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Abstract— Material handling systems are usually modeled
as discrete event systems. However, when the size of these
systems grows, the overall system performances depend also
on continuous time phenomena. We present a hybrid model
based on a new Petri net formalism that merges the concepts
of Hybrid Petri Nets and Colored Petri Nets to obtain compact
models for these systems. An example is discussed in detail to
motivate the introduction of a new formalism.

I. INTRODUCTION

Literature about Hybrid Petri Nets (HPNs) is wide: a their
complete presentation is given in [1]; in [2] it is shown how
HPNs can be used to describe a general hybrid system having
jumps in the state space and switches in its dynamic.

Differential Petri Nets (DPNs) are introduced the first time
in [3]; in these nets the marking of a differential place may
be negative as well as the weights of arcs to or from a
differential place. In [1], it has been shown how behavior of
DPNs can be obtained using HPNs whose transitions firing
speeds is a function of the net marking, and for this reason
they are called Modified HPNs [1]. Then, it is not a limitation
the use of no-negative markings and weights, as we do in
this paper.

To model systems having first-order continuous behavior,
which can be studied by linear algebraic tools, Balduzzi et al.
introduce the First-Order Hybrid Petri Nets (FOHPNs) [4].
In FOHPNs continuous transition firing speeds are constant
values, chosen by a control agent in a fixed range. When
an event occurs, the net state changes, and a controller
can decide to vary speed values, while between two event
occurrences the firing speeds remain constant. In this paper
firing speed values are not chosen in a fixed set but they are
function of the marking of the net.

High-level HPNs are proposed in [5] and [6] to obtain
compact hybrid models. Vectors of real numbers are used
to represent the ordinary differential equations describing
the continuous evolution of systems and structural individual
tokens (colors) are used in the discrete part of the nets. In
this paper, we use colors in both discrete and continuous part
of the net, to enhance the compactness of the models.

In this paper Colored Modified Hybrid Petri Nets (CMH-
PNs) are introduced where no-negative marking and weights
are used, firing speeds are not constant but they are linear
functions of the continuous transitions input places marking
of the net and no elements that extend expressive power of
the net (e.g. inhibitor and test arcs as in [7]) are used. A
similar approach is presented in [8]: a new kind of High-
level Petri Nets, called Predicate Transition Nets (PTNs) is
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used to model batch systems, having several states, each one
described by a particular set of equations. Every place of
the PTN corresponds to a state of the system: if the place
is marked then system is in the corresponding state. Its
evolution is regulated by the set of equations associated to the
enabled transitions acting on the marked place. A transition
is enabled as long as the enabled function associated to it is
verified. Values of state variables are reported in the marking
of the place and they are call ”attributes” of the marking.
Then, the net structure is used just to model the change in
the differential equations of the system, while its evolution
is described by the data structure associated to the places
of the net. A colored version of PTNs is presented in [6].
The main difference between the formalism proposed in this
paper and PTNs is that here the net structure completely
describes the changes in the system differential equations of
the hybrid system whose state is represented by the marking
of the places, as well as the state evolution linked to the
transition firing speeds.

Material handling systems are used to transfer something
between two points along a path by a vehicle in any auto-
mated industrial plant as well as in automated warehouses.
They are usually modeled by discrete event systems [9],
[10]. In this framework each activity is modeled by a fixed
time duration. When the spatial extension of these systems
grows, their continuous time behaviors cannot be neglected.
Indeed, a more precise information about the position/state
of the vehicles becomes relevant. As for example, using
discrete event system formalism like Petri Nets, a path is
represented by a number of places. Such places model the
presence of a vehicle in a certain zone. The exact position
in the zone is unknown. A better precision requires many
places. On the other hand, a continuous time system allows
to represent the exact position but the mode changing in
dynamic of vehicles (acceleration, deceleration or constant
velocity) as well as the stop and go state of the vehicles (e.g.
a vehicle stops when it reaches a certain position) would not
be easily modeled. The simple case study of this preliminary
work shows that CMHPNs are a promising tool to model
complex material handling systems. In [11] an application of
CMHPNs to real automated warehouse systems is discussed.
Moreover, CMHPNs are a general hybrid system tool and
then they can be used to obtain compact models of general
hybrid systems. A control oriented simulation tool has been
also developed for CMHPNs, see [12] for further details on
simulation algorithm.
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Fig. 1. A basic HPN.

II. BACKGROUND ON HYBRID PETRI NETS

A hybrid system is defined like a system consisting of a
mixture of a continuous time system and a discrete event
system (DES), having each one an own state space. These
two systems are not independent but they influence each
other. For the continuous time system, influence of DES
results in abrupt changes in the dynamic and can occur
either as switches in the vector field or as jumps in the state.
Reversely, the continuous evolution influences the DES one
by generating events that affect the discrete states [2].

A continuous system can be described by differential
equations: ẋ = f(x(t),u(t), t), x(0) = x0, y(t) =
g(x(t),u(t), t) where x ∈ R

n is the state vector, u ∈ R
m is

the input vector and y ∈ R
r is the output vector. In particular

if the interest is focused on the class of hybrid systems having
autonomous commutations, i.e. systems for which changes
in the dynamic occur if an analytical boundary condition
about the instantaneous state value is reached, the equation
ẋ = f(x(t),u(t)) with:

f =

{
f1(x(t),u(t)) for h(x(t)) ≤ 0
f2(x(t),u(t)) for h(x(t)) > 0

(1)

can be used, where it has been supposed the system can
switch only between two possible dynamics (f1 and f2)
and h is the boundary condition. For systems having linear,
time-invariant, continuous part, like the ones we treat in this
paper, each dynamic in (1) can be written as:

f i(x(t),u(t)) = Ai · x(t) +Bi · u(t) (2)

where Ai is a constant n-order square matrix and Bi is a
(n×m)-order matrix.

To model the hybrid systems behavior Hybrid Petri Nets
(HPNs) can be used [2], [5], [1], [13].

In more general hybrid systems, switching between differ-
ent dynamics is caused not only by the boundary conditions
but also by external input events; in this case, the HPNs used
to model the system behavior are said synchronized, as those
used in this article. A HPN can be view as the combination
of a “discrete” PN, [14], and a “continuous” PN.

In formal way, a HPN is a 7-tuple{
P, T,Pre,Post, h, δ,ν

}
such that: P = PD

⋃
PC ,

with PD
⋂
PC = ∅, where PD (PC) is the set of wd

discrete ( wc continuous) places, drawn like one (two) line
circles; T = TD

⋃
TC , with TD

⋂
TC = ∅, where TD is the

set of nd discrete transitions, which can be both immediate
(drawn like black bars) and timed (drawn like white bars)
and TC is the set of nc continuous transitions, drawn as a

two lines boxes; Pre : P × T → R
+ is the pre-incidence

matrix; Post : P × T → R
+ is the post-incidence matrix;

h : P
⋃
T → {D,C}, called ”hybrid function”, indicates for

every node whether it is a discrete node (sets PD and TD)
or a continuous one (sets PC and TC); δ : TD → (R+)nd

is the firing delay vector, whose element δi is the firing
delay associated to each discrete transition tDi : if δi = 0
then the transition tDi is immediate, else if δi > 0 then tDi
is timed. Function ν : T c → (R+)nc is the firing speed
vector. Note that in case of discrete nodes, Pre and Post
assume integer positive values. The incidence matrix of the
net is defined as C = Post−Pre and it can be written as

the block matrix: C =

(
CCC CCD

CDC CDD

)
where CCC is

the block regarding connections between continuous nodes,
CDD is the block regarding connections between discrete
nodes, CCD is the block regarding connections between
continuous places and discrete transitions and CDC is the
block regarding connections between discrete places and
continuous transitions.

HPN marking is a function m =
{
mC ,mD

}
, with mC :

PC → R
+, mD : PD → N that assigns to each discrete

place a nonnegative integer number of tokens and to each
continuous place a real number. The notation m(τk) is used
to denote the value of the marking of the net at the instant
τk. The marking of a place p at a time τk is denoted by
mp(τk). The symbols •p (•t) and p • (t •) are used for the
pre-set and post-set of a place p ∈ P (transition t ∈ T ),
respectively, e.g. •t =

{
p ∈ P |Pre(p, t) > 0

}
.

A discrete transition tD is enabled at time τk if mp(τk) ≥
Pre(p, tD), ∀p ∈ •tD. A transition tD can be either
autonomous or synchronized to a logical expression that is
function of a control event g (associated to the occurrence of
an external event) and/or of an internal condition e. Both g
and e are boolean functions g, e : TD → {0, 1}. A discrete
transition tD can fire if it is enabled and the associated
logical expression is true. As for example, in a system formed
by two masses traveling along a path, an internal condition
is the reaching of a threshold distance that makes masses
decelerate; an external control event for the same system is
an asynchronous stop command arriving from an external
controller; a logical expression can be the logic function OR
between g and e, e.g. (g + e).

The continuous transition tC ∈ TC is enabled at time
τk if i) mD

pD (τk) ≥ Pre(pD, tC), ∀pD ∈ •tC and ii)
mC

pC (τk) ≥ 0 ∀pC ∈ •tC . At each continuous transition tCi
is associated the instantaneous firing speed (in the following
also called simply firing speed) νi: if tCi is disabled νi =
0; when tCi is enabled νi is equal to the maximal firing
speed ν̄i, indicated near the transition. Notation ν indicates
the firing speed vector. The firing of continuous transitions
cannot change the marking of discrete places, consequently
CDC(p

D, tC) = 0, ∀pD ∈ PD, thus CDC = 0. The
evolution of the net can be described by its fundamental
equation (written in a way pointing out the continuous part
and the discrete part):
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Fig. 2. Interaction between discrete and continuous nodes in HPNs: switch
(a); jump (b).

[
mC(τk)

mD(τk)

]
=

[
mC(τk−1)

mD(τk−1)

]
+

+

[
CCC CCD

0 CDD

]( [
0

σ(τk) − σ(τk−1)

]
+

∫
τk
τk−1

[
ν
0

] )

(3)

where σ(τk) ∈ N
n is the discrete firing vector whose

component σtDi
(τk) represents the number of times the

discrete transition tDi is fired up to the current time τk.
A basic HPN is shown in Fig. 1, having:

• PC =
{
p1
}
, PD =

{
p2, p3

}
;

• TC =
{
t1
}
, TD =

{
t2, t3

}
where t3 is an immediate

discrete transition, synchronized to the internal condi-
tion e3 and t2 is a discrete timed transition;

• δ =
{
δ2
}
;

• C =

⎛
⎝ −1 0 0

0 1 −1
0 −1 1

⎞
⎠.

Interactions between discrete and continuous nodes are
shown in Fig. 2; a switch of dynamic, due to the occurring of
a discrete event, is reported in Fig. 2a): the firing of t1 and
t2 depends on the change in discrete places marking after the
firing of the discrete transitions t3 and t4. Discrete transitions
firing is synchronized to two generic internal conditions, e3
and e4. A jump in the continuous place marking is shown
in Fig. 2b): when t1 fires, a quantity Pre(p1, t1) is taken
from mC

p1
and the quantity Post(p2, t1) is added to mC

p2
,

producing a discontinuity in the marking trend.
For basic HPNs, the maximal firing speed of continuous

transitions is a constant value, but powerful modifications
have been proposed where continuous transition maximal
firing speed is a function of the transition input places
marking, of the input vector and of the time:

νt(τ) = f(m(τ),u(τ), τ) (4)

These kind of HPNs are called Modified HPNs (MHPNs).

III. COLORED MODIFIED HYBRID PETRI NETS

In this paper we use a MHPN where (4) is a linear func-
tion. In this way, systems having several dynamics as those
described by the equations (2) can be modeled. Moreover,

 M2 M1

pos1 pos2 (x1)1 

dist=(x1)2 -(x1)1 
(x2)1 (x2)2 

x1 

(x1)2 

Fig. 3. System of the example of section III-A.

 

pSpeed 

pRise pDec 

pConst 

tAcc, ̅ߥAcc= a 

t1, e1=[(x2-Vmax)=0] t2, e2=[(x1-posi)=0] 

x2  

pPosition 

tPos, ̅ߥPos= x2 

t3, δt3=τstopi 

x1  

tDec, ̅ߥDec= a 

p1 

t4, e4=[x2=0]

Fig. 4. A MHPN model of mass i moving along a path.

to compact the state representation, a structured individual
token is used, as proposed in [5] and [6]. In addition, for
the whole net, colors are used to define a more synthetic
model of the systems. This new kind of net is named Colored
MHPN (CMHPN).

A. Example

Consider two unitary masses moving, without friction,
along a path with a uniformly accelerated linear motion. Each
mass state is described by position x1 and speed x2, related
each other by the following equations:(

ẋ1
ẋ2

)
=

(
0 1
0 0

)(
x1
x2

)
+

(
0
1

)
a (5)

where a is the constant acceleration. Assume the masses can
accelerate until (Vmax−x2) = 0, and then, they continue to
move with constant speed, so (5) becomes:(

ẋ1
ẋ2

)
=

(
0 1
0 0

)(
x1

Vmax

)
(6)

To avoid collisions, the masses regulate their speed in the
manner that distance between them is equal or greater than
a fixed threshold. Moreover, each mass has to start to
decelerate if its position x1 is equal to a certain value posi.
It decelerates until its speed x2 = 0 and then it stays for a
time τstopi, after that it starts to accelerate again only if the
distance with the next mass is still greater than the threshold.

To model each mass behavior we can use the modified
HPN shown in Fig. 4: marking of the place pPositon repre-
sents the actual mass position, while marking of the place
pSpeed represents its actual speed. When the mass accelerates
(decelerates), the speed value is incremented (decremented)
by the transition tAcc (tDec) with a firing speed just equal
to the input value a. Position depends on the firing speed
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Fig. 5. The use of colors in a MHPN model of two masses moving along
a path.

of transition tPos, which is equal to pSpeed marking. Note
that when mpSpeed

= 0, νPos = 0 and, consequently, even if
tPos is still enabled, it does not change mpPosition

.
The whole system is modeled reproducing the net shown

in Fig. 4 for each mass. To have a more compact represen-
tation we introduce colors, presented in [15], in the HPN
model. We associate a different color to each mass, so the
system can be modeled with just one net that evolves w.r.t.
two colors. For the sake of clarity, in Fig. 5 the marking
of a discrete place w.r.t. the color i is indicated as ci; the
marking of the continuous places is indicated as (x1)i or
(x2)i in the manner that its meaning is still obvious to the
reader. Note that now firing speeds (both instantaneous and
maximal), firing delays and logical expressions are column
vectors, of dimension equal to the colors number. The i-th
element of firing speeds (firing delays or logical expressions)
vector associated to a continuous (discrete) transition is the
firing speed (firing delay or logic expression) associated to
the transition, w.r.t. the i-th color.

Moreover, two new discrete synchronized transitions, t5
and t6, have been added respect to the single mass model;
these transitions manage the mass speed when the distance
between the masses violates the threshold. Since the model
represents the behavior of both the masses, thresholds vio-
lation can be managed as an internal condition associated
to t5 and t6; with the uncolored model of Fig. 4 threshold
violation can be detected only using an external controller
that looking at the state of the two masses properly manages
their speeds.

Finally, using a structured continuous marking, a more
compact representation of the masses state can be obtained
(see Fig. 6). The two state variables are collected in a vector
which is the marking of the new place pMass, obtained by
the fusion of pPosition and pSpeed. There is a vector for each
place color and we use the notation < x1, x2 >i=< x >i

to indicate the structured marking w.r.t. the color i. Marking
of discrete places is still represented by ci.

Maximal firing speeds are still column vectors of two

 

Post(pMass,tDec) 

pRise 

pDec 

pConst 

tAcc, ࣇതAcc= ቂ࢞࡭ + ࢞࡭ܽ࡮ +  ቃܽ࡮
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<x1, x2>1  
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pMass 
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pstop 

Pre(pMass,tPos) 

Post(pMass,tAcc) Pre(pMass,tAcc) 

c1 

c2 

Fig. 6. A CMHPN model of two masses moving along a path.

elements (one for each color of the net), but now, the i-

th element is exactly A · x +B · a, with

(
0 1
0 0

)
= A,(

0
1

)
= B and

(
x1
x2

)
= x; as for example, let τk−1

be the previous observation instant of the net and τk be the
current time, while transition tAcc is firing, the value of the
structured marking elements, at the time τk, will be⎧⎪⎨

⎪⎩
x1(τk) = x1(τk−1) +

∫ τk
τk−1

(x2(τ))dτ

x2(τk) = x2(τk−1) +
∫ τk
τk−1

(a)dτ
(7)

where with xi(τk−1) we indicate the value of xi at the instant
τk−1. Finally, note that the use of the structured marking
requires the introduction of new arcs connecting continuous
transitions with the place pMass to modify separately masses
position and speed, during the different dynamics. The sep-
aration of the effects is obtained using proper weights. For
the sake of brevity only the expression of Post(pMass, tAcc)
and Pre(pMass, tAcc) are reported:

Post(pMass, tDec) =

[
π1 0
0 π1

]
,

Pre(pMass, tDec) =

[
π2 0
0 π2

]

with π1 =

[
1 0
0 2

]
,π2 =

[
0 0
0 1

]
.

B. Formal definition

A CMHPN is a four-tuple
{N ,Cl,Co,ν

}
where N is a

HPN; Cl is the set of colors. Co: P ∪ T −→ Cl is a color
function that associates to each element in P ∪ T a set of
colors; ∀tCi ∈ TC , ν is the mapping Co(tCi ) → R

+ that
associates an instantaneous firing speed to each continuous
transition tci . ∀pi ∈ P,Co(pi) = {ai,1, ai,2, ..., ai,ui

} ⊆ Cl
is the set of possible colors of tokens in pi, and ui is their
number. ∀tj ∈ T,Co(tj) =

{
bj,1, bj,2, ..., bj,vj

} ⊆ Cl is
the set of possible occurrence colors of tj and vj is their
number. ∀pDi ∈ PD, the marking mpD

i
is defined as the

mapping Co(pi) → N that associates to each possible token
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Fig. 7. Jumps in colored MHPNs.

color in pDi a non-negative integer representing the number
of tokens of that color that is contained in place pDi . For
the sake of simplicity, a discrete marking w.r.t. color r is
indicated as cr.

For each continuous place pCi ∈ PC , the structured
marking mpC

i
is defined as the mapping Co(pi) → (R+)

(q),
thus, at each place pCi ∈ PC , w.r.t. the color r, a vector of
q non-negative real numbers, < x1 . . . xq >r, is associated.
The q values of marking are called “attributes” and they
completely describe the state of the system. For the sake of
simplicity, a marking, w.r.t. the color r, with just one attribute
is indicated as cr.

For each continuous transition tCi ∈ TC , ν(tCi ) = νi=
{νi,1, νi,2, . . . , νi,vc

} is the vector of firing speeds of the
continuous transition tCi . Its r-th element, νi,r, is the firing
speed of tCi w.r.t. the color r and, when tCi is enabled, it
is a linear function of the marking of the net. Similarly,
∀tDi ∈ TD, δi = (δi,1, . . . , δi,vc

)T is the column vector
of the discrete transition tDi firing delays. The r-th element
δi,r is the firing delay associated to the color r.
Pre(pi, tj) is a mapping Pre(pi, tj) : Co(tj) →

R
+(Co(pi)), for i = 1, . . . ,m and j = 1, . . . , n. At the same

way we define Post(pi, tj) as the mapping Post(pi, tj) :
Co(tj) → R

+(Co(pi)), for i = 1, . . . ,m and j = 1, . . . , n.
Pre(Post)(pi, tj) is a matrix of dimensions ui × vj ; the
element Pre(pi, tj)(r, s) = Preij,rs (Post(pi, tj)(r, s) =
Postij,rs) is the weight of the arc connecting pi (ti) w.r.t.
the color r (color s) to tj (pi), w.r.t. the color s (color r).
The nature of the element depend on the kind of nodes it
connects, e.g. weighs of arcs connecting transitions to dis-
crete places are non-negative integer numbers, while weighs
of arcs connecting transitions to continuous places are row
vectors of non-negative real numbers, with dimension equal
to the attributes token number. When all the elements of
the matrix are equal to 1, weights are not reported near
the arcs. The incidence matrix C can be written as shown
in section II). Elements of C are the matrices C(pi, tj) =
Post(pi, tj)−Pre(pi, tj) with dimension ui × vj .

An example of jump in CMHPN is shown in Fig. 7: for
the sake of simplicity it has been shown only the jump with
marking having just one attribute but also jumps with q > 1
are possible.

IV. CASE STUDY

Material handling systems, in general, consists of vehicles
that are able to move something along a path, from a source
to a destination point, avoiding collisions. Starting from this
consideration, in this section to show why CMHPNs are a
promising tool to model material handling systems, a simple
example is discussed.

 

  

Z1 Z2 

Z3 Z4 M1 

M2

M3 
pz1=0  

pz4=L4 

pz3=0 

pz2=L2 

pz4=0  pz3=L3 

pz1=L1  pz2=0  (x
2)

3 

(x2)2 

(x2)1 

Fig. 8. Three masses moving along a circuit.
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Fig. 9. Colored HPN modeling 3 masses moving along a circuit.

Consider 3 unitary masses, named M1, M2 and M3,
moving along a ring as shown in Fig. 8, without friction,
with initially speed Vmax, that can be varied with constant
acceleration, a. The ring is divided in four zones, each one
with the own length Li. Each mass Mj moves along the
path until an external controller orders it to slow down
so that Mj can stop at a desired position xdi

. Here the
mass stays for a time δstop after that it starts to move
again. Note that masses do not know neither where nor
when they will have to stop. Moreover, a fixed distance
between two consecutive masses has to be maintained.
The net modeling this system is shown in Fig. 9. The
colored structured continuous place ps represents the state
(position x1 and speed x2) of each mass Mj . Evolution
of the masses state is due to the firing of the colored
continuous structured transitions tacc, tdec and tslow, tconst
that are enabled if masses are accelerating, decelerating or
moving with constant speed, respectively; discrete immediate
transitions model the mass dynamic switches: for the sake of
clarity, in Fig. 9, the expressions of the internal conditions
are not reported, but they can be read in the table I. Mass
stops are managed by the external controller by means of
the external event gsl: if controller decides the mass Mj has
to stop at xdi

, when the mass arrives next to a particular
position (called slow down point and given, from time to
time, according to Mj speed), it sets gsl = 1. Consequently
a change in the Mj dynamic occurs and the mass starts to
decelerate up to arrive at xdi

with x2 = 0. This triggers the
firing of the immediate transition tstop. The timed transition
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TABLE I

INTERNAL CONDITIONS AND THEIR MEANING.

Internal Condition Expression of the j-th element Meaning

ek1
[
(< x1, x2 >j − < x1, Vmax >j) = 0 ∨ mass speed is equal to Vmax OR

(< x1, x2 >j − < x1, Vin >j) = 0
]

it is equal to the desired value

ek2
[
(< x1, x2 >j − < x1, x2 >k − < Th, 0 >) ≥ 0 ∧ distance between mass j and k is ≥ than the threshold Th AND
((< x1, x2 >j − < x1, 0 >j) = 0 ∨ (mass speed is = 0 OR
(< x1, x2 >j − < x1, Vin >j)) = 0

]
mass speed is equal to a desired value)

ea
[
((< x1, Vmax >j − < x1, x2 >j) � 0 ∨ (speed value is lower than Vmax OR

(< x1, Vin >j − < x1, x2 >j) � 0) ∧ it is lower than the desired value) AND
((< x1, x2 >j − < x1, x2 >k − < Th, 0 >) � 0)

]
distance between mass j and k is equal to
or greater than the threshold Th

ed
[
(< x1, x2 >j − < x1, 0 >j) � 0 ∧ (speed value is greater than 0) AND

((< x1, x2 >j − < x1, Vin >j) � 0 ∨ (speed is greater than the desired value OR
(< Th, 0 > − < x1, x2 >j + < x1, x2 >k) � 0)

]
the distance with the next mass is lower than the threshold Th)

estop
[
(< x1, x2 >j − < x1, 0 >j) = 0

]
mass speed is = 0.

tgo, with firing delay δgo, models the steady of the mass
at xdi

. Finally, the entering of the masses into a new zone
is synchronized on an external control event: when a mass
arrives at the end of Zi, gend is set 1 by the controller and the
immediate transition tend fires; consequently, a jump in the
state mass occurs and position value changes from x1 = Li

to x1 = 0.
Results of the case study simulation are reported in

Fig. 10, where the switch of dynamic, due to the violation
of the threshold distance between M3 and M2 is shown:
when the distance goes under 3m, M3 starts decelerating;
speed begins to rise again only when the distance between
the two masses is up of 3m. Vertical lines in position trend
correspond to the jumps in the state at the begin of a new
zone. Note that the model complexity is independent from
the length of each zone. In a classical discrete event approach
a very large number of places would be needed to describe
the position of the masses with a reasonable precision. In
a classical continuous time approach the dynamic changes
would not be easily represented.
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