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Abstract— Microgrids are subsystems of the distribution grid
which comprises small generation capacities, storage devices
and controllable loads, operating as a single controllable system
that can operate either connected or isolated from the utility
grid. In this paper we present a preliminary study on applying
a Model Predictive Control (MPC) approach to the problem
of efficiently optimizing microgrid operations while satisfying
a time-varying request and operation constraints. The overall
problem is formulated using Mixed-Integer Linear Program-
ming (MILP), which can be solved in an efficient way by using
commercial solvers without resorting to complex heuristics or
decompositions techniques. Then the MILP formulation leads to
significant improvements in solution quality and computational
burden. A case study of a typical microgrid is employed
to assess the performance of the on-line optimization-based
control strategy: simulation results show the feasibility and the
effectiveness of the proposed approach.

I. INTRODUCTION

The need to satisfy in sustainable ways the increasing

energy demand requires active energy distribution networks,

i.e. distribution networks with the possibility of bidirectional

power flows controlling a combination of Distributed En-

ergy Resources (DERs), such as distributed generators and

renewable energy devices. Hence, new energy management

systems are needed, able to optimally control the distributed

generation in the distribution network. In this scenario, the

microgrid concept is a promising approach. It is an integrated

energy system consisting of interconnected loads and DERs

which can operate in parallel with the grid or in an intentional

island mode, e.g. see [1]. A typical microgrid comprises:

storage units; Distributed Generators (DGs), which are dis-

patchable units; Renewable Energy Resources (RESs), which

are noncontrollable devices; and controllable loads, which

can be curtailed (shed) when it is more convenient. In

addition a microgrid can purchase and sell power to and

from its energy suppliers. The optimization of the microgrid

operations is extremely important in order to cost-efficiently

manage its energy resources [1]. In this paper we tackle

the optimal operation planning of a microgrid. This problem

aims at minimizing the overall microgrid operating costs to

meet the predicted load demand of a certain period (typically

one day) while satisfying complex operational constraints,

such as the energy balance and controllable generators

minimum operation time and minimum stop time. A com-

plete formulation of microgrid optimal operation planning

problem includes modeling of storage, demand side policies

for controllable loads (Demand Side Management, DSM),
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power exchange with the utility grid. Moreover, microgrid

modeling needs both continuous (such as storage output) and

discrete (such as on/off states of DGs and DSM-controlled

loads) decision variables. Due to the problem complexity

and because of the large economic benefits that could result

from its improved solution, considerable attention is being

devoted to development of better optimization algorithms and

suitable modeling frameworks. Studies have suggested that

microgrids can achieve high performance through: (i) ad-

vanced control algorithms accounting for system uncertainty

and based on predicted future conditions; (ii) deployment

of demand response; (iii) optimal use of storage devices in

order to compensate the physical imbalances; (iv) applying

optimal instead of heuristic-based approaches, e.g. see [2],

[3] and the references therein. The proposed approaches are

typically either computationally intensive and not suitable for

real-time applications, or can produce suboptimal solutions,

e.g. see [3]–[5].

In this paper we present a control-oriented approach to

microgrid modeling and optimization and propose the use

of Model Predictive Control (MPC) in combination with

Mixed Integer Linear Programming (MILP) [6]. By doing

so, the optimization problems can be solved very efficiently

by standard algorithms and the feedback mechanism can

take into account the uncertainty in microgrid operations

associated with (i) the RES power outputs; (ii) the time-

varying load; (iii) time-varying energy prices. To the best

of our knowledge, very little work can be found in the

literature that addresses Model Predictive Control for optimal

dispatch in power systems and in microgrid in particular. The

authors in [7] propose a look-ahead model predictive control

algorithm to solve the economic dispatch problem with large

presence of intermittent resources. However, many microgrid

key features such as minimum up and down times, demand

side programs, storages and on/off generators status are not

considered. In [8] a model predictive controller is applied

to controlling the energy flows inside a household system

equipped with a ‘micro’ combined heat and power unit. In

addition, the household can buy and sell electricity from/to

the energy supplier; heat and electricity can be stored in

specific storage devices.

Our contributions are: (i) the development of a model of

the overall microgrid system adopting a formalized modeling

approach, which is suitable to be used in on-line optimization

schemes; (ii) the development of a MPC scheme for mini-

mizing the microgrid running costs; (iii) the presentation of

preliminary simulation results showing the effectiveness of

the proposed optimization routine.

The paper is organized as follows: the microgrid system is
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described and the microgrid modeling approach is outlined

in Section II; the operations optimization is then described

in Section III; finally, in Section IV some simulation results

are discussed.

A. Nomenclature

The forecasts, the parameters and the decision variables

used in the proposed formulation are described respectively

in Tables I, II and III, where, for simplicity, we omit the

subscript ’i’ when referring to the ith unit.

TABLE I

PARAMETERS

Parameters Description

Ng , Nl, Nc number respectively of DG units, critical loads
and controllable loads

CDG(P ) fuel consumption cost curve of a DG unit

a1, a2, a3 cost coefficients of CDG(P ) [AC/(kWh)2, AC/kWh, AC]
OM operating and maintenance cost of a DG unit [AC/kWh]
Rmax ramp up limit of a DG unit [kW/h]

Tup, Tdown minimum up and down time of a DG unit [h]

xsb storage ‘physiological’ energy loss [kWh]

xb
min

, xb
max minimum, maximum energy level

of the storage unit [kWh]

Cb
max storage power limit [kW]

T g maximum interconnection power flow limit
(at the point of common coupling) [kW]

Pmin, Pmax minimum, maximum power level of a DG unit [kW]

ηc, ηd storage charging, discharging ”efficiencies”
βmin, βmax minimum, maximum allowed curtailment

of a controllable load

cSU , cSD start-up, start-down costs of a DG unit [AC]
Dc preferred power level of a controllable load [kW]
ρc penalty weight on curtailments

The fuel consumption cost for a DG unit is traditionally

assumed to be a quadratic function of the form CDG(P ) =
a1P

2 + a2P + a3.

TABLE II

FORECASTS

Forecasts Description

P res sum of power production from RES [kW]
D power level required from a critical load [kW]

cP , cS purchasing, selling energy prices [AC/kWh]

TABLE III

DECISION AND LOGICAL VARIABLES

Variables Description

δ off(0)/on(1) state of a DG unit

δb discharging(0)/charging(1) mode of the storage unit
δg exporting(0)/importing(1) mode to/from the utility grid
P power level of a DG unit [kW]

P b power exchanged (positive for charging)
with the storage unit [kW]

P g importing(positive)/exporting(negative) power level
from/to the utility grid [kW]

xb stored energy level [kWh]
β curtailed power percentage

II. SYSTEM DESCRIPTION AND MODELING

Here we briefly describe the key features of the microgrid

architecture considered in this paper and associate a possible

modeling set up with the goal of maintaining the problem

tractable and suitable for real-time computation. When the

microgrid is in the grid-connected mode, it can purchase

and sell electricity from/to the utility grid. The microgrid

produces the electricity using controllable distributed gen-

erators and renewable energy resources, and electricity can

be stored in a storage device. The energy demand comes

from both critical and controllable loads. The optimal use

of the storage unit and the controllable loads can help to

keep the energy balance, in particular during the islanded

mode. The microgrid system comprises continuous time-

driven dynamics of the energy flows and storage units, and

event-driven on/off controllers.

We point out what follows:

• in a hierarchy of controllers we aim at a high level

optimization of microgrid operations; voltage stability,

power quality, and frequency are supposed to be con-

trolled at the lower control level;

• the system is considered to be in steady state;

• the microgrid central controller has full information

and knowledge of the managed network: it integrates

load and generation forecasting tools, and knows the

existing generation capacity, storage capacity, network

constraints, market energy prices, bilateral contracts;

• heat recovery capabilities and reactive power are not

considered in the microgrid modeling and problem

formulation to limit its complexity. Yet we are aware

of their importance and their incorporation into the

proposed control framework is under current study;

• due to constant sampling time ∆T = tk+1 − tk, there

exists a constant ratio between energy and power at each

interval.

A. Storage Dynamics

We consider the following discrete time model of a storage

unit:

xb(k + 1) = xb(k) + ηP b(k) − xsb, (1)

where

η =

{

ηc, if P b(k) > 0 (charging mode)
ηd, otherwise (discharging mode).

(2)

We denote by xb(k) the level of the energy stored at time k

(divided by ∆T ) and by P b(k) the power exchanged with

the storing device at time k. The charging and discharging

’efficiencies’ account for the losses and xsb denotes a con-

stant stored energy degradation in the sampling interval. If

the power exchanged at time k, P b(k), is greater than zero,

this will be charging the storage device, otherwise the storage

device will be discharged.

By using the standard approach described in [9], we

introduce a binary variable δb(k) and an auxiliary variable
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zb(k) = δb(k)P b(k) to model the logical conditions pro-

vided in Section 1 such as:

P b(k) > 0 ⇐⇒ δb(k) = 1

and

xb(k + 1) =

{

xb(k) + ηcP b(k) − xsb, if δb(k) = 1,

xb(k) + ηdP b(k) − xsb, otherwise.

Then we express the ‘if . . . then’ conditions as mixed

integer linear inequalities. By collecting such inequalities

we can rewrite the storage dynamics and the corresponding

constraints in the following compact form (the interested

reader is referred to [9] for guiding details):

xb(k + 1) = xb(k) + (ηc − ηd)zb(k) + ηdP b(k) − xsb,

subject to E1
bδb(k) + E2

bzb(k) ≤ E3
bP b(k) + E4

b,
(3)

where the column vectors E1
b,E2

b,E3
b,E4

b are provided

in the Appendix.

The balance between energy production and consumption

must be met at each time k, so the following equality

constraint is imposed:

P b(k) =
∑Ng

i=1 Pi(k) + P res(k) + P g(k)

−
∑Nl

j=1 Dj(k) −
∑Nc

h=1[1 − βh(k)]Dc
h(k).

(4)

If we collect all the decision variables in the vector u(k)
and all the known disturbances (obtained by forecasts) in the

vector ŵ(k), we can express the storage level as an affine

function by substituting P b(k) in (3) as follows:

xb(k + 1) = xb(k) + (ηc − ηd)zb(k)

+ ηd [F
′

(k)u(k) + f
′

(k)ŵ(k)] − xsb

(5)

with

u(k) =
[

P
′

(k) P g(k) β
′

(k) δ
′

(k)
]
′

∈ R
Nu × {0, 1}Ng ,

ŵ(k) =
[

P res(k) D
′

(k) D
c
′

(k)
]
′

∈ R
Nw ,

where Nu = Ng + 1 + Nc, Nw = 1 + Nl + Nc; P(k),
δ(k), D(k), D

c(k) and β(k) are column vectors containing,

respectively, all the power levels, the generators off/on states,

the critical demands, the controllable preferred power levels

and the curtailments. We remark that the vector u(k) collects

both the continuous-value and the binary control inputs, and

the vector ŵ(k) collects all the known disturbances (obtained

by forecasts). The vectors F(k)
′

and f(k)
′

are provided in

the Appendix.

B. Interaction with the utility grid

When grid-connected, the microgrid can sell and purchase

energy from/to the utility grid. By following the same pro-

cedure outlined above, we introduce a binary variable δg(k)
and an auxiliary variable Cg(k) to model the possibility

either to purchase or to sell energy from/to the utility grid.

For the new variables, the following logical statements must

hold:

P g(k) > 0 ⇐⇒ δg(k) = 1

and

Cg(k) =

{

cP (k)P g(k) if δg(k) = 1,

cS(k)P g(k) otherwise.

Again, we express the ‘if . . . then’ conditions as mixed

integer linear inequalities. Then, the purchasing/selling mi-

crogrid behavior can be expressed by the following mixed

integer linear inequalities in a compact form:

E1
gδg(k) + E2

gCg(k) ≤ E3
g(k)P g(k) + E4

g. (6)

The column vectors E1
g,E2

g,E3
g(k),E4

g are provided in

the Appendix. The matrix E3
g(k) is generally time-varying

due to the time varying energy prices. We recall that the

interaction with the utility grid is allowed only when the

microgrid is in the grid-connected mode.

C. Generator operating conditions

The operating constraints, at each sampling time k, on the

minimum amount of time for which a controllable generation

unit must be kept on/off (minimum up/down times) can be

expressed by the following mixed integer linear inequalities

without resorting to any additional variable:

δi(k) ≥ δi(k − τup − 1) − δi(k − τup − 2),
1 − δi(k) ≥ δi(k − τdown − 2) − δi(k − τdown − 1),

(7)

with i = 1, . . . , Ng , τup = 0, . . . ,min(T up
i −1, k−T

up
i +2)

and τdown = 0, . . . ,min(T up
i − 1, k − T

up
i + 2).

We also model the DG unit start up and shut down

behavior in order to account for the corresponding costs.

For this reason, two auxiliary variables, SUi(k) and SDi(k)
are introduced, representing respectively the start up and the

shut down cost for the ith DG generation unit at time k.

These auxiliary variables must satisfy the following mixed

integer linear constraints:

SUi(k) ≥ cSU
i (k)[δi(k) − δi(k − 1)],

SDi(k) ≥ cSD
i (k)[δi(k − 1) − δi(k)],

SUi(k) ≥ 0,

SDi(k) ≥ 0,

(8)

with i = 1, . . . , Ng .

D. Loads

We consider two types of loads:

• critical loads, i.e. demand levels related to essential

processes that must be always met;

• controllable loads, i.e. loads that can be reduced or shed

during supply constraints or emergency situations (e.g.,

standby devices, day-time lighting).

In demand response programs the customers specify level of

curtailment of the controllable loads. The controllable loads

have a preferred level, but their magnitude is flexible so

that the demand level can be lowered when it is convenient

or necessary (e.g., in islanded mode). This leads to users’

discomfort, hence a certain cost is associated with the load

curtailment/shedding (a penalty for the microgrid).

We define a continuous-valued variable, 0 ≤ βc(k) ≤ 1,

associated to each controllable load c and to each sampling
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time k. This variable represents the percentage of preferred

power level to be curtailed at time k in order to keep the

microgrid operations feasible (e.g., in islanded mode) or

more economically convenient. If no curtailment is allowed

at a certain time k̂, an equality constraint can be set, βc(k̂) =
0.

III. PROBLEM FORMULATION

In this section we define the microgrid optimization prob-

lem. At every time step, the microgrid controller must take

high level decisions about:

• when should each generation unit be started and stopped

(Unit Commitment);

• how much should each unit generate to meet this load

at minimum cost (Economic Dispatch);

• when should the storage device be charged or dis-

charged;

• when and how much energy should be purchased or

sold to the utility grid (when the microgrid is in the

grid-connected mode);

• curtailment schedule (which controllable loads must be

shed/curtailed and when);

• how much energy has to be stored.

In order to formulate the MPC problem, we next define the

cost function associated to the MILP.

A. Cost Function

Microgrid economic optimization is achieved by choosing

the decision variables so that a cost functional representing

the operating costs is minimized. Therefore, the cost function

J includes costs associated to the energy production and

start-up and shut-down decisions, along with possible earn-

ings and curtailment penalties. The following cost functional

is minimized:

J :=
T−1
∑

k=0

Ng
∑

i=1

[CDG
i (Pi(k)) + OMi δi(k) + SUi(k) + SDi(k)]

+ Cgrid(k) + ρc

Nc
∑

h=1

βh(k)Dc
h(k),

where k is the current time instant and T is the length

of the prediction horizon. We recall that Cgrid(k) can be

negative, i.e. energy is sold to the utility grid, representing an

earning for the microgrid system. Note that J is a quadratic

cost function due to the presence of the quadratic terms

CDG
i (Pi(k)). Experience has shown that a piecewise affine

term, which results in a mixed integer linear program, is

more computationally efficient than a quadratic one. We

therefore approximate every function CDG
i (Pi(k)) with a

convex piecewise affine function, which provides very sim-

ilar results, but can be solved via a mixed integer linear

program:

CDG
i (Pi) = max

w=1,...,n
{SwPi + sw}, (9)

where Sw and sw are obtained by linearizing the function at

n points. We denote by S and s the vectors whose wth row

is respectively Sw and sw.

B. Capacity and terminal constraints

To pose the final MILP optimization problem, additional

operational constraints must be met:

|F(k)
′

u(k) + f(k)
′

ŵ(k)| ≤ Cb
max (10a)

xb
min ≤ xb(k) ≤ xb

max (10b)

Pi,min δi(k) ≤ Pi(k) ≤ Pi,max δi(k) (10c)

βh,min ≤ βh(k) ≤ βh,max (10d)

|Pi(k + 1) − Pi(k)| ≤ Ri,max (10e)

with i = 1, . . . , Ng and h = 1, . . . , Nc. The constraints

above model the physical bounds on the storage device

(inequalities (10a) and (10b)), the power flow limits of the

DG units (inequality (10c)), the bounds on controllable loads

curtailments (inequality (10d)), and their ramp up and ramp

down rates (inequality (10e)).

C. Model predictive control problem

In this section we formulate the MPC optimization prob-

lem whose solution yields a trajectory of inputs and states

into the future that satisfy the dynamics and constraints of

microgrid operations while optimizing some given criteria.

In terms of microgrid control, this means that, at the current

point in time, an optimal plan is formulated (usually for the

24 hours) based on predictions of the upcoming demand,

production from renewable energy units and energy prices.

Only the first sample of the input sequence is implemented,

and subsequently the horizon is shifted. At the next sampling

time, the new state of the system is measured or estimated,

and a new optimization problem is solved using this new

information. By this receding horizon approach, the new

optimal plan can potentially compensate for any disturbance

that has meanwhile acted on the system. In order to present

the MPC policy, for each time k, we introduce the auxiliary

variable σi(k), which accounts for the ith DG unit generation

costs, and the vector z(k), which collects all the auxiliary

variables as follows:

z(k) =
[

σ
′

(k) Cg(k) SU
′

(k) SD
′

(k) zb(k)
]
′

∈ R
3Ng+2

where σ(k), SU(k), SD(k) are column vectors containing,

respectively, all the σi(k), the generators start up and start

down costs respectively. We denote by xb(k+j|k), with j ≥
0, the state at time step k + j predicted at time k employing

the storage model (5). Moreover, we denote by uT−1
k the

input sequence uT−1
k = (u(k), . . . , u(k + T − 1)) designed

at time k.

At each time step k, given an initial storage state xb
k and a

final time T , the MPC scheme computes the optimal control

sequence uT−1
k solving the following finite-horizon optimal
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control problem:

J(xb
k) = min

u
T−1

k

T−1
∑

j=0

(

cu(k + j)
′

u(k + j) + cz

′

z(k + j)
)

,

subject to (11)

storage model (5);

constraints (6), (7), (8);

constraints (10);

S · Pi(k + j) + s ≤ σi(k + j) ∀i;

xb(k|k) = xb(k),

where the column vectors cz and cu are given in the

Appendix. We recall that the vector of disturbances profiles,

ŵ(k+j), is assumed to be known over the prediction horizon,

for j = 0, . . . , T − 1. According to the receding horizon

strategy, only the first element of the optimal sequence u(k)
is applied. The optimization problem (11) is repeated at time

k + 1, with the new measured/estimated state xb
k+1|k+1

=

xb
k+1. By doing so, an optimal feedback policy is designed.

Note that in the MPC scheme, applied in this preliminary

study, the controller makes its control decision by assuming

that the predictions are correct (i.e. Certainty Equivalence).

IV. SIMULATION RESULTS

The proposed control strategy is investigated on a typical

microgrid and simulation results are presented. This micro-

grid is in a grid-connected mode and comprises four DG

units and photovoltaic panels. An energy storage is included,

which is bounded between 10 kWh and 100 kWh and the

maximal charge and discharge power are respectively 100
kW and −100 kW. We choose a sampling time of one

hour. Simulations are performed over one day. Examples of

renewable power production profiles and daily spot prices

employed in the optimization routine are depicted respec-

tively in Figure 1 and Figure 2. The microgrid is connected

to the utility grid, so power can be bought or sold. The

microgrid is allowed to reduce its controllable load preferred

level from 10% to 50% in some given times of the day

(from 10 am to 16 pm). The demanded power peak can be

reduced up to 11%, as shown in Figure 6, leading to a cost

reduction of 18%. The Figures 3, 5 and 4 depict, respectively,

the energy stored, the power exchanged with the utility grid

and the DG unit power production obtained by the MPC

control strategy. It is shown that, starting from time 7, the

MPC controller decides to turn on the DG units in order to

meet the demand at minimum generation costs. In addition,

the produced power is meaningfully increased at the times

when there is both the highest RES power production and

the highest demanded power (about from 10 am to 14 pm).

For this reason, the storage device is kept at its maximum

capacity during the previous hours and the most convenient

amount of energy is bought from the utility grid. The RES

power production is utilized either to fulfill the demand or

to sell energy to the utility grid.

We used ILOG’s CPLEX 12.0 to solve the MILP optimiza-

tions, which is an efficient solver based on the branch-and-
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Fig. 1. RES power flows over 24 hours.
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Fig. 2. Spot energy prices over 24 hours.
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Fig. 3. Stored energy over 24 hours.

bound algorithm [10]. When the branch-and-bound algorithm

terminates, the solution is known to be globally optimal. The

solution to each MILP problem took at most 6.1 seconds, a

time much shorter than the sampling time of one hour. Thus,

the computational burden can be affordable.

V. CONCLUSIONS AND FUTURE STEPS

In the paper we proposed a novel mixed integer linear

approach on modeling and optimization of microgrids. We

bring into account unit commitment, economic dispatch,
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Fig. 4. DG units power production over 24 hours (ρ = 0.8).
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Fig. 5. Purchased/sold energy over 24 hours. Notice the difference for
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
0

100

200

300

400

500

600

700

800

time [hour]

P
o

w
e

r 
[k

W
]

 

 Total demand

Total demand with curtailments

Fig. 6. Curtailments over 24 hours (ρ = 0.8).

energy storage, sale and purchase of energy to/from the main

grid, curtailment schedule. We assume perfect knowledge of

the microgrid state, renewable resources production, future

loads, and so on, which is useful to solve the optimization

problem. Further, to cope with inevitable disturbances and

forecast errors, we embed this into an MPC framework.

Future work will focus on applying more realistic approaches

to microgrid optimization, including state estimation and

uncertainty modeling. Moreover we are currently studying

realistic and less conservative approaches which ensure the

stability and the feasibility of proposed MPC strategy.

VI. APPENDIX
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b 0 0

]

E
g
1

′

= [T g
− (T g + ε) T

g
T

g
− T

g
− T

g]

E
g
3

′

(k) =
[

1 − 1 c
P (k) − c

P (k) c
S(k) − c

S(k)
]

E
g
4

′

= [T g
− ε T

g
T

g 0 0]

where ε is a small tolerance (typically the machine precision)
needed to transform a strict inequality constraint into a nonstrict
inequality, since in MILP solving algorithm only nonstrict inequal-
ities can be handled [9].

F
′

(k) = [1 . . . 1
︸ ︷︷ ︸

Ng

D
c
1(k) . . . D

c
Nc(k) 0 . . . 0

︸ ︷︷ ︸

Ng

]

f
′

(k) = [1 − D1(k) . . . − DNl(k) − D
c
1(k) . . . − D

c
Nc(k)]

cz

′

= [1 . . . 1
︸ ︷︷ ︸

Ng

1 1 . . . 1
︸ ︷︷ ︸

Ng

0],

cu(k)
′

= [0 . . . 0
︸ ︷︷ ︸

Ng

OM1 . . . OMNl 1

β1(k)Dc
1(k) . . . βNc(k)Dc

Nc(k)].
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