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Abstract— This paper studies a recursive identification
method (i.e. an adaptive filter, or online learning algorithm)
- termed the RANKTRON - for learning a Monotone Wiener
model from observed input-output pairs. Such a model consists
of a sequence of an unknown Linear Time-Invariant (LTI)
dynamic model, followed by an unknown monotone (in- or
decreasing) static nonlinear function. The main contribution
is the introduction of a technical argument which establish
worst-case performance of the proposed algorithm. The same
tool is then used to derive properties in case the Monotone
Wiener assumption only holds approximatively, and to the case
where the output nonlinearity is a quantization function. An
application of the RANKTRON is reported for the identification
of a 20e order LTI based on quantized observations, using a
mere O(1000) samples.

I. INTRODUCTION

Consider a monotone Wiener model as depicted in Fig. (1).
Here H0 denotes an LTI dynamical system, and f0 : R→ R
denotes a monotonically in- or decreasing static nonlin-
ear function. The term e = {et}t can represent arbitrary
model residuals, e.g. due to measurement errors or model
misspecification. Such models can represent quantization-
, saturation or transformation effects (see e.g. [1]). Recur-
sive identification (i.e. adaptive filtering or online learning)
applied to this case tries to recover (or approximate) both
H0 and f0 from incremental sets of observed input-output
pairs. Such problem (where instead f0 does not need to
be monotone) was considered in [1], [2], [3], proposing an
approximate Recursive Prediction Error Method (RPEM).
The analysis in this series of paper extends the stochastic
ODE analysis considered in [4]. It essentially exploits a list
of stochastic conditions of the involved signals, and requires
the assumption that a true model (i.e. the system) belongs
to the studied model-class. A nonparametric approach (not
assuming such a true model) and its corresponding analysis
was proposed in [5]. The analysis here is essentially based on
probabilistic concentration inequalities, exploiting stochastic
assumptions on the input signals, see also [6]. One could
find many more works in literature dealing with the problem
of recursive Wiener estimation [7], but the gradient-free
approach as presented here is not described before.

The algorithm in this paper - referred to as the RANK-
TRON algorithm - is inspired instead by the well-known
PERCEPTRON learning rule, excelling both in simplicity
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and power, see e.g. [8] for a survey. The analysis adopts
a deterministic (non-stochastic, worst-case) framework. The
presented study of the RANKTRON owes directly to the
mistake-bound of the PERCEPTRON, as given by Block
and Novikov (see e.g. [9] for a contemporary formulation
and citations). As will be indicated in Subsection II.E the
algorithm is related to the PRANK algorithm given in [12].

This manuscript is organized as follows. Section II formal-
izes the problem setup, proposes the RANKTRON algorithm
and states the theoretical guarantees. Section III illustrated
the practical working and compares with existing techniques.
Section IV concludes this paper.

II. RECURSIVE IDENTIFICATION

A. Monotone Wiener Systems and Models

H(q-1) f(z)u z y
+

e

Fig. 1. Representation of a Monotone Wiener systems with measurement
noise. The function f : R → R is assumed to be monotonically in- or
decreasing. Neither H nor f is assumed to be invertible.

The following definitions fix the class of Monotone Wiener
Systems under consideration.

Definition 1 (Wiener System) A Wiener system (H0, f0)
consists of a sequence of (i) a linear dynamical model
H0(q−1) (here q−1 is the backshift operator as classically)
applied to the input signal {ut}t, followed by (ii) a static
nonlinear function f0 : R → R (see Fig. 1). If the signals
{ut}t and {yt}t follow such a system exactly, we can write

yt = f0

(
H0(q−1)(ut)

)
, ∀t, (1)

and we say that the observations come from the Wiener
system (H0, f0). If we merely approximate this system with
(H, f) and some (small) slacks {et}t we write

yt = f
(
H(q−1)(ut)

)
+ et, ∀t. (2)

If H could be represented as a Finite Impulse Response (FIR)
with d > 0 coefficients - or H(q−1) = h1 + h2q

−1 + · · · +
hdq
−d+1- such model is denoted (in the context of this paper)

as the (h, f)-Wiener model, or

yt = f

(
d∑

k=1

hkut−k+1

)
+ et = f(hTut) + et, ∀t, (3)
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where h = (h1, . . . , hd)T ∈ Rd and we define ut =
(ut, ut−1, . . . , ut−d+1)T ∈ Rd. We will denote the set of
possible observations as O = {(ut, yt)}t ⊆ Rd × R.

Definition 2 (Lipschitz Monotone FIR Wiener System)
A FIR-Wiener system (h0, f0) is called monotone if
f0 : R → R is monotonically in- or decreasing (but not
necessarily invertible), or

(z − z′)(f0(z)− f0(z′)) ≥ 0, ∀z, z′ ∈ R, (4)

and yt = f0(hT
0 ut) for all t. Moreover, (h0, f0, L0) for L0 <

∞ is a Lipschitz Monotone FIR Wiener System if additionally

|y − y′| ≤ L0

∣∣hT
0 (u− u′)

∣∣ ,∀(u, y), (u′, y′) ∈ O, (5)

where 0 < ‖h0‖2 <∞.

Note that this definition gives properties of a dataset O =
{(ut, yt)}, not necessarily of the system (h∗, f∗) underlying
the data. Specifically, such system is identifiable from input-
output behavior O only up to the (i) gain of the intermediate
signals {zt}t, and (ii) the ’direction’ of the nonlinearity (i.e.
whether f0 is monotonically in- or decreasing). Formally

Proposition 1 (Identifiability) We consider the class of
models consisting of Monotone FIR Wiener systems

ML =
{

(h, f) : h ∈ Rd, ‖h‖2 = 1, f : R→ R,
(y − y′) ≤ L(u− u′)Th, ∀(u, y), (u′, y′) ∈ O, y > y′

}
,
(6)

where f is monotonically increasing. Then ML describes
any Lipschitz monotone FIR Wiener system of order < d.

B. The Basic RANKTRON Algorithm for Learning h0

In case one is only interested in recovering a parameter h
from samples, the following recursion will work nicely. Let
h(0) = 0m, and

h(t) = h(t−1) + (yt − yt′)(ut − ut′), (7)

where t′ < t is defined such that

(yt − yt′)(ut − ut′)
Th(t−1) ≤ 0. (8)

Let Mt ⊂ {1, . . . , t} denote the indices s where a mistake
against s′ < s, and a corresponding update was made. This
recursion leads to the RANKTRON algorithm, to which a
more general version is spelled out in the next subsections.
The naming ’RANKTRON’ comes from the fact that a
monotone function f0 preserved the ordering or the ’ranking’
of data, this being the essential reason as to why this simple
algorithm comes with useful worst-case guarantees. The
resulting algorithm will not make too large a cumulative
mistakes as seen next

Lemma 1 (Mistake Bound) Assume that {(ut, yt)}t is
such that there exists a h0 ∈ Rd with ‖h0‖2 = 1 and
a monotone increasing f0 : R → R which has Lipschitz

constant L0, such that yt = f0(hT
0 ut) for all t = 1, 2, . . . .

Then ∑
s∈Mt

(ys − ys′)2 ≤ 2L2
0r

2
u, (9)

where ru > 0 is such that ru > maxt=1,2,... ‖ut‖2.

Proof: Unfolding the recursion gives

h(t) =
∑
s∈Mt

(ys − ys′)(us − us′). (10)

The idea is to consider evolution of the quantity hT
(t)h0:

hT
(t)h0 =

∑
s∈Mt

(ys−ys′)(us−us′)
Th0 ≥

1

L0

∑
s∈Mt

(ys−ys′)2.

(11)
Conversely, from Cauchy-Schwarz’ inequality we have that

hT
(t)h0 ≤ ‖h(t)‖2‖h0‖2 (12)

By construction we have that ‖h0‖2 = 1. Moreover we have
in case no mistake was committed at iteration t that h(t) =
h(t−1). If a mistake was committed we have that

hT
(t)h(t) =(

h(t−1) + (yt − yt′)(ut − ut′)
)T (

h(t−1) + (yt − yt′)(ut − ut′)
)

≤ hT
(t−1)h(t−1) + (yt − yt′)2‖ut − ut′‖22, (13)

and since (yt − yt′)(ut − ut′)
Th(t) ≤ 0, and since (ut, yt)

commits a mistake agains (ut′ , yt′) by construction. Hence

‖h(t)‖22 ≤ 2r2u
∑
s∈Mt

(ys − ys′)2. (14)

Combining eq. (11), (12) and (14) yields the result.
This basic reasoning is now extended to derive an algorithm
which comes up with actual predictions.

C. The RANKTRON for learning (h0, f0)

Let us now consider the slightly more involved case where
both h0 and f0 has to be estimated in order to make
predictions for new samples u. Although no (parametric)
assumptions of f0 will be required, the current approach will
use (internally) the following representation of a monotoni-
cally increasing nonlinearity.

Definition 3 (Piecewise Linear Reconstruction of f0) If
|Rm| < 2, set fRm

(z) = 0 for all z ∈ R. Given samples
Rm = {(zk, yk)}mk=1 ⊂ R × R with |Rm| ≥ 2, then the
piecewise linear function fRm interpolating these samples
is defined as

fRm(z) =
z − zz(z)

zz(z) − zz(z)
(
yz(z) − yz(z)

)
+ yz(z), (15)

where we define z(z) = arg mini(zi ∈ Rm : zi ≥ z) and
z(z) = arg maxi(zi ∈ Rm : zi ≤ z). In case either z(z)
or z(z) is empty, define z(z) = arg maxi(zi ∈ Rm) or
z(z) = arg mini(zi ∈ Rm) respectively.

Direct manipulation shows that this function is monotoni-
cally increasing and continuous. Moreover, if the samples
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Rm = {(zk, yk)}k ⊂ R × R satisfy |y − y′| ≤ L0|z − z′|
for all (z, y), (z′, y′) ∈ Rm, for a constant L0 < ∞, then
the function fRm is Lipschitz with constant L0 as well.
Let Rm = {(zk, yk)}mk=1 be m reference points such that
zk > zl in case k, l = 1, . . . ,m and yk ≥ yl. This condition
implies that the corresponding function fRm

is monotone
increasing. In the algorithm we will fix the values yk such
that they span the range of the function f of interest. To
make this formal, assume there is a range [f, f ] such that all
possible outcomes yt fall into this interval. Then we will fix

yk = f +

(
k − 1

m− 1

)
(f − f), (16)

such that minyk 6=yk′ |yk − yk
′ | = ρ where ρ > 0 equals

ρ = 1
m−1 (f − f). The algorithm will then figure out the

corresponding values of {zk}k adaptively. We will drop the
subscript ’m’ and index the reference set by (t), with t
denoting the iteration when it was computed. The resulting
RANKTRON algorithm is spelled out in alg. (1). Here, we
define y(y) and y(y) as{

y(y) = arg maxk=1,...,m{yk ≤ y}
y(y) = arg mink=1,...,m{yk ≥ y},

(17)

and y(y) = y1 or y(y) = ym if the sets are empty.

Algorithm 1 The RANKTRON
Require: Let m ≥ 1. Let R(0) = {(z(0),k, yk)}mk=1 with

z(0),k =
(f−f)

2 for all k = 1, . . . ,m. Let h(0) = 0d.
for t=1,2,. . . do

(1) A prediction of yt based on a vector ut is computed
as

ŷt = fR(t−1)

(
uT
t h(t−1)

)
. (18)

(2) The corresponding loss can be computed as

`t = (yt − ŷt)2. (19)

(3) Based on this loss h(t−1) and R(t−1) are updated
as follows. Let the indices ct,k ∈ [0, 1] be defined as

ct,k =


0 k < y(ŷt)

0 k > y(ŷt)
yk+1−ŷt

yk+1−yk k = y(ŷt)

ŷt−yk′−1

yk′−yk′−1 k′ = y(ŷt).

(20)

Then{
h(t) = h(t−1) + (yt − ŷt)ut

z(t),k = z(t−1),k − (yt − ŷt)ct,k ∀k = 1, . . . ,m
(21)

and let R(t) = {(z(t),k, yk)}mk=1.
end for

Proposition 2 By construction of the algorithm we have that

for any t = 1, 2, . . . that

ŷt =

m∑
k=1

ct,ky
k (22)

and that

ŷt = fR0

(
m∑

k=1

ct,kz
0
k

)
. (23)

The performance of this algorithm is expressed in terms of
the cumulative loss

Ln =

n∑
t=1

`t =

n∑
t=1

(yt − ŷt)2. (24)

In order to introduce ideas we will assume that there exists
a ’true’ h0 ∈ Rd and a set R0 = {(z0k, yk)}k such that one
has for all t = 1, 2, . . . that

fR0(uT
t h0) = yt. (25)

In other words, here we assume that the data satisfies exactly
a noiseless monotone FIR Wiener system with nonlinearity
which can be expressed as a piecewise linear function. In
the next subsection we will relax this stringent assumption.
The corresponding Lipschitz constant is given as

1

L0
= max

k 6=k′

z0k − z0k′
yk − yk′

(26)

Hence, we have that for all z > z′ that

fR0
(z)− fR0

(z′) ≤ L0(z − z′). (27)

Theorem 1 (Mistake Bound of the RANKTRON) Given
a dataset {(ut, yt)}t such that there exists a h0 ∈ Rd and
a monotone increasing fR0 such that yt = fR0(uT

t h0) for
all t = 1, 2, . . . . Assume that fR0 has L0 > 0 as in (27).
For any t we have that

t∑
s=1

(ys − ŷs)2 ≤ L2
0

(
1 +

m∑
k=1

(z0k)2

)
(r2u +m), (28)

where ru > 0 is such that ru > maxt=1,2,... ‖ut‖2.

This is a surprising result as the bound does not depend on
the number of samples t which are examined. It means that if
seeing n samples, the worst-case average mistake is O(1/n),
implying linear convergence. The bound however is strongly
dependent on the number of piecewise linearities (knots) m,
and degrades in O(d2) where d is the FIR model order.

Proof: The key idea to the proof is to encode the
samples as follows. Let ũt ∈ Rd+m be defined as

ũt = (uT
t , 0, . . . , 0)T ∈ Rd+m. (29)

Let us define a representation of the actual prediction as

ṽt = (0Td , ct,1, . . . , ct,m)T ∈ Rd+m. (30)

Equivalently we extend the vector h(t) as h̃(t) ∈ Rd+m as

h̃(t) =
(
hT
(t), z(t),1, . . . , z(t),m

)T
∈ Rd+m. (31)
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Then we have that

ũT
t h̃(t−1) = uT

t h(t−1), ṽT
t h̃(t−1) =

m∑
k=1

ct,kz(t−1),k, (32)

and that

ũT
t h̃0 = uT

t h0, ṽT
t h̃0 =

m∑
k=1

ct,kz
0
k. (33)

Then we have that (ũt − ṽt)
T
h̃(t−1) = 0 and that

(ũt − ṽt)
T
h̃0 ∝ (yt − ŷt). Here we have used the fact that

fR0
is monotonically increasing with Lipschitz constant L0 .

The idea of working with extended vectors was successfully
employed in [9] to derive similar guarantees for a extension
of the PERCEPTRON towards an ordinal regression context.
Unfolding the recursion of the algorithm gives that

h̃(t) =

t∑
s=1

(ys − ŷs)(ũs − ṽs), (34)

Hence we have by definition of the minimal Lipschitz
property of fR0 that

h̃T
0 h̃(t) ≥

1

L0

t∑
s=1

(ys − ŷs)2. (35)

Conversely, we have the following inequality

h̃T
0 h̃(t) ≤ ‖h̃0‖2‖h̃(t)‖2, (36)

by application of Cauchy-Schwarz’ inequality. Furthermore
it is not too hard to bound the contribution of the two terms
on the righthand side of the inequality. At first we have that

h̃T
0 h̃0 = 1 +

m∑
k=1

(z0k)2. (37)

Secondly, the definition of the recursion in eq. (34) gives

h̃T
(t)h̃(t) =

(
h̃(t−1) + (yt − ŷt)(ũt − ṽt)

)T
(
h̃(t−1) + (yt − ŷt)(ũt − ṽt)

)
= h̃T

(t−1)h̃(t−1) + (yt − ŷt)2
(
uT
t ut +

m∑
k=1

c2t,k

)
+ 2(yt − ŷt)(ũt − ṽt)

T h̃(t−1)

= h̃T
(t−1)h̃(t−1) + (yt − ŷt)2

(
uT
t ut +

m∑
k=1

c2t,k

)
, (38)

where the last equality follows as by construction the term
(yt − ŷt)(ũt − ṽt)

T h̃(t−1) = 0 as indicated in eq. (32).
Unfolding the recursion gives that

h̃T
(t)h̃(t) ≤

(
r2u +m

) t∑
s=1

(ys − ŷs)2. (39)

Combining the inequalities eq. (35), (36), (37) and eq. (39)
gives the result.

D. Regret Bound for Individual Sequences
Let us now see what happens if the Monotone FIR Wiener

model only holds approximatively. That is, consider the data
O = {(ut, yt)}t where yt = fR0(uT

t h0) + et with some
small terms et. We will see that the performance guarantee
only degrades gracefully in terms of the size of the errors.
That is, the better the data follows a monotone Wiener model,
the better the performance of the RANKTRON applied to
this data. The mistake bound derived previously in the no-
noise case is given now as

Corollary 1 (Regret Bound) Given δ ≥ 0,h∗ ∈ Rd and a
monotonic increasing function fR∗ : R→ R such that∣∣yt − fR∗(uT

t h∗)
∣∣ ≤ δ, ∀t = 1, 2, . . . , (40)

and fR∗ is Lipschitz with constant L∗ > 0. Then

t∑
s=1

(ys−ŷs)2 ≤

δ√t+

√√√√(1 +

m∑
k=1

(z0k)2

)√
(r2u +m)

2

.

(41)

This result is still reasonably tight in case δ ≥ 0 is small.
Proof: The main idea is to introduce auxiliary variables ȳt =
fR∗(u

T
t h∗) for all t = 1, 2, . . . , and to work with those as

follows. First, we have using the definitions h̃(t), h̃∗, ũt, ṽt

as before that

h̃(t) =

t∑
s=1

(ys − ŷs)(ũs − ṽs), (42)

Hence we have by definition of the minimal Lipschitz
property of fR∗ that

h̃T
0 h̃(t) ≥

1

L∗

t∑
s=1

(ȳs − ŷs)2 −
δ

L∗

t∑
s=1

|ys − ŷs|

≥ 1

L∗

t∑
s=1

(ȳs − ŷs)2 −
δ
√
t

L∗

√√√√ t∑
s=1

(ys − ŷs)2, (43)

since (ys − ŷs)(ȳs − ŷs) = (ys − ŷs)(ys − ys + ȳs − ŷs) ≥
(ys−ŷs)2−δ|ys−ŷs|, and by using the inequality relating the
1-norm and the 2-norm. Conversely, we have the following
inequality

h̃T
0 h̃(t) ≤ ‖h̃0‖2‖h̃(t)‖2, (44)

and by construction we have that h̃T
0 h̃0 = 1 +

∑m
k=1(z0k)2.

As before, we also have that

h̃T
(t)h̃(t) ≤

(
r2u +m

) t∑
s=1

(ys − ŷs)2. (45)

Then combining eq. (43) and (45) we obtain

t∑
s=1

(ȳs − ŷs)2 ≤ δ
√
t

√√√√ t∑
s=1

(ys − ŷs)2

+

√√√√(1 +

m∑
k=1

(z0k)2

)√
(r2u +m)

√√√√ t∑
s=1

(ys − ŷs)2. (46)

Rearranging the different terms gives the result.
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E. The PRANK algorithm for Learning from Quantized
Outputs

Let us now consider the special case where the function f0
is a quantization function, taking a finite (typically a small)
m ≥ 2 number of different values. Let {yk}mk=1 be the set of
those different values, such that yk < yl if k < l = 1, . . . ,m.
Then we use the piecewise constant function qRm

defined as
follows

Definition 4 (Piecewise Constant Function qRm
) Given

samples Rm = {(zk, yk)}mk=1 ⊂ R×R, define the piecewise
constant function qRm

as

qRm(z) = yz(z), (47)

where we define as before z(z) =
arg maxk (zk ∈ Rm : zk ≤ z). In case z(z) is empty,
define z(z) = arg mink(zk ∈ Rm).

Then The PRANK algorithm algorithm can be spelled out
as in alg. (2).

Algorithm 2 The PRANK Algorithm
Require: Let R(0) = {(0, yk)}mk=1 and let h(0) = 0d.

for t=1,2,. . . do
(1) A prediction of yt based on a vector ut is computed
as

ŷt = qR(t−1)

(
uT
t h(t−1)

)
. (48)

(2) The corresponding loss can be computed as

`t = I(yt 6= ŷt), (49)

with I(z) = 1 in case z holds true, and 0 otherwise.
(3) Based on this loss h(t−1) and qR′

(t−1)
are updated

as follows. Let the index k(z) be defined such that
z(t−1),k(z) < zt < z(t−1),k(z)+1 where zt = uT

t h(t−1).
Then

ct =


ek(z)+1 if yt > ŷt

ek(z) if yt < ŷt

0d else,
(50)

where ek = (0, . . . , 1, . . . , 0)T ∈ {0, 1}m is the kth
unit vector. Then if yt 6= ŷt, let{
h(t) = h(t−1) + sign(yt − ŷt)ut

z(t),k = z(t−1),k − sign(yt − ŷt)ct,k, ∀k = 1, . . . ,m,
(51)

and let R(t) = {(z(t),k, yk)}mk=1. Else let h(t) = h(t−1)
and R(t) = R(t−1).

end for

Then, the above result can be refined as follows

Corollary 2 (Mistake Bound of the PRANK algorithm)
Assume that there exists a ρ > 0, a quantization function
qR0

: R → {y1, . . . ym} with m levels, as well as a vector
h0 ∈ Rd with ‖h0‖2 = 1 such that∣∣uT

t h0 − z0k
∣∣ ≥ ρ,∀k = 1, . . . ,m, t = 1, 2, . . . . (52)

Then

|Mt| ≤
(
1 +

∑m
k=1(z0k)2

) (
1 + r2u

)
4ρ2

, (53)

where |Mt| denotes the number of mistakes |Mt| =∑t
s=1 I(ys 6= ŷs) the algorithm has committed before or

at iteration t.

Proof: The proof goes along the same lines as the one
set out in the previous Theorem. After definition of ũt, h̃0

and h̃(t) we note that now we have by assumption that

h̃(t) =
∑
s∈Mt

sign(yt − ŷt)(ũt − ṽt) (54)

Such that

h̃T
(t)h̃0 =

∑
s∈Mt

sign(yt − ŷt)(ũt − ṽt)
Th0 ≥ 2ρ|Mt|. (55)

And conversely h̃T
0 h̃(t) ≤ ‖h̃0‖2‖h̃(t)‖2,

h̃T
0 h̃0 = 1 +

m∑
k=1

(z0k)2, (56)

and if a mistake was committed at iteration t one has

hT
(t)h(t) = hT

(t−1)h(t−1)

+ 2 sign(yt − ŷt)(ũt − ṽt)
T h̃(t−1) + r2u +

m∑
k=1

c2t,k

≤ hT
(t−1)h(t−1) + (r2u + 1), (57)

since one has sign(yt−ŷt)(ũt−ṽt)
T h̃(t−1) ≤ 0 by definition

of ct,k in eq. (50). If no mistake was made h(t) = h(t−1)
and hence

hT
(t)h(t) ≤ |Mt|(r2u + 1). (58)

Combining the inequalities gives the result.
Note that the PRANK algorithm as described here differs
slightly from the one given in [12], e.g. in the definition of
the loss and the precise update rule.

III. APPLICATIONS

The working of the algorithm is illustrated in figures (2.a-
f), where yt = tanh(ut +ut−1 +ut−2) for t = 1, 2, . . . (i.e.
d = 3). From this simple example, we see that the RANK-
TRON can already give accurate estimates based on merely
a few observations (compare with the examples reported in
[3], [5]). A more challenging case is based on the following
setup (as described in full detail in [11] where this setup
was used for comparison of batch identification techniques of
monotone Wiener systems). Consider a randomly generated
LTI H0 consisting of 20 conjugate poles, and 2 conjugate
zeros. The nonlinear function is given as

f0(z) = sign(z + 0.5) + sign(z − 2). (59)

We found that a FIR approximation of d = 200 filter-
coefficients captures the dynamics of H0 sufficiently. Signals
{us}ts=1 and {ys}ts=1 are generated satisfying (H0, f0) for
increasing lengths t = 210, 230, 250, . . . , 5000. The perfor-
mance of the RANKTRON is contrasted to the following
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Fig. 2. Example run of the RANKTRON as in eq. (7) for a dataset based
on yt = tanh(ut + ut−1 + ut−2). The panels show respectively the
predictions with the current hypothesis ht after t = 7, 12, 17, 22, 27, 32
iterations. We see that after processing only 32 samples the RANKTRON
gives already a good estimate: h32 = (0.9975, 1.0304, 1.0106)T , and the
figures show the implicit approximation of tanh.
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Fig. 3. Example run of the RANKTRON as in Alg. 1 for the same
dataset as before, but now using the piecewise linear reconstruction of the
output nonlinearity. Here we parametrize fRm with m = 10 knots. Note
that the price for such explicit reconstruction is that the algorithm needs
twice as many iteration before the same accuracy of h(n) compared to the
experiment reported in Fig. 2 is obtained.
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Fig. 4. Example run on the monotone Wiener system (H0, f0) as in
eq. (59), with a FIR approximation of d = 200. The first three panels
show the estimate of the PRANK algorithm after t = 300, 1100, 11000
iterations. Panel (d) gives the performances obtained on this task using
the different algorithms. Note that the RANKTRON outperforms an RPEM
approach based on the given output nonlinearity. A value of corr(h0,ht) =
1 indicates a perfect fit. The ’naive’ and ’ideal’ LMS algorithms give a
lower- and upper-bound of the performance of what is achievable with a
gradient-based scheme.

techniques: (1) A ’naive’ LMS algorithm applied directly to
the signals {us}s and {ys}s; (2) An ’ideal’ LMS algorithm
applied to the signals {us}s and {H0(q−1)us}s; (3) The
RPEM method proposed in [1]. Here, a gradient descent
algorithm was implemented based on a given smooth ap-
proximation of the output nonlinearity f0. (4) the smoothing
approach given in [5]. Those 4 algorithms were carefully
tuned with respect to any design parameters (i.e. step pa-
rameter, f0, smoothing factor) to give the best result on this
dataset. The RANKTRON algorithm on the other hand was
applied without any tuning. The performance is expressed
in terms of the correlation between the estimated FIR co-
efficients and the ’true’ impulse response used to generate
the (noiseless) data. Note that all mentioned techniques are
based on gradient information only.

IV. CONCLUSIONS

This paper studied the RANKTRON algorithm for recur-
sive identification of monotone Wiener systems. Advantages
are its simplicity and theoretical properties. Experiments
indicate the usefulness of the algorithm compared to other
(gradient-based) algorithms. Simulations of the different
algorithms learns that when data is not so abundant, the
simple RANKTRON algorithm performs much better than
the version where an explicit function fRm

approximating
f0 is learned as well. A connection to the PRANK algorithm
- issued in the context of online machine learning - is made
explicit. Comparison with batch identification algorithms for
the same problem (see e.g. [11]) learns that there is much
improvement that can be expected by incorporating second
order information. Another open question is how one can
modify the algorithm and the theoretical argument in case
of adopting a parameterized model (IIR, ARMAX, ...).
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