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Abstract— A sufficient condition for stability of linear subsys-
tems interconnected by digitized signals is presented. There is
a digitizer for each linear subsystem that periodically samples
an input signal and produces an output that is quantized and
saturated. The output of the digitizer is then fed as an input
(in the usual sense) to the linear subsystem. Due to digitization,
each subsystem behaves as a switched affine system, where
state-dependent switches are induced by the digitizer. For each
quantization region, a storage function is computed for each
subsystem by solving appropriate linear matrix inequalities
(LMIs), and the sum of these storage functions is a Lya-
punov function for the interconnected system. Finally, using
a condition on the sampling period, we specify a subset of
the unsaturated state space from which all executions of the
interconnected system reach a neighborhood of the quantization
region containing the origin. The sampling period proves to be
pivotal—if it is too small, then a dwell-time argument cannot
be used to establish convergence, while if it is too large, an
unstable subsystem may not receive timely-enough inputs to
avoid diverging.

I. INTRODUCTION

Any controller implemented using a computer is subject to

digitization—quantization, saturation, and sampling. Quanti-

zation and saturation arise from finite capacity and precision

of digital communication and computation. Sampling arises

due to finite capacity as well, but also from the fact that

computation in sensing, communication, and actuation de-

vices is driven by clock pulses. In this paper, we study linear

systems interconnected by digitizers. A digitizer periodically

samples its input signal and produces a quantized, saturated,

and piecewise constant output signal. Thus, its output values

come from a finite set after a known sampling delay. We

believe that this notion of a digitizer captures a wide variety

of sensors, actuators, computers, and communication chan-

nels. For interconnecting subsystems, we roughly follow the

distributed control framework from [1], [2], where subsys-

tems are interconnected over an arbitrary graph (see Fig. 1

for an example). With quantization, each linear subsystem

can be viewed as an affine system, where the affine term

exhibits state-dependent switching based on the quantized

value. Further, the sampling causes new quantized values to

arrive late.

The digitally interconnected system described above is

analyzed in this paper by applying linear matrix inequality

(LMI) techniques. First, storage functions are computed for
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subsystems as in [1], [3]. Then, for each quantization region

in the interconnected state space, a Lyapunov function is

computed which decreases so long as the digitizer con-

tinues to output the quantized value corresponding to that

quantization region. Finally, a dwell-time argument using

the sampling period of the digitizers establishes a notion

of attractivity. Each linear subsystem and its digitizer are

formalized as one hybrid input/output automaton (HIOA) [4],

and the interconnected system is a composition of these

automata, where the outputs of some automata are fed as

inputs to other automata.

There is a large body of literature regarding quantization,

saturation, and delay in control systems; we mention a

few works that are closely related to our own. To the

best of our knowledge, no works have addressed general

interconnections with digitization that we consider here. A

thorough overview of switched systems is available in the

book [5], which also covers quantization and saturation,

albeit under a different model where a single system under-

goes quantization of input, output, and/or state feedback [6].

In [7], the authors apply LMI techniques to state and input

feedbacks which are delayed, saturated, and quantized. In [8],

the author presents methods for guaranteeing stability of

piecewise affine systems, which can be viewed as switched

affine systems that quantization naturally induces. The au-

thors of [3] apply techniques from [8] to the interconnected

framework from [1], [2] to show stability of piecewise affine

interconnected systems. We apply a similar S-procedure used

in [8], [3] and also [9] to restrict our search for Lyapunov

functions to the domain of each quantization region (of which

there are a finite number due to saturation). Unlike [8], [3],

[9], we do not search for a common Lyapunov function

which is continuous along switching surfaces, and instead

find a Lyapunov function for each quantization region and

then apply a dwell-time argument. The finite number of

quantization regions in our model is similar to the use of

a finite alphabet in the model of [10]. In [11], the author

considers interconnections of hybrid systems and establishes

input/output stability and small-gain results.

II. INTERCONNECTION AND DIGITIZATION MODELS

We consider N interconnected linear subsystems, where

the output signals of some are fed to the input signals

of others in the same way as in [3], [1], [2] (see, for

example, Fig. 1). Unlike the prior work, however, here the

input/output signals are digitized, that is, sampled, quantized,

and saturated. To capture digitization, we group each linear

subsystem with its input digitizer and model the combination
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Fig. 1. Ring interconnection of N linear subsystems with digitization.

as a Hybrid Input/Output Automaton (HIOA) [4], [12] Ai for

i ∈ {1, . . . , N}.

A Linear Subsystem with Digitized Inputs: First, we

describe the HIOA Ai of a single linear subsystem with

digitized inputs; for reference, consider A1 in Fig. 1. Ai

takes an input signal ui ∈ R
m, which is fed into the

digitizer Di. The digitizer output vi ∈ Σm where Σ is a

finite subset of the reals, is called the intermediate signal,

is quantized and saturated, and is only updated periodically.

The intermediate signal vi is the input (in the usual sense)

to the linear differential equation ẋi = Aixi +Bivi. Finally,

the output signal wi from the linear subsystem is the output

of automaton Ai
1.

Quantization and saturation in the digitizer are modeled

with a quantization function2 Q : R
m → Σm. Sampling

delays are captured with a timer as discussed below. Q
induces a partitioning of Rm and the corresponding equiva-

lence relation on R
m×R

m is denoted by ∼. The equivalence

class of an element x ∈ R
m is denoted by [x]. For some

set S, the quotient space is denoted S\∼. The preimage of

v ∈ Σm is Q−1(v)
∆

= {u ∈ R
m : [u] = v}. Beyond a certain

value ±M ∈ Σ called the saturation range, Q saturates

and returns the same value. That is, for any u ∈ R
m, if

‖u‖∞ ≥ M , then ‖Q(u)‖∞ = M . We assume that when

unsaturated, the difference between the quantizer’s output

and its input is bounded by a constant ∆ > 0. Formally,

∀u ∈ R
m, if ‖Q(u)‖∞ < M , then ‖Q(u)− u‖∞ ≤ ∆. Due

to the quantization error ∆, we cannot in general expect

to have asymptotic stability in the usual sense where a

system converges to an equilibrium as time goes to infinity.

Similarly, because of the quantization saturation M , we will

not be able to achieve global attractivity and instead will

define an appropriate local region of attraction later.

1We suppose wi = xi for clarity of presentation in this paper, but nothing
prevents the more general case wi = Cixi.

2For simplicity, we assume that each Ai uses the same digitizer Di, each
of which uses the same quantization function Q.

For the remainder of the paper, we fix a sampling period

φ > 0. Automaton Ai with sampling period φ is a tuple

〈Vi,Di, Ti〉, where:

(i) Vi: is the set of variables {xi, wi, ui, vi, hi}, where:

(a) state variable xi takes values in R
n, (b) output

variable wi takes values in R
m, (c) input variable ui

takes values in R
m, (d) intermediate variable vi takes

values in Σm, and (e) timer variable hi takes values

in R≥0. The state space Qi is the set of all valuations

of xi, vi, and hi, that is, Qi
∆

= R
n ×R

m ×R. A state

is denoted by bold x. The set of valuations of xi is

denoted by the set Xi
∆

= R
n.

(ii) Di ⊆ Qi × Qi is a set of transitions. A transition

(x,x′) ∈ D is written as x →Ai
x
′ or as x → x

′

when Ai is clear from context. There is a discrete

transition x →Ai
x
′ if and only if: (a) (Precondition)

At the pre-state x, φ time has elapsed since the previous

discrete transition (i.e., x.hi ≥ φ) and the intermediate

variable does not match the quantized input (i.e., x.vi 6=
Q(x.ui)), and (b) (Post-state) All the variables’ values

in x
′ remain the same as in x, except that the timer is

reset (i.e., x′.hi = 0) and the intermediate variable is

set to the quantized input (i.e., x′.vi = Q(x′.ui)). Thus,

the discrete transitions model the switches in vi caused

by digitization.

(iii) Ti: is the set of trajectories for the variables in Vi,

which models the continuous evolution of the variables

over time intervals. Specifically, for T ≥ 0, a T -

trajectory is a function τ : [0, T ] → Qi such that

∀t ∈ [0, T ] we have: (a) τ(t).hi = τ(0).hi + t: the

timer grows monotonically at unit rate, (b) τ(t).vi =
τ(0).vi = Q(τ(0).ui): the intermediate variable re-

mains constant, and (c) for any trajectory ζ of the inter-

mediate variable vi, τ(t).xi is obtained by integrating

the linear differential equation Aiτ(t).xi +Biζ(t).
3

The domain for a trajectory τ ∈ Ti is denoted by τ.dom.

We define τ. ltime as the right endpoint of τ.dom, τ. lstate
∆

=
τ(τ. ltime), and τ. fstate

∆

= τ(0). The discrete-continuous

behavior of a HIOA is defined in terms of executions. An

execution of Ai is a finite or infinite sequence of trajectories

τ0 τ1 . . ., such that for all indices k in the sequence, there

is a discrete transition τk. lstate → τk+1. fstate.

Interconnected System as Composition of HIOAs: The

interconnected system is another HIOA called System which

is formally defined as the composition of several Ai’s [4],

[12]. The interconnection is specified by a function G which

maps the output variables of each automaton to the input

variable of some automaton in the system. For a regular

interconnection, for example a ring (see Fig. 1), G(ui)
∆

=
w(i−1 mod N)+1. In general, G specifies the interconnection

3The solution τ(t).xi is well-defined even if the input trajectory ζ(t)
is unknown, so long as ζ(t) is integrable, which is the case because ζ is
piecewise constant. Ti also satisfies the stopping condition: ∀t ∈ [0, T ], if
τ(t).hi ≥ φ and Q(τ(t).ui) 6= τ(t).vi, then t = T , that is, t must be the
endpoint of the trajectory. This condition, forces the intermediate variable
vi to change once the actual input ui does not match the quantized input
and τ.hi ≥ φ.
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Fig. 2. Equivalence classes of the quantized state space X\∼ are squares
projected onto the real plane state space X for two interconnected one-
dimensional systems. Example quantizer output for each equivalence class
is indicated, as well equivalence classes beyond the quantization saturation
M . There are 9 unsaturated modes in M\∼.

as some arbitrary graph [1], and we assume all dimensions

are compatible.

For the composed HIOA System, the set of variables V
is the union of each Vi for i ∈ {1, . . . , N}. We write x, v,

etc., for the stacked vectors of xi, vi, etc. The state space

Q is the product of each Qi. X is defined to be the product

of each Xi. We abuse notation and write states of System as

x. A discrete transition occurs in System iff at least one of

the automata Ai in the composition has a discrete transition.

Along each trajectory of System, all the non-input variables

of Ai flow according to the conditions defined for Ti, and

the input variables flow according to the trajectories defined

for G(ui) in the corresponding automaton. Each of these

trajectories must stop when the output of some automaton

Ai crosses a quantization partition and the corresponding

timer hi ≥ φ.

Based on the interconnection G, all the quantizers together

induce an equivalence relation ∼ on the interconnected state

space X . Let X\∼ be the set of all such equivalence classes

on X under ∼. By abuse of notation, we will write the

preimage as Q−1(q) for q ∈ X\∼ and [x] as the equivalence

class of x ∈ X . Let M ∆

= {x ∈ X : ‖x‖∞ ≤ M} be

the unsaturated state space, which contains all unsaturated

points in the interconnected state space, and M\∼ the

corresponding quotient under ∼. See Fig. 2 for examples

of X , X\∼, M, and M\∼. Note that the system obtained

by interconnecting the linear subsystems directly as in [1],

without using the digitizers has an equilibrium point at

0 ∈ X . With digitization, however, there may be multiple

equilibria (see Fig. 4). We assume that the intermediate signal

vi is 0 ∈ Xi when the input signal ui is in Q−1([0]), the

preimage of the equivalence class containing the origin.

III. STABILITY ANALYSIS

In this section, we establish a notion of stability for the

digitally interconnected system. It is impossible to ensure

the usual asymptotic stability where x → 0 as t → ∞ due

in part to the quantization error ∆ and also because within

Q−1([0]), the input to any subsystem i with unstable system

matrix Ai is zero and therefore i will be unstable. Instead,

we construct a Lyapunov-like function for a subset of the

unsaturated quantization regions. Using these functions and a

dwell-time argument, we show (Theorem 1) that any infinite

execution of System starting in the terminable set Λ (defined

below) reaches and remains within the final set Ω (defined

below) which contains the preimage of the equivalence class

of the equilibrium point(s) of System.

We begin by constructing, for each unsaturated quantiza-

tion region, a subset of the state space over which we can

construct a Lyapunov function. Intuitively, if we considered

quantization and saturation without delays, the switching

surfaces would be the boundaries of the quantization regions.

However, in our model, the switching surfaces are not

necessarily the boundaries of the quantization regions: due

to the sampling delay φ enforced by the timer hi, there is

a continuum of switching surfaces. That is, based on the

starting state of a trajectory, the switch occurs whenever the

conditions for the timer to reset are satisfied, which could be

at the boundary of two quantization regions, or potentially

elsewhere in the new quantization region (see Fig. 3 for an

example trajectory illustrating this).

We say that the input is fixed to q ∈ X\∼ if for a state

x, we have x.x /∈ Q−1(q), x.v = q, and ∀i ∈ {1, . . . , N},

x.hi < φ. This captures the notion that subsystems are using

the quantized value from an equivalence class that the system

state is no longer in due to sampling delay. For each q ∈
M\∼, let Bq,φ ⊆ X be a set of states containing all states of

System that can be reached from any point in Q−1(q) within

φ time by following the trajectories with the input fixed to q.

Since the unsaturated quantization error is bounded (by ∆),

every unsaturated quantization region Q−1(q) is a bounded

set, and so is Bq,φ. For each q ∈ M\∼, we can compute an

ellipsoid Eq ∆

= {x ∈ X : (x−g)TRq(x−g) ≤ 1} containing

Q−1(q) and Bq,φ, where g is the centroid of Q−1(q) and

Rq ∈ X × X is a symmetric, positive definite matrix (see,

e.g. [13, Section 5.2] for an algorithm). So we have Eq ⊇
Bq,φ ⊇ Q−1(q), that is, Eq contains the preimage Q−1(q) of

the equivalence class q, and all states that may be reached

following a trajectory of up to φ time from any point x ∈
Q−1(q) with the input q fixed.

Now we state a lemma giving a condition on when an

ellipsoid contains another ellipsoid, which is used in the S-

procedure in the LMI formulated below.

Lemma 1: [9, Lemma 11.6] For a ∈ {1, 2}, ga ∈ X ,

and a symmetric, positive definite matrix Pa ∈ X × X , let

Ea ∆

= {x ∈ X : (x − ga)
TPa(x − ga) ≤ 1} be an ellipsoid

centered at ga. If ∃η ≥ 0 such that 0 �




P2 −P2g2

−gT2 P2 gT2 P2g2 − 1



− η





P1 −P1g1

−gT1 P1 gT1 P1g1 − 1





then, E1 ⊂ E2.
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q pBq,φEq
x0

xs

Fig. 3. Example trajectory for an interconnected system with a two-
dimensional state space. The trajectory starts from x0, but the sampling
delay φ causes the input v to remain fixed to q even though the trajectory
has entered the quantization region p. The update to v = p occurs at xs

instead of at the boundary between p and q. The sets Eq and Bq,φ over
which the Lyapunov function Vq is valid are shown.

Construction of Lyapunov Functions: We now construct

a Lyapunov function for a subset of the unsaturated quanti-

zation regions. We begin by constructing storage functions

for each linear subsystem, which we will then sum to yield

the Lyapunov function. For each Ai with input from Aj ,

we consider a quadratic storage function Vi(xi) = xT
i Pixi

where Vi : Xi → R≥0, for some symmetric, positive definite

matrix Pi ∈ Xi × Xi. Its derivative along the trajectories is

given by V̇i(xi) =,

ẋT
i Pixi + xT

i Piẋi =





xi

Q(xj)





T

Yi





xi

Q(xj)



 , (1)

where Yi
∆

=





AT
i Pi + PiAi PiBi

BT
i Pi 0



 .

For Vi to be a Lyapunov function we would require V̇i(xi) <
0, but as it is a storage function we require the weaker

condition V̇i(xi) < si(ui, wi), where si is called the supply

rate. A sufficient condition for the sum of Vi and Vj to yield

a Lyapunov function for the interconnected system is that

si(ui, wi) = −sj(uj , wj).
Next we assume that supply rates s between intercon-

nected subsystems Ai and Aj are quadratic. That is, the

supply rate for all i, j ∈ {1, . . . , N} such that Ai’s input is

connected to Aj’s output by the interconnection G, we have

si(ui, wi) =





wi

ui





T

Zi





wi

ui



 , and

Zi = −





0 In

In 0



Zj





0 In

In 0



 ,

for symmetric Zi, and the n-dimensional identity matrix

In. This enforces that supply rates satisfy si = −sj . The

earlier Lemma 1 ensures that the sum of the storage functions

Vi is a Lyapunov function for System over each Eq .

In order to find storage functions for each subsystem, we

formulate the following LMI for each Ai,

Pi =PT
i > 0 and 0 ≻ Yi, (2)

where Yi is from (1). Additionally, the LMI has the following

constraints corresponding to each interconnected Ai and Aj

to enforce si = −sj over the ellipsoid Eq . For each q ∈
M\∼,

η ≥ 0, (3)

0 ≻Yi − Zi − η





Rq −Rqq

−qTRq qTRqq − 1



 , and

0 ≻Yj − Zj − η





Rq −Rqq

−qTRq qTRqq − 1



 .

If this LMI is feasible4, for each q ∈ M\∼, we get a

Lyapunov-like candidate Vq : X → R≥0, where

Vq(x) =

N
∑

i=1

xT
i Pixi,

for x ∈ X and xi ∈ Xi. The candidate Vq decreases

along trajectories of System, so long as the state xi remains

within the ellipsoid Eq which contains Q−1(q), and the input

remains fixed to q.

We next define the terminable set as

Λ
∆

= Q−1({q ∈ X\∼ :∃c ∈ R≥0 such that

Q−1(q) ⊆ Lq,c(x) ⊆ M}),

where Lq,c(x)
∆

= {x ∈ X : Vq(x) ≤ c} is the c-sublevel

set of Vq(x). In other words, Λ is the set of quantization

regions for which there is some sublevel set which (a)

contains the region itself, and (b) is entirely contained in

the unsaturated state space M. Indeed, some unsaturated

quantization regions may not be in Λ (see Fig. 4).

The next lemma states that Vq is a Lyapunov function and

the sublevel sets of Vq are invariant for System so long as

the input is fixed to q. If a sublevel set has points outside the

unsaturated region, then we cannot guarantee that a trajectory

will not leave the unsaturated region (see Fig. 4).

Lemma 2: For any equivalence class q ∈ M\∼ except [0]
such that Q−1(q) ⊆ Λ, if x.x ∈ Bq,φ and x.v = q (the input

is fixed to q), then V̇q(x.x) < 0.

Bounding the Increase of Vq from Switching: When

switching inputs between equivalence classes q, p ∈ M\∼,

the corresponding Lyapunov functions may not be equal.

In particular, the value may be larger, Vp(x.x) > Vq(x.x)
at a state x where the digitized input changes from q
to p. We bound the increase by a factor µ as follows

4A condition to guarantee feasibility is that the interconnected system
without digitization, i.e., as in the framework from [1], is exponentially
stable.
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(see Fig. 3). Define the maximum switching factor between

any unsaturated quantization regions q, p ∈ M\∼ as

µ
∆

= max
q,p∈M\∼

max
Bq,φ∩Q−1(p)

Vp(x.x)

Vq(x.x)
. (4)

By Lemma 2 we have a Lyapunov function Vq for

any quantization region q ∈ M\∼ except [0] satisfying

Q−1(q) ⊆ Λ, so we determine a minimum convergence rate

of any Vq as follows. Consider any trajectory τ such that

∃λq > 0, ∀τ.x ∈ Bq,φ, Vq(τ(t).x) ≤ Vq(τ(0).x)e
−λqt. Then

the minimum convergence rate is

λm
∆

= min
q∈(M\∼−[0])∩Λ

λq. (5)

We recall from [14, Lemma 2] that under arbitrary switching,

if each mode of a switched linear system is exponentially

stable, then one can pick the dwell-time φ sufficiently large

so that the switched system is exponentially stable for any

switching signal which dwells in each mode for at least φ
time. Particularly, we assume φ > log µ

2λm
, where this is the

weaker average dwell-time constant.

We define the final set of states as

Ω
∆

= ∪q∈M\∼
Lq,c(x.x),

where for each q, c is chosen such that Lq,c(x.x) is the

smallest (in terms of containment) sublevel set of the cor-

responding Vq containing the set B[0],φ, so Lq,c(x.x) ⊇
B[0,φ] ⊇ Q−1([0]). For any of these q, note that it is not

necessary that Q−1(q) ⊆ Lq,c, only that Q−1([0]) ⊆ Lq,c,

that is, the level sets are not excessively large. The next

lemma says any execution starting from Ω cannot leave Ω.

Lemma 3: If Ω ⊆ Λ, then Ω is invariant.

Proof: Consider any execution starting with a state

x.x ∈ Ω. By the assumption that Ω ⊆ Λ, we have that for

any q ∈ M\∼∩Λ except [0], Vq is a Lyapunov function and

has invariant level sets by Lemma 2. So for the equivalence

class p such that x.v = p, the level set Lp,c(x.x) is invariant,

and hence Ω is invariant since p is included in the union.

The following theorem states a local attractivity property,

that from any point in the terminable set Λ, eventually a state

is visited in the final set of states Ω.

Theorem 1: Suppose the sampling period φ > log µ
2λm

. If

Ω ⊆ Λ, then any infinite execution α of System starting in

Λ eventually reaches Ω.

We remark that requiring Ω ⊆ Λ sets a lower-bound on

the saturation range M and an upper-bound on the sampling

period φ. If M is too small, then subsystems may not receive

large enough stabilizing inputs, and if φ is too large, then

subsystems may not receive stabilizing inputs fast enough.

Proof: By the assumption that Ω ⊆ Λ and α. fstate ∈
Λ, any infinite execution α starts with a state x in the

preimage Q−1(q) of an equivalence class q ∈ M\∼−{[0]},

where the corresponding Lyapunov function Vq satisfies

Lemma 2. Since V̇q(x.x) < 0 when x.x ∈ Bq,φ, there is

a state x
′ ∈ α appearing after x such that x′.x /∈ Q−1(q).

There are two cases. First, the preimages of a finite

sequence of distinct equivalence classes q1, q2, . . . , qa ∈

M\∼ ∩Λ are visited by states following x
′ in α, where the

Lyapunov functions for each of these decreases by Lemma 2.

By following such a sequence, eventually a state xt ap-

pears after x
′ such that xt.x ∈ Lqa,c(xt.x) ⊆ Ω. Other-

wise, the preimages of a sequence of equivalence classes

q1, q2, . . . , qa ∈ M\∼ are visited containing a cycle, so

suppose q1 = qa and Q−1(qa) /∈ Ω. We note that the

number of mode switches is at least a. We now eliminate

this case from occurring indefinitely by contradiction. Let

x
′ be a state such that x

′.x ∈ Q−1(q1) and let x
′′ be a

state such that the equivalence class is visited in the cycle,

so x
′′.x ∈ Q−1(q1). Using (4) and the number of mode

switches, we have Vq1(x
′′.x) ≤ µaVq1(x

′.x) and using

(5), we have Vq1(x
′′.x) ≤ Vq1(x

′.x)e−λmT , for T ≥ aφ,

since due to sampling, any trajectory dwells between mode

switches for at least φ time. Now, if Vq1(x
′′.x) > Vq1(x

′.x),
then it must be the case that T < aφ, a contradiction that

φ > log µ
2λm

. Thus, any infinite execution must have a state

appearing after x′ in Ω.

IV. EXAMPLE

We now describe an example illustrating the methodology

presented in the paper. For all resulting Lyapunov functions,

we formulated LMIs in the Yalmip [15] interface to the

solver SeDuMi [16] in Matlab. The example is a ring

interconnection of two one-dimensional linear subsystems

(see Fig. 1 and instantiate N = 2). One linear subsystem is

stable, the other is unstable, and the interconnection without

digitization is Hurwitz. The output w1 from A1 is the input

u2 to A2, which then quantizes and saturates u2 to the

intermediate variable v2 = Q(u2) at the sampling times φ
and vice-versa. The linear system parameters are a1 = −2,

b1 = −3, a2 = 1, and b2 = 1. Without digitization, the

interconnected system can be modeled as one linear system

ẋ = Ax, where A =
[

−2 −3; 1 1
]

, with eigenvalues

λ = − 1
2±

√
2
3 ι for ι =

√
−1. Thus it is globally exponentially

stable with an equilibrium point at the origin, which satisfies

all assumptions made in Sections II and III. Each subsystem

uses the quantization function

Q(ui)
∆

=















∆sgn (ui)
⌊

|ui|
∆

⌋

, if −M ≤ ui ≤ M,

M, if ui > M, and

−M, otherwise,

where sgn (·) is the sign function, ⌊·⌋ is the floor, M ∈ R

is the saturation constant, and ∆ ∈ R+ is the maximum

error. For the simulations, we fixed ∆ = 1 and M = 3.

For these parameters, Q takes values from the set Σ =
{−3,−2,−1, 0, 1, 2, 3}, and we have Q(0) = 0. For this

Q, we have Q−1([0]) = {x ∈ R
2 : ‖x‖∞ ≤ 1

2}. While there

are 49 total equivalence classes in X\∼, there are only 25
unsaturated equivalence classes in M\∼ (that is, excluding

−3 and 3 from Σ), so we formulate 25 LMIs from (2) and 3),

yielding 25 Lyapunov functions Vq .

In Fig. 4, the sampling period φ = 0.001 and the

terminable set Λ is visualized by the quantization regions
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Fig. 4. Trajectories illustrating terminable set Λ and final set of states
Ω. About 50 trajectories are shown, with those entering Ω in green, while
those that diverge due to saturation are in red. Blue circles are ellipsoids
containing the square equivalence classes defined by the quantizer. Red stars
are quantizer values.
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Fig. 5. Trajectories for increasing values of sampling period φ from the
same initial condition. Trajectories which reach Ω are shown in colors other
than red, while those that diverge due to the sampling period being too large
are in red.

from which every trajectory converges. Observe that there

are two equilibria with stable limit cycles, one at (−∆
2 ,

∆
2 )

and another at (∆2 ,−∆
2 ). In Fig. 5, the sampling period

φ was increased from 0.001 according to 2k0.001 where

k ∈ {1, . . . , 10} is the simulation iteration. Trajectories all

began from the same initial condition. Increasing φ causes

the size of the subset of the state space contained by the

limit cycle to increase, so Ω grows with k. This continues

up until the sampling period φ is so large that the unstable

subsystem does not receive timely enough stabilizing input

and diverges, violating the assumption Ω ⊆ Λ.

V. CONCLUSION

In this paper, we presented a dwell-time based sufficient

condition on Lyapunov functions constructed for quantiza-

tion regions to establish a form of stability of an inter-

connected system composed of linear subsystems connected

through digitizers that have quantization, saturation, and sam-

pling delay. We would like to study alternative techniques of

establishing stability in interconnected systems, perhaps by

using piecewise-quadratic common Lyapunov functions [17],

[18], [3] while also accounting for sampling delays by

perhaps treating the delay as a disturbance. It would also

be interesting if some regularity of the quantized state space

can be exploited to reduce the number of LMIs being solved.
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