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Abstract— In this article we develop a systematic approach
to enforce strong feasibility of probabilistically constrained
stochastic model predictive control problems for linear discrete-
time systems under affine disturbance feedback policies. Two
approaches are presented, both of which capitalize and extend
the machinery of invariant sets to a stochastic environment. The
first approach employs an invariant set as a terminal constraint,
whereas the second one constrains the first predicted state.
Consequently, the second approach turns out to be completely
independent of the policy in question and moreover it produces
the largest feasible set amongst all admissible policies. As
a result, a trade-off between computational complexity and
performance can be found without compromising feasibility
properties. Our results are demonstrated by means of two
numerical examples.

I. I

Over the last two decades, the field of constrained model
predictive control (MPC) has matured substantially. There
is now a solid and very general theoretical foundation for
stability and feasibility of nominal as well as robust MPC
problems [14, 18]. Nevertheless, the connection to another
mature field, stochastic optimal control, is still not fully
developed although there has been a considerable research
effort in this direction over the last years.

The basic ingredient of any receding horizon policy is
finite horizon cost minimization, which is the first direction
of recent research. This problem lies at the heart of stochastic
optimal control theory and is known to be extremely difficult
except for a few special cases (e.g., the linear quadratic
problem). Thus, one typically seeks a suboptimal solution
in a certain finite dimensional subset of admissible control
polices. A popular choice is the affine disturbance feedback
[10, 16], which is also the framework of this article. Here,
however, we are not primarily concerned with cost mini-
mization itself, but rather closed-loop constraint satisfaction.
A more general approach is that of a nonlinear disturbance
feedback where decision variables are the coefficients of
a linear combination of nonlinear basis functions of the
disturbance [11]. In the presence of unbounded disturbances,
the nonlinear functions must be bounded whenever bounded
control inputs are required. In this article, however, we are
dealing with bounded disturbances only.
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Closest to the nature of receding horizon control is the
question of enforcing recursive feasibility of probabilistic
constraints, which is also the topic of this article. The
problem was extensively studied in a series of papers [3, 4,
5, 13, 17], where various types of constraints and disturbance
properties were considered, and a number of techniques to
tackle these problems were proposed. The common factor of
these papers is the use of a perturbed linear state feedback
(or pre-stabilization), which necessarily limits the number
of degrees of freedom and as a consequence the resulting
performance. In this article, in contrast, the use of affine
disturbance feedback, where more degrees of freedom are
available, brings about performance improvement but also
increased computational effort. This can, however, be over-
come by imposing additional structural constraints on the
feedback matrix, allowing to control the number of degrees
of freedom of the optimization variable and as a result find
a trade-off between performance and computational burden
[16]. Furthermore, the feasibility of the second of the two
approaches presented here is independent of the policy em-
ployed and in fact provides the largest feasible set amongst
all admissible policies. Our approach takes advantage of the
notion of controlled invariance, well established in (robust)
constrained MPC (see, e.g., [2, 6]), bringing stochastic MPC
on a sound footing. In fact, we derive results on strong
feasibility and least-restrictiveness (see Definitions 1 and 2)
analogous to those of [7, 9, 16] in a stochastic context.

This paper is organized as follows. We set up our no-
tation in Section I-A and state the problem to be solved
in Section II. Our main results are in Section III where
we present two approaches, one with terminal constraints,
one with first step constraints, in Sections III-A and III-
B, respectively. Finally, some additional properties of the
proposed methods are discussed in Section III-C, and our
results are demonstrated via two numerical examples in
Section IV.

A. Notation

Throughout the article R denotes the set of reals, N the set
of positive integers, N0 the set of nonnegative integers and
N

j
i denotes the set of consecutive integers {i, . . . , j}. Random

variables are defined on a common probability space with
an associated probability measure P(·). The symbol ||A||∞
denotes the induced infinity norm of a matrix A, i.e., ||A||∞ =

maxi

(∑
j |Ai j|

)
. Note that this notation is also used for row

vectors, where it does not coincide with the standard infinity
norm of a vector, but rather with the 1-norm. Finally, let SN

be the Cartesian product of a set S N-times with itself.
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II. P 

We consider the linear time-invariant stochastic dynamic
system

xk+1 = Axk + Buk + wk, k ∈ N0 (1)

with the state xk ∈ R
n, the control uk ∈ R

m, and the i.i.d.
disturbance sequence wk ∈ R

n. It is assumed that the state xk

is known at time k for all k ∈ N0, and that the pair (A, B) is
stabilizable.

The purpose of the paper is to develop a systematic ap-
proach to ensure that the closed-loop state trajectory satisfies
the probabilistic constraints

P(gT
j xk ≤ h j) ≥ 1 − α j, j ∈ Nr

1, k ∈ N, (2)

while minimizing a given cost function and satisfying hard
input constraints

uk ∈ U := {u ∈ Rm | ||u||∞ ≤ Umax}, k ∈ N0. (3)

The allowed probability of violation α j ∈ [0, 1] typically
comes directly from application requirements, but it can also
be viewed as a tuning parameter tracing a trade-off curve
between constraint violation and incurred cost.

The polyhedral intersection of the individual constraints
gT

j x ≤ h j is referred to as the constraint set and denoted by

X := {x ∈ Rn | Gx ≤ h}, (4)

where gT
j and h j form the rows of G ∈ Rr×n and h ∈ Rr

respectively.
To ensure satisfaction of (2), it is sufficient to guarantee

that
P(gT

j xk+1 ≤ h j | xk) ≥ 1 − α j, j ∈ Nr
1, (5)

for all k ∈ N0. In the sequel, we will focus on developing
techniques to render the constraint (5) recursively feasible,
that is, to guarantee its feasibility under a given control policy
at each time k ∈ N0.

Remark 1. The presented approach exhibits a certain degree
of conservatism since satisfaction of (5) for all k ∈ N0 is
only sufficient for (2). However, (5) offers a tractable and
straightforwardly implementable condition, in contrast to (2),
which generally cannot be exactly accommodated in a cost-
minimization procedure.

We let

u := [uT
0 , . . . , u

T
N−1]T , w := [wT

0 , . . . ,w
T
N−1]T

denote the predicted input sequence and the disturbance
sequence along the horizon N, respectively.

The recursive feasibility is considered with respect to the
affine disturbance feedback policy

u = η + Kw =


η0
η1
...

ηN−1

 +


0 0 . . . 0

K1,1 0 . . . 0
...

. . .
. . .

KN−1,1 . . . KN−1,N−1 0

 w, (6)

applied in a receding horizon fashion.

We assume that the common distribution of the disturbance
sequence wk, k ∈ N0, is supported on the compact set

W = {w ∈ Rn | ||w||∞ ≤ ∆ < ∞}, (7)

where the bound ∆ must be derived from physical under-
standing of the stochastic factors affecting the system. Note
that in general, under some technical assumptions on the
constraint set and the system dynamics, it is not possible to
enforce recursive satisfaction of the constraint (5) in the face
of unbounded additive disturbances.

We let w denote any random variable having the common
distribution of wk, k ∈ N0.
Remark 2. The presented approach can be immediately
generalized to polytopically or quadratically bounded dis-
turbances, still giving rise to tractable convex optimization
problems. However, in this paper we do not consider more
general disturbance specifications for the sake of brevity.

Throughout this paper we are concerned with the receding
horizon application of the following problem.

Problem 1.
minimize

η,K
J(η,K) := Ex0

||QN xN ||
p
p +

N−1∑
i=0

||Qxi||
p
p + ||Rui||

p
p


subject to u = η + Kw structured as in (6) (8a)

xi+1 = Axi + Bui + wi (8b)
u1 ∈ U (8c)

P(gT
j x1 ≤ h j | x0) ≥ 1 − α j, j ∈ Nr

1, (8d)

where Ex0 {·} is the conditional expectation given x0. Note
that, for notational simplicity, we have here and wherever
possible in the sequel shifted time to zero, which means no
loss of generality because of the i.i.d. assumption on wk.

Remark 3. The particular form of the cost function J does
not affect the theoretical discussion of this paper, because
here we are interested only in the feasibility properties of (1)
which are independent of J. We, however, employ the above
cost function in the examples of Section IV.

Leaving aside optimality, a receding horizon application
of Problem 1 gives rise to a family of time-invariant state-
feedback control policies π(x) = η0(x), where η0(x) can come
from any feasible point of Problem 1, (η,K), with the initial
state x0 = x. The corresponding closed-loop state process xk

(or rather a family of processes) is then generated by the
equation

xk+1 = Axk + Bπ(xk) + wk. (9)

Provided that Problem 1 is feasible at all times, the closed-
loop input process uk = π(xk) will satisfy the constraint (3)
and the closed-loop state process will satisfy the probabilistic
constraint (5) for all k ∈ N0. Thus, our primary goal is to find
a tractable representation for the constraints (8c) and (8d),
and to augment Problem 1 by additional constraints that will
ensure that the problem remains feasible for all times, when
starting from a feasible initial state, due to any admissible
disturbance sequence and any sequence of feasible control
inputs. This property is known as strong feasibility.
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Definition 1 (Strong feasibility [12]). A stochastic MPC
problem is said to be strongly feasible if for every feasible
initial state the closed-loop state process remains feasible
due to any admissible disturbance realization and any se-
quence of feasible control inputs generated in a receding
horizon fashion.

Our secondary goal is to augment Problem 1 in a least-
restrictive way.

Definition 2 (Least restrictiveness). A stochastic MPC prob-
lem is said to be least-restrictive if it is strongly feasible and
there is no initial state x0 outside its feasible set and no
policy satisfying the input constraints such that the closed-
loop state process, starting from x0, generated by that policy
satisfies the probabilistic constraint (5) for all k ∈ N0 and
for all admissible disturbance realizations {wk ∈ W}

∞
k=0.

III. M 

Two approaches to enforce strong feasibility of Problem 1
are presented, both of which are based on robust invariant
sets that have become a standard tool in receding horizon
control [2]. We begin with the definition of the feasibility
region of the constraint (5), which plays a crucial role in
what follows.

Definition 3 (Stochastic feasibility set). The stochastic fea-
sibility set of the constraint (5) is

X f := {x | ∃u ∈ U s.t. P(gT
j (Ax + Bu + w ) ≤ h j) ≥ 1 − α j,

∀ j ∈ Nr
1}.

Being a projection of a polyhedron, X f is also a polyhe-
dron, unless it is empty. Indeed, we have

X f = {x | ∃u ∈ U s.t.

FgT
j w (h j − gT

j (Ax + Bu)) ≥ 1 − α j ∀ j ∈ Nr
1}

= {x | ∃u ∈ U s.t.

gT
j (Ax + Bu) ≤ h j − F−1

gT
j w (1 − α j) ∀ j ∈ Nr

1}, (10)

where FgT
j w (·) and F−1

gT
j w

(·) are respectively the cumulative

distribution and left quantile function of gT
j w . We suppose

throughout this paper that X f is nonempty.

Remark 4. The quantiles F−1
gT

j w
(1 − α j), j ∈ Nr

1 are the
only quantities that need to be computed before standard
algorithms for the construction of invariant sets can be
employed. The quantiles can be computed offline to virtually
arbitrary precision for any reasonable distribution of w , for
instance, by means of Monte Carlo techniques.

Note also that the stochastic feasibility set X f is, in
general, neither a subset nor a superset of the constraint set
X (see numerical examples).

The main idea is to ensure that the state stays robustly
inside X f while using such control inputs that the input and
the state-probabilistic constraints (3) and (5), respectively,
are satisfied. Both approaches presented achieve this by
constraining the state to a robust controlled invariant subset
of X f , the first approach implicitly using a dual mode

paradigm with a terminal constraint and the second approach
explicitly through a first-step constraint.

A. Terminal constraint

First we adopt a dual mode paradigm where the affine
disturbance feedback policy (6) is used for predictions in
mode 1, that is, at times k = 0, . . . ,N−1, and any stabilizing
state feedback in mode 2, that is, at times k ≥ N [14]. For a
related approach with pre-stabilization see [13].

In mode 1 we have, given xk,

P(gT
j xk+1 ≤ h j | xk) = P(gT

j (Axk+Buk+wk) ≤ h j | xk), j ∈ Nr
1.

Thus to ensure satisfaction of (5) we require that

gT
j (Axk + Buk) ≤ h j − F−1

gT
j w (1 − α j), j ∈ Nr

1, k ∈ NN−1
0 (11)

for all possible states xk reachable, and all possible control
inputs uk generated, at prediction step k by any admissible
disturbance sequence up time k, wk−1

0 := (w0, . . . ,wk−1),
under a given policy in mode 1. Now, from the system
dynamics (1) and the definition of the affine disturbance
feedback (6), we have

xk = Ak x0 + Bk(η + Kw) + Ckw, uk = ηk + Kkw,

where

Bk = [Ak−1B, . . . , B, 0, . . . , 0], Ck = [Ak−1, . . . , I, 0, . . . , 0]

and ηk and Kk denote the k-th block rows of size m. Applying
this to the left-hand side of (11), we get

gT
j (Axk + Buk) =

= gT
j [A(Ak x0 + Bk(η + Kw) + Ckw) + B(ηk + Kkw)]

= gT
j (Ak+1x0 + Bk+1η) + gT

j (Bk+1K + ACk)w.

Thus, considering the worst-case value of the uncertain term
over all disturbances,

max
w∈WN

gT
j (Bk+1K + ACk)w = ||gT

j (Bk+1K + ACk)||∞∆, (12)

we obtain a sufficient condition for recursive feasibility in
mode 1

gT
j (Ak+1x0+Bk+1η) ≤ h j−||gT

j (Bk+1K+ACk)||∞∆−F−1
gT

j w (1−α j),

j ∈ Nr
1, k ∈ N

N−1
0 . (13)

Remark 5. Although there is the disturbance sequence over
the whole horizon w in the above computation, only the
disturbances wk−1

0 contribute to the worst-case value due to
the structure of the matrices Bk and Ck.

In mode 2 we use a stabilizing state feedback uk = Ksxk

with the corresponding strictly stable feedback dynamics
matrix A + BKs. To ensure strong feasibility we constrain
the terminal state xN to the maximum robust invariant
subset of the stochastic feasibility set X f with respect to
the closed-loop dynamics xk+1 = (A + BKs)xk + wk, hard
input constraints ||Ksxk || ∈ U and the chance constraint
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P(gT
j (A + BKs)xk + wk ≤ h j) ≥ 1 − α j. In other words, we

employ a set XKs
r ⊂ X f such that for all x ∈ XKs

r

(A + BKs)x + w ∈ XKs
r , ||Ksx||∞ ≤ Umax, (14)

gT
j (A + BKs)x ≤ h j − F−1

gT
j w (1 − α j) ∀w ∈ W ∀ j ∈ Nr

1.

It is assumed that the set XKs
r is polyhedral and nonempty in

the form XKs
r = {x ∈ Rn | S x ≤ z}. If the set were nonempty

but not polyhedral, an inner approximation that is polyhedral
can always be constructed. See, [2] and [8] for an algorithm
to construct such a set or its polyhedral approximation.

Strong feasibility is now ensured by the requirement that
the state xN lands robustly inside XKs

r , that is,

AN x0 + BNη + (BN K + CN)w ∈ XKs
r ∀w ∈ WN ,

which is equivalent to

sT
j (AN x0 +BNη) ≤ z j − ||sT

j (BN K + CN)||∞∆ ∀ j ∈ Nr′
1 , (15)

where sT
j and z j are the rows of the matrices S ∈ Rr′×n and

z ∈ Rr′ defining XKs
r .

Hard input constraints are enforced explicitly in mode 1
as

|ηi| + ∆||Ki||∞ ≤ Umax, i = 1, . . . ,mN, (16)

and implicitly in mode 2 through the relation (14). Here
the subscript i denotes i-th row (not block row) of the
corresponding matrix.

We can now state and prove the following theorem.
Theorem 1. For Problem 1 with the constraints (8c) and
(8d) replaced by (13), (15) and (16) the following holds:

I. The problem is strongly feasible.
II. The constraints (3) and (5) are satisfied in closed-loop.

Proof. I. Given any feasible solution (η,K) (structured as
in (6)) at time zero, we are guaranteed to have a feasible
point (η̃, K̃) at time one with (η̃, K̃) constructed as

η̃ =



η1 + K1,1w0
η2 + K2,1w0

...
ηN−1 + KN−1,1w0

ηL


, K̃ =

 0 0
K̂ 0
KL 0

 ,
where

K̂ =


K2,2 0 . . . 0
...

. . .
. . .

KN−1,2 . . . KN−1,N−1 0

 .
The last block rows ηL and KL can be determined from the
fact that KsxN defines a feasible input at time N provided
that the previous inputs were generated by the policy
u = η + Kw. Thus for the last block rows we have

ηL = Ks(AN x0 + BNη) + Ks[(BN K + CN)]1:n · w0

KL = Ks[BN K + CN]n+1:nN ,

where [A]p:q denotes the sub-matrix of a matrix A consisting
of columns p through q. Strong feasibility now follows

by induction.
II. Satisfaction of (8c) and (8d) with any feasible input is
ensured by (16) with i ∈ Nm

1 and (13) with k = 0, respectively.
Hence the constraints (3) and (5) are satisfied if the problem
is strongly feasible, which is guaranteed by I. �

B. First-step constraint

An alternative approach to enforce strong feasibility is to
constrain at each time step only the predicted state at the
very next time instant to a certain invariant set, in our case
the maximum stochastic robust controlled invariant set (see
Definition 5). This type of technique was recently introduced
in the context of nominal as well as robust MPC [7, 16].

Definition 4. A set Xrc ⊂ R
n is a stochastic robust controlled

invariant set if it satisfies the following condition:

∀x ∈ Xrc ∃ u ∈ U s.t. : Ax + Bu + w ∈ Xrc ∀w ∈ W,

P(gT
j (Ax + Bu + w ) ≤ h j) ≥ 1 − α j, j ∈ Nr

1. (17)

Definition 5 (MSRCI set). The maximum stochastic robust
controlled invariant set (MSRCI) is the largest (in the sense
of inclusion) set X∗rc ⊂ R

n that is stochastic robust controlled
invariant according to Definition 4. The MSRCI set can be
explicitly defined as

X∗rc =
{
x0 ∈ X f | ∃ φ : Rn → Rm s.t.

xk+1 = (Axk + Bφ(xk) + wk) ∈ X f , (18)

P(gT
j Axk + Bφ(xk) + w ≤ h j) ≥ 1 − α j,

φ(xk) ∈ U ∀ j ∈ Nr
1 ∀ k ∈ N0 ∀ {wk ∈ W}

∞
k=0

}
.

Remark 6. It is clear that the MSRCI set X∗rc is a superset
of the maximum robust controlled invariant subset of X for
any choice of α j ∈ [0, 1]. However, it is not true in general
that the two sets coincide when α j = 0 for all j, but rather
X∗rc is then equal to the set from which the maximum robust
controlled invariant subset of X can be reached in one step.
This implies that those states in X∗rc (for α j = 0) that are not
in the maximum robust controlled invariant subset of X must
be outside X. See the first numerical example in Section IV.

Using the same argument as with the stochastic feasibility
set X f in (10), the stochastic robust controlled invariance
condition (17) can be expressed as

∀x ∈ Xrc ∃ u ∈ U s.t. : Ax + Bu + w ∈ Xrc ∀w ∈ W,

gT
j (Ax + Bu) ≤ h j − F−1

gT
j w (1 − α j) ∀ j ∈ Nr

1,

which shows that these sets can be determined by standard
algorithms for construction of (maximum) robust controlled
invariant sets. Consequently, all of the results for maximum
robust controlled invariant sets hold. In particular the set can
be expressed as an intersection of possibly infinite number
of polyhedra. Hence, the set is convex, and moreover if X f

is compact, so is X∗rc [2].
Again, it is assumed that the MSRCI set X∗rc is polyhedral

and nonempty in the form X∗rc = {x | S̃ x ≤ z̃}. If the set were
nonempty but not polyhedral, an inner approximation that
is stochastic robust controlled invariant and polyhedral can
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always be constructed (see, e.g., [8]). This approximation is
no longer maximum, rendering the problem more restrictive
than the original one, yet still strongly feasible.

Thus, given the initial state x0, one can enforce strong
feasibility and constraint satisfaction by enforcing the con-
straints

Ax0 + Bη0 + w ∈ X∗rc ∀w ∈ W,

P(gT
j (Ax0 + Bη0 + w ) ≤ h j) ≥ 1 − α j, j ∈ Nr

1,

η0 ∈ U,

which translate to

s̃T
j (Ax0 + Bη0) ≤ z̃ j − ||s̃T

j ||∞∆ ∀ j ∈ Nr̃
1, (19)

gT
j (Ax0 + Bη0) ≤ h j − F−1

gT
j w (1 − α j) ∀ j ∈ Nr

1, (20)

||η0||∞ ≤ Umax, (21)

where s̃T
j and z̃ j are the rows of the matrices S̃ ∈ Rr̃×n and

z̃ ∈ Rr̃ defining X∗rc.
The following theorem now summarizes these observa-

tions.
Theorem 2. For Problem 1 with the constraint (8c) and (8d)
replaced by (19), (20) and (21) the following holds:

I. The problem is strongly feasible.
II. The problem is least-restrictive with the feasibility set

equal to the associated MSRCI set X∗rc.
III. The constraints (3) and (5) are satisfied in closed-loop.

Proof. I. Given constraints (19), (20), (21), strong feasibility
follows immediately by construction of the MSRCI set as
follows. Given initial state x0 ∈ X

∗
rc and any feasible point

(η,K) at time zero, the constraint (19) guarantees that the
state at the next time instant stays robustly in X∗rc after
application of the first control move η0. The result now
follows by induction.
II. The least-restrictivness follows from the equivalent char-
acterization of X∗rc (18). The fact that X∗rc is the feasible set
of the problem is clear from the maximality of the MSRCI
and the problem constraints.
III. Satisfaction of (8c) and (8d) with any feasible input
follows from (21) and (20), respectively. Strong feasibility
now ensures closed-loop satisfaction of (3) and (5).

�

1) Mode 1 constraints: Theorem 2 tells us that if the
stochastic maximum robust controlled invariant set is em-
ployed, the problem is feasible at time zero (and then by
induction at all times) if and only if x0 ∈ X

∗
rc. Even though

constraints (19), (20) and (21) are sufficient, it may be
beneficial for the sake of cost minimization to also include
the mode 1 constraints (13) and (16). Adding the state
mode 1 constraints (13) can, however, unnecessarily reduce
the size of the set of feasible initial states. Indeed, the
additional constraints employ explicitly the affine disturbance
feedback policy, whereas X∗rc is maximum with respect to
all policies. A remedy proposed in [16, 7] is to relax the
additional constraints in a minimal way such that the feasible

set remains unchanged. This amounts to replacing (13) and
(16) with

gT
j (Ak+1x0 + Bk+1η) ≤ h j − ||gT

j A(BkK + Ck)||∞∆

− F−1
gT

j wk
(1 − α j) + ζ j, (22)

and
|ηi| + ∆||Ki||∞ ≤ Umax + ξi, (23)

where ζ = [ζ1, . . . , ζr]T and ξ = [ξ1, . . . , ξmN]T are minimal
in some sense (e.g., in the 2-norm) such that the set of
feasible initial states does not shrink. It is shown in [7]
that computation of such a minimal relaxation gives rise
to a convex problem where enumeration of all vertices of
X∗rc is necessary, which can quickly become prohibitive in
larger dimensions. If this is the case, one can, however,
always resort to a soft relaxation, that is, to keep ζ and ξ as
optimization variables, and add regularization terms to the
cost. If the 2-norms of ζ and ξ are of interest, this approach
leads to the cost of the form

J̃(η,K) = J(η,K) + γ1||ζ ||
2
2 + γ2||ξ||

2
2 (24)

with some positive γ1 and γ2.

2) Structural constraints: The second approach is partic-
ularly useful when additional structure is imposed on the
matrix K and/or η in order to reduce the number of decision
variables, and consequently the computational burden. A
typical structure of the matrix K might be block-banded, i.e.,
allowing only a limited recourse via the disturbance sequence
in the sense that Ki, j = 0 for j < i − j0 for some fixed
j0 ≥ 0. Another viable structure is a diagonal one for which
Ki, j = Ki+1, j+1. See [16] for a comparison of various blocking
strategies in the context of robust MPC.

It can be seen from the proof of Theorem 1 that this
additional structural constraint cannot be accommodated
within the first approach. On the other hand, the MSRCI set
in the second approach, and hence its feasibility properties,
remain completely unaffected as long as the first control
move is free. This is a major advantage of the second
approach since it allows for a trade-off between performance
and complexity of the resulting problem while retaining
(least-restrictive) strong feasibility. This is in fact one of the
motivations behind the results of [7, 8] in the context of
the standard move-blocking strategies widely employed in
receding horizon control.

C. Discussion

First note that the first-step approach is completely inde-
pendent of the policy in question as long as the additional
mode 1 constraints (13) and (16) are not used. In fact, the
MSRCI set depends only on the probabilistic constraints (2),
the disturbance set W and the set of admissible controls U.
Hence, the first-step approach extends readily to arbitrary
control policies, for instance to the nonlinear disturbance
feedback considered for example in [19]. The terminal-
constraint approach, by contrast, does not extend straightfor-
wardly to general nonlinear disturbance feedback policies,
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Fig. 1: Constraint set X (below solid black line), feasible set X f (below
solid red line), MSRCI set X∗rc (light blue interior), linear state-feedback
positively invariant set XKs

r (dark blue interior), maximum robust controlled
invariant set Xrob (dashed yellow boundary), zero violation (α j = 0) MSRCI
set X

′

rob (blue solid boundary). Note that X∗rc 1 X and Xrob , X
′
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′
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∗
rc ⊂ X f and Xrob ⊂ X.

as the terminal constraint set is associated with a linear
controller.

Furthermore, Theorem 2 states that the feasible set of
the first-step approach is maximal amongst all admissible
policies. Thus, the feasible set of the terminal-constraint
formulation is necessarily a subset of, or equal to, the feasible
set of the first-step formulation. On the other hand, construc-
tion of the robust invariant set with respect to the linear state
feedback in the terminal-constraint approach is substantially
less computationally demanding than the construction of the
MSRCI set in the first-step approach. At this point it should,
however, be emphasized that both sets are computed offline.

Lastly, we note that the recursively feasible chance con-
straint (2) translates to affine constraints on η and K regard-
less of the disturbance distribution, which is in sharp contrast
to the traditional “open-loop” chance constraints that lead
to second-order-cone constraints for Gaussian disturbances
(with the affine disturbance feedback) and have typically no
exact representation otherwise [1, 15]. This is not completely
unexpected since in (5) the stochastic nature of the problem
comes into play at the last step only (from k to k+1), whereas
all of the previous disturbances have to be treated robustly.

IV. N 

In our first example we compare both the terminal (AD-T)
and the first-step (without mode 1 constraints) (AD-F) affine
disturbance feedback polices against the perturbed linear
state feedback stochastic MPC (P-SMPC) of [13] and the
robust affine disturbance feedback (AD-R). The additional
parameters for the P-SMPC policy are N̂ = 40 and n∗ = 1
(see [13] for the meaning of the parameters). As the first
step constraint for AD-R we used the MSRCI set with a
zero probability of violation (i.e., α j = 0 for all j), X′rob,
which is in general not the maximum robust controlled
invariant subset of X, Xrob (see Remark 6 and Figure 1).

We consider system (1) with A =

[
1.25 −0.15
0.25 1.02

]
, B =

[
0.14
0.12

]
,

and wk an i.i.d. sequence obtained by truncating the standard
normal distribution at ∆ = ||wk ||∞ ≤ 3. We chose a quadratic
(p = 2) cost function J, which can be evaluated exactly for all
of the policies considered. The weighting matrices were set
to Q = I, R = 1 and QN to the solution to the corresponding
algebraic Riccati equation. The bound on control authority
was Umax = 250. The constraint set X is given by two
constraints gT

1 x ≤ h1 and gT
2 x ≤ h2 with g1 = [−0.41, 1]T ,

h1 = 31 and g2 = [−0.7593, 1]T , h2 = 43.494, and the
allowed probability of violation α1 = α2 = 0.1. All of the
policies were applied in a receding horizon fashion with the
prediction horizon N = 8. We chose Ks = [1.73, −13.10] as
the mode 2 controller for AD-T as well as the base policy
for P-SMPC. Note that the LQ optimal state feedback cannot
be used in this case since then XKs

r turns out to be empty
and as a consequence both policies are globally infeasible.
For the sake of comparison we also included the LQ-optimal
policy itself. The initial state x0 = [13.34, 42.46]T was
chosen to lie on the boundary of X′rob. The various sets
considered and the initial state are depicted in Figure 1.

Performance and constraint violation was evaluated
over 500 Monte Carlo runs; the results over the simulation
horizon T = 20 are summarized in Table I. The two proposed
strongly feasible MPC formulations outperform the P-SMPC
and AD-R policies and, naturally, perform worse than the
LQ-optimal policy. We also observe tight satisfaction of the
chance constraint at the time k = 1 with our policies: the
constraint violation is 9.5 % for both, which is close to, but
within, the prescribed 10 % limit. The P-SMPC and AD-R
policies are more conservative here, exhibiting zero violation.
The LQ-optimal control, in contrast, violated the constraint
in 85.0 % of the 500 runs performed. Violations at other time
steps were zero or negligible for all investigated policies.

In the above example there are no constraint violations
after stationarity is reached. The next example shows that it is
possible to achieve repeated constraint violations in stationar-
ity, and thus to obtain significant performance improvement
compared to the robust MPC by fully exploiting the
probabilistic nature of constraints over a long period of time.
We consider system (1) with A =

[
1 0
1 1

]
, B =

[
1
2

]
, and with

the i.i.d. disturbance sequence wk having the standard normal
distribution truncated at ∆ = 3. The cost J is again quadratic
(p = 2) with weighting matrices Q = diag(0, 1), R = 0 and
QN equal to the solution to the corresponding algebraic
Riccati equation. The initial state was set to x0 = [5, 5]T .
The only constraint on the state is P(x2 ≥ 0) ≥ 1 − α, while
the control authority is bounded by Umax = 12. Simulations

TABLE I: Comparison of control policies over the optimization horizon
T = 20. First row: percentage increase over the LQ-optimal policy. Second
row: the probability of violating the state constraints at time one. The final
cost of the LQ-optimal policy, JLQ, is 1.5504 · 105.

Policy LQ AD-F AD-T AD-R P-SMPC

100
J−JLQ

JLQ
0 2.01 2.20 8.31 9.19

P(gT
1 x1 > h1) 0.85 0.095 0.095 0 0
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Fig. 2: Sample paths of x2 over the first 1000 time steps for four different values of α.

were carried out for four values of the allowed probability
of constraint violation: α = 0.1, α = 0.2, α = 0.3 and
α = 0.4. We compared the first-step affine disturbance
feedback (AD-F) with the robust affine disturbance feedback
policy (AD-R) and the LQ optimal policy. The prediction
horizon was N = 8 for both disturbance feedback policies.

Instead of Monte Carlo analysis, we examined constraint
violations over a single, but very long (10000 time steps),
trajectory. Simulation results are depicted in Figures 2
and 3. Table II then summarizes the results. For all four
values of α, the closed-loop trajectory under the first-step
affine disturbance feedback tightly satisfies the probabilistic
constraint, and as a result achieves a significant performance
improvement over the robust affine disturbance feedback
policy. The LQ optimal policy, which is oblivious to all
constraints, naturally outperforms both policies, but violates
the probabilistic constraint substantially.

TABLE II: Comparison of control policies over the simulation time T =
10000.

policy LQ α = 0.4 α = 0.3 α = 0.2 α = 0.1 Robust

J/JLQ 1 1.07 1.29 1.73 2.68 10.23

#violations 4920 3916 2942 1983 992 0

V. C
In this article we developed a systematic approach

to enforce strong feasibility of MPC problems with
probabilistic constraints and affine disturbance feedback
policies. The first approach employs the well established
notion of positively invariant terminal constraint sets,
whereas the second one takes advantage of the more
recently developed first-step constraint. Both approaches
turn out to have direct analogies in a stochastic environment
carrying over their advantages and disadvantages. In
particular the first approach is policy-dependent and hence
not amenable to imposing additional structural constraints
on the affine disturbance feedback matrix. In contrast, the
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Time
Fig. 3: Sample paths of x2 for LQ and robust control policies.

second approach is policy-independent and results in the
largest feasible set amongst all admissible policies.
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