri(P, (C1, . . . , CN )) = ‖pi −
pki

‖. For consistent coalition states not corresponding to a

goal coalition partition, such radii guarantee that at least

one agent has an incentive to switch coalitions. Moreover,

if the radii of these agents were set according to any other

function r′i with r′i(P, (C1, . . . , CN )) < ri(P, (C1, . . . , CN ))
for some i and P , then this property is no longer guaranteed.

Remark IV.3 (Voronoi cell computation) In the computa-

tion in Algorithm 3, Step 5, the coalition’s circumcenter

replaces the locations of all individual agents ensuring that

all coalition members compute the same cell. However, this

implies that the collection of cells computed by the coalitions

is not a partition of the environment. This issue is resolved

when all agents are coincident with their coalition. •
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Algorithm 3: RADIUS ADJUSTMENT AND MOTION

Executed by: All agents i

1 if |Ci| = κ ∨ last = True then

2 Update ri with ADJUST RADIUS strategy

3 Acquire Ni

4 Ai := ({CC(pos(Ci))} ∪ pos(Ni)) \ pos(Ci)
5 Vi := V1(Ai) % compute Voronoi cell

6 goal = CC(Vi)
7 else

8 goal = CC(pos(Ci))
9 Ci := {j ∈ id(Ni) | | id(Ci)| = κ}

10 if id(Ni\Ci)\Ci 6= ∅ then

11 ri := mink∈id(Ni\Ci)\Ci
‖pk − pi‖ + 2dmax

% guarantees a neighbor after motion

12 else

13 if id(Ni) = A then

14 last := True % one non-κ coalition

15 else

16 ri := ri + δ % increase radius

17 end

18 end

19 end

20 foreach j ∈ id(Ci) do pj := gttg(pj ,pos(Ci), goal)
% compute next position

21 pos(Ci) := {pj}j∈id(Ci) % update positions

22 ri := maxpj∈pos(Ci) ‖pj − pi‖ % recompute radius

The COALITION FORMATION AND DEPLOYMENT ALGO-

RITHM is the composition of Algorithms 1-3. This strategy

does not require agents to share a common reference frame

and is robust to agents joining or leaving the network

provided that: (i) new agents alert the network by sending a

query message, (ii) when an agent fails, the other members

of its coalition detect this fact, (iii) when agents receive a

query message they set last := False.

C. Convergence analysis

The next result states the convergence properties of the

COALITION FORMATION AND DEPLOYMENT ALGORITHM.

Theorem IV.4 Consider a network of N agents executing

the COALITION FORMATION AND DEPLOYMENT ALGO-

RITHM. The following holds,

(i) there exists a finite time after which the agents are in

a goal coalition partition and each is coincident with

its coalition members, with probability 1;

(ii) the network asymptotically converges toward the set of

minimizers of HDC,⌈N
κ
⌉, with probability 1.

This result implies that agents may be stuck for some time

in a different partition but, in finite time, they will reach the

desired partition with probability 1. This can be traced back

to the fact that, in the simplified coalition formation game

where agents have both full information and action sets, the

goal coalition partition is the only Nash stable partition.

V. SIMULATIONS

This section presents simulations of the COALITION FOR-

MATION AND DEPLOYMENT ALGORITHM. We illustrate the

convergence to a desired goal coalition partition and the

achievement of the deployment task, the robustness against

agent addition and subtraction, and the average coalition

formation time as functions of N , k, and b. Regarding (4), in

all simulations where b is constant, we have chosen b = 0.5.

In all simulations, δ = dmax = .2√
N

. We use the function

φ(C1, . . . , CN ) =
1

N(κ − 1)

∑

i∈A
||Ci| − κ|, (5)

to illustrate the dynamics of coalition formation. This func-

tion is zero if and only if all agents are in κ-sized coalitions.

Fig. 2 shows an execution of the COALITION FORMATION

AND DEPLOYMENT ALGORITHM with 21 agents forming

coalitions of size 2.
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Fig. 2. Execution of the COALITION FORMATION AND DEPLOYMENT

ALGORITHM with 21 agents and κ = 2. The network converges to a
configuration where all agents are in correctly-sized coalitions and these
coalitions are optimally deployed.

The network converges to both correctly sized groups and

coalitions optimally deployed at their Voronoi cell’s cir-

cumcenters. From Theorem IV.4, the final configuration

optimizes HDC,11. Fig. 3(a) shows the number of coalition

switches at each timestep for the same run.
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0.6

0.4

0.5

0.3

0.3

0.3

10 2015 25 30 355

(b)

Fig. 3. For the execution in Fig. 2, (a) shows the number of agents
switching coalitions at each timestep, and (b) shows the evolution of φ
(solid line) as defined in (5) and H21,20 (dashed line) as defined in (1).

Many switches happen early, but decrease in frequency as

agents form κ-sized coalitions. The evolution of φ depicted

in Fig. 3(b) confirms this. This plot also shows the evolution

of HN,N−1 that, in the language of Section II-B, corresponds

to the situation where N − 1 of the sensors are working.

This choice of function is motivated by the fact that, in

one dimension, it is known that in such a case, forming

coalitions of size 2 is optimal [4]. The bumps in the evolution

of H21,20 in the plot occur when an agent with no nearby

coalitions to join must increase its radius to it join a group
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far away from it. H21,20 temporarily increases while these

agents get together. Fig. 4 illustrates the robustness of the

COALITION FORMATION AND DEPLOYMENT ALGORITHM

as well as convergence when ⌈N
κ ⌉ 6= N

κ . After agents have

achieved the final optimal configuration seen in Fig. 2(b),

we let one agent fail and two new agents come into the

picture. The agents adapt to the new network composition

and optimally deploy according to the available resources.

O

XX
1 1

1

1

2

2

2

2

2

2

2

2

2

2

2

2

2

22
2

2

2

(a) Initial configuration

2

2

2

2

2

2

2
2

2

2

2

2 2

2

2

2

22

22

2

2

2

2

2

2

2

2

2
2

2

2

2

2 2

2

2

2

22

22

2

2

(b) Final configuration

Fig. 4. Execution of the COALITION FORMATION AND DEPLOYMENT

ALGORITHM from the configuration in Fig. 2(b) where an agent has failed
in the coalition marked as ’o’ and two agents, marked as ’x’, have been
added. After these agent additions and subtractions, coalitions adapt and the
network re-converges to an optimal deployment configuration.

Finally, Fig. 5 illustrates the dependency of the average num-

ber of timesteps required for all coalitions to form on N , κ,

and b. Each point is the average of 200 runs, where the agents

were initially randomly placed with uniform distribution in

a unit square. The error bars correspond to plus and minus

one standard deviation. Fig. 5(a) shows the average coalition

formation convergence time for different N for cases of

fixed κ = 4 and changing κ = ⌊N
2 ⌋. In both cases, the

completion time appears linear in N and each take a similar

amount of time. The latter is confirmed in Fig. 5(b), which

shows the average coalition formation convergence time for

fixed N = 20 and varying κ. The coalition formation time

is roughly equal for all desired coalition sizes, until nearly

all agents are joining one coalition, which takes less time

on average. Fig. 5(c) shows the average coalition formation
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Fig. 5. (a) shows the average coalition formation time as a function of the

number of agents N , for κ = 4 (dashed line) and κ = ⌊N
2
⌋ (solid line). (b)

shows the average coalition formation time as a function of desired coalition
size κ for N = 20 agents. (c) shows the average coalition formation time
for 20 agents forming coalitions of size 4 as a function of b. In all plots,
the error bars correspond to plus and minus one standard deviation.

time for 20 agents forming coalitions of size 4 for various b
values. The completion time is roughly constant for values

of b away from 0 and 1.

VI. CONCLUSIONS

Motivated by a spatial estimation problem, we have designed

a synchronous, distributed algorithm for a network of robotic

agents to autonomously deploy in groups over a region.

Our strategy allows agents to autonomously form coalitions

of a desired size, cluster together within finite time, and

asymptotically reach an optimal deployment, with probabil-

ity 1. The algorithm design combines a hedonic coalition

formation game where agents only have partial information

about other coalition memberships with motion coordination

strategies for group clustering and deployment. The proposed

solution is provably correct, does not rely on a common

reference frame and is robust to agents joining or leaving

the environment. Simulations illustrated these features along

with the dependency of the average coalition formation time

on N , κ, and b. Future work will be devoted to analytically

characterizing the time complexity, as well as investigating δ
policies which optimize the coalition formation process. We

also plan to further explore the impact of noncooperative

game-theoretic ideas in other motion coordination problems.
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