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Abstract— Explicit model predictive controllers computed
exactly by multi-parametric optimization techniques often lead
to piecewise affine (PWA) state feedback controllers with highly
complex and irregular partitionings of the feasible set. In many
cases complexity prohibits the implementation of the resulting
MPC control law for fast or large-scale system. This paper
presents a new approach to synthesize low-complexity PWA
controllers on regular partitionings that enhance fast on-line
implementation with low memory requirements. Based on a
PWA control-Lyapunov function, which can be obtained as the
optimal cost for a constrained linear system corresponding to
a stabilizing MPC setup, the synthesis procedure for the low-
complexity control law boils down to local linear programming
(LP) feasibility problems, which guarantee stability, constraint
satisfaction, and certain performance requirements. Initially,
the PWA controllers are computed on a fixed regular par-
titioning. However, we also present an automatic refinement
procedure to refine the partitioning where necessary in order
to satisfy the design specifications. A numerical example show
the effectiveness of the novel approach.

I. INTRODUCTION

Piecewise affine (PWA) controllers form a popular and
powerful state feedback solution for constrained linear sys-
tems and piecewise affine systems. One particularly inter-
esting approach to synthesize PWA controllers is model
predictive control (MPC). Indeed, as is well known by now,
in case of constrained linear or piecewise affine systems
and adopting a PWA performance index, the explicit state
feedback laws that are obtained by solving a multi-parametric
(mixed-integer) linear programming (mp-(MI)LP) problem
result in PWA functions [1]. Due to these results the on-
line implementation of the optimal MPC law reduces to a
point location problem within a polyhedral partitioning and
evaluating the affine control law corresponding to the located
region at each sampling time, instead of solving an online
optimization problem, as is customary in implicit MPC.

A drawback of the explicit MPC law is that often the
number of regions in the partitioning of the feasible set
becomes extremely large and that the regions have irregular
polyhedral shapes. These two issues might prohibit the use
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of the explicit MPC law for high sampling rate applications
and/or large-scale systems. Additionally, also the storage
requirement for the control and region parameters may be
considered too large for the device memory of the control
unit.

For these reasons, there is recently a growing interest
in obtaining suboptimal MPC controllers that result in less
regions in the partitioning of the feasible set and in regions
of more regular shape (e.g. hypercubes, regular simplices,
etc.). The basic objective is to reduce the complexity of the
control implementation such that explicit MPC can also be
applied to fast and/or large-scale systems [2]–[10].

Many of the existing low-complexity control design meth-
ods [2]–[9] are based on first computing the optimal control
law and then approximating it by a suboptimal control law
in a simple or canonical PWA form, possibly preserving
some properties such as constraint satisfaction, stability,
and some degree of performance. Canonical PWA func-
tions based on simplicial or hypercubic partitionings are
of particular interest as the point location problem can
then be efficiently solved. In particular, [5] proposes a mp-
QP approximation procedure on quadratic cost based MPC
for linear systems. The procedure checks the feasibility
of a hierarchical hyper-cubic structure on the vertices. By
approximating a stabilizing MPC control law with a properly
specified error bound between the approximate cost and the
optimal cost, the method in [5] can guarantee the properties
of asymptotic stability and constraint satisfaction. In [6]
an adaptive multiscale approximation method is proposed
based on second order barycentric interpolation, which yields
that the approximated control law can be expressed as the
convex combination of the control values at the interpolated
points. This property of interpolation leads to the evaluation
of feasibility and stability conditions for each orthogonal
region in the partitioning. One of the main features of the
method of [6] is that it can provide stability and performance
guarantees, and an automatic refinement procedure. Note
that, this approach searches the low-complexity control law
in the space of continuous PWA functions due to the fact
that interpolation techniques of continuous PWA functions
is used. In [7], the result of [6] was extended to nonlinear
model predictive control (NMPC). An alternative method
was proposed in [8], where an approximation procedure for
MPC controllers for constrained linear systems is presented
using canonical PWA functions based on regular simplices,
with guarantees of local optimality and constraint satisfac-
tion. The method is based on constructing the PWA function
with a fixed partitioning that minimizes the approximation
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error with respect to the explicit optimal MPC law in terms
of an L2/L∞ norm. This method does not provide a priori
guarantees of stability, which instead can only be verified
a posteriori via an LP problem by synthesizing (possibly
discontinuous) PWA Lyapunov functions. In case the test
fails the approximated PWA control law should be redefined
somehow. In [9], an approximation method was presented
building upon the input-to-state stability (ISS) framework
to express the effect of the approximation error on the
closed-loop dynamics. Using this property, which often can
be inherited from nominal stability, a systematic method
to derive an approximate PWA control law with a priori
guarantees on stability and constraint satisfaction is presented
for (open-loop) PWA systems the method does not require
any convexity properties of the optimal costs or controller.
In [10], instead of directly approximating the optimal control
law, the optimal cost function is first approximated with poly-
hedral cost function using the double-description method.
Then a suboptimal controller is obtained corresponding to
this approximated polytopic cost function.

In this paper, we present an alternative method, which is
a more direct design method, as it does not approximate the
optimal MPC control law. Instead, the method is based on
the existence of a PWA control-Lyapunov function (CLF)
[11]. Such a CLF can, for instance, be obtained as the
optimal MPC costs (in case of a linear performance index
based on 1 or∞ norms) corresponding to a stabilizing MPC
law for a constrained linear system. Using such a PWA
CLF, we provide an LP-based computational method for
determining low-complexity controllers using a partitioning
that consists of regularly shaped regions, such as orthogonal
simplices as in [8] or hypercubes as in [5]. In essence, any
desirable polytopic form of the regular regions can be used
in our method. As we also provide an automated refinement
procedure to refine the regular partitioning, we are actually
synthesizing both suitable control gains and a suitable (multi-
resolution) partitioning such that constraint satisfaction and
stability are guaranteed.

The paper is organized as follows. In Section II, we will
introduce some basic notations and definitions that will be
used throughout the paper. In Section III, we will formulate
the problem that will be studied in this paper, while Section
IV will establish the LP problem that has to be solved
to construct the low-complexity control law with a priori
stability and constraint satisfaction guarantees. After that, we
will set up a refinement procedure to automatically adjust the
partitioning where needed, and will provide a corresponding
numerical algorithm for this approach. A numerical example
is presented in Section V to demonstrate the effectiveness of
the design method in Section IV. Finally, Section VI gives
the conclusion of this paper.

II. PRELIMINARIES

For a set P ⊆ Rn, we denote its interior by int(P).
A set P is called a polyhedral set or polyhedron if it
can be written as the intersection of a finite number of
half-spaces. A compact polyhedron is called a polytope.

We denote the extreme points (vertices) of a polytope P
as extr(P)= {v1, . . . , vm}, which is the minimal set of
elements in P such that co{v1, . . . , vm} = P . A set of
polytopes P̃ = {P̃i | i ∈ FP̃}, where FP̃ ⊂ Z≥1 is a finite
set of indices, is called a polytopic partitioning of a polytope
P if ∪iP̃i = P and int(P̃i)∩ int(P̃j) = ∅,∀i, j ∈ FP̃ , i 6= j.
For a collection P̃ = {P̃i | i ∈ FP̃} of sets with P̃i ⊆ Rn,
i ∈ FP̃ , and another set Q ⊆ Rn, the index set I(Q, P̃) is
given by

I(Q, P̃) ,
{
i ∈ FP̃ | Q ∩ P̃i 6= ∅

}
. (1)

A function φ : R+ → R+ belongs to class K (φ ∈ K) if
it is continuous, strictly increasing and φ(0) = 0. A function
φ : R+ → R+ belongs to class K∞ (φ ∈ K∞) if φ ∈ K and
lims→∞ φ(s) =∞. A function β : R+×R+ → R+ belongs
to class KL (β ∈ KL) if for each fixed t ∈ R+, β(·, t) ∈ K
and for each fixed s ∈ R+, β(s, ·) is non-increasing and
limt→∞ β(s, t) = 0.

Consider the discrete-time dynamical system

x(t+ 1) = Φ(x(t)), (2)

where x(t) ∈ Rn is the state at time t ∈ Z+ and Φ : D → Rn

is a function defined on a domain D ⊂ Rn. For convenience,
we assume that the equilibrium point is at the origin of Rn,
i.e. Φ(0) = 0, and 0 ∈int(D).

Definition 1: Let λ ∈ R[0,1]. A set P ⊆ D is called λ-
contractive for system (2), if for all x ∈ P , it holds that
Φ(x) ∈ λP . In case this property holds for λ = 1, we call
P a positively invariant (PI) set.

Definition 2: We call system (2) asymptotically stable
(AS) in D if there exists a KL-function β such that, for
each initial condition x(0) = x0 ∈ D, the corresponding
state trajectory is defined on Z+ and satisfies

‖x(t)‖ ≤ β(‖x0‖, t), ∀t ∈ Z+. (3)
Lemma 1: [12], [13] Let α1, α2, α3 ∈ K∞. Let D ⊆ Rn

with 0 ∈ int(D) be a PI set for system (2) and let V : D →
R+ be a function such that

α1(‖x‖) ≤ V (x) ≤ α2(‖x‖), ∀x ∈ D, (4a)
V (Φ(x))− V (x) ≤ −α3(‖x‖), ∀x ∈ D. (4b)

If inequalities (4) hold for all x ∈ D, then system (2) is
asymptotically stable (AS) in D.

If a function V satisfies the conditions of Lemma 1, we
call V a Lyapunov function for (2).

Consider a system

x(t+ 1) = Γ(x(t), u(t)), (5)

where x(t) ∈ D ⊆ Rn is the state at time t ∈ Z+, and

u(t) ∈ U ⊆ Rm (6)

is the control input at time t ∈ Z+. The set U represents
input constraints and Γ : D × U→ Rn is a given function.

Definition 3: A set P ⊆ D is called a controlled λ-
contractive invariant set for system (5)-(6) with input set
U, if for all x ∈ P there is a u ∈ U such that Γ(x, u) ∈ λP .
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In case this property holds for λ = 1, we call P a controlled
invariant (CI) set.

Definition 4: A function V : D → R+ is called a control-
Lyapunov function (CLF) for (5)-(6) and input set U, if there
exist α1, α2, α3 ∈ K∞ such that (4a) holds for all x ∈ D,
and for all x ∈ D there is a u ∈ U such that

V (Γ(x, u))− V (x) ≤ −α3(‖x‖), and Γ(x, u) ∈ D. (7)

III. PROBLEM FORMULATION

Consider the discrete-time linear time-invariant system

x(t+ 1) = Ax(t) +Bu(t), (8)

where x(t) ∈ X ⊆ Rn and u(t) ∈ U ⊆ Rm are the state and
input at time t, respectively. The sets X and U represent the
state and input constraint sets, which are both assumed to be
polytopes containing the origin in their interiors. We write
X and U as

X = {x ∈ Rn | Exx ≤ ex}, U = {u ∈ Rm | Euu ≤ eu}
(9)

for matrices Ex ∈ Rnx×n, Eu ∈ Rnu×m and vectors
ex ∈ Rnx eu ∈ Rnu of appropriate dimensions. The
goal is to design a stabilizing and well performing state
feedback controller for system (8) satisfying the input and
state constraints. A suitable technique for this is MPC.

A. Stabilizing MPC setup

A frequently used MPC setup for the linear discrete-time
system (8) is solving at sampling instant t the following
optimization problem for a fixed horizon N ∈ Z≥1 based
on the current state x(t) ∈ X,

min
U,[uT

0,··· ,uT
N−1]T

J(U, x0) ,

‖PxN‖p +

N−1∑
k=0

‖Qxk‖p +

N−1∑
k=0

‖Ruk‖p, (10)

s.t. xk ∈ X, k = 1, · · · , N,
uk ∈ U, k = 0, 1, · · · , N − 1,

x0 = x(t),

xN ∈ XT ,

xk+1 = Axk +Buk, k = 0, 1, · · · , N − 1.

In this paper, we are mainly interested in the case where p
is either 1 or ∞ in (10). In addition, we assume that Q ∈
RrQ×n, R ∈ RrR×m and P ∈ RrP×n are full-column rank
matrices. The set XT ⊆ X is the terminal set, which is chosen
to be a polytope containing the origin in its interior.

Under these assumptions, solving this optimization model
leads to an optimal control sequence, given by u∗i (x(t)),
i = 0, 1, · · · , N − 1. This optimal sequence is turned into a
feedback control strategy by applying the first control move
to the system, i.e.

u(t) = µ∗(x(t)) := u∗0(x(t)). (11)

Closed-loop stability can be guaranteed via the terminal
cost and set method [14], provided XT and the terminal

weight parameterized by P are chosen appropriately. Essen-
tially, this terminal cost and set method typically requires
that there exist P , K and a polytopic XT such that

‖P (A+BK)x‖p−‖Px‖p ≤ −‖Qx‖p−‖RKx‖p, ∀x ∈ XT ,
(12)

and (A+BK)XT ⊆ XT hold. Numerical methods to com-
pute such P , K and XT guaranteeing closed-loop stability
are presented in [15], which apply even for the case of PWA
systems.

Let Xf ⊆ X be the set of the feasible states for the
optimization problem (10), which is a polyhedron. Therefore,
the set Xf can be represented as

Xf = {x ∈ Rn | Efx ≤ ef} (13)

for a matrix Ef ∈ Rnf×n and vector ef ∈ Rnf of
appropriate dimensions. This set Xf is a positively invariant
set for the closed-loop system (8)-(11) due to the choice of
P , K and XT . In addition, as shown in [1], in this case the
optimal cost V of (10) is a convex PWA function given by

V (x) = max
l∈FP

(Hlx+ hl), (14)

which is a Lyapunov function for the closed-loop system (8)-
(11) on Xf and a CLF for (8) on Xf for input set U. Based
on (14) we can get the partitioning of Xf related to V as

Pl := {x ∈ Rn | Hlx+hl ≥ H`x+h`, ` ∈ FP , ` 6= l} (15)

with l ∈ FP , i.e.
∪l∈FPPl = Xf (16)

and
int(Pl) ∩ int(P`) = ∅, ∀l, ` ∈ FP , l 6= `.

B. Low-complexity control problem

The problem we want to deal with in this paper is stated
as follows:
Problem 1: Given a “regular” polytopic partition {P̃i | i ∈
FP̃} of Xf ⊆ X, where FP̃ ⊂ Z≥1 is a finite set of indices,
find a PWA state feedback controller given by µ̃ : Xf → Rm

with

u(t) = µ̃(x(t)) = Fix(t) + gi, if x(t) ∈ P̃i, (17)

where Fi ∈ Rm×n, gi ∈ Rm for all i ∈ FP̃ , such that the
closed-loop system (8) and (17) has the following design
properties:

(i) The input constraints are satisfied, i.e. µ̃(x) ∈ U for
all x ∈ Xf .

(ii) The set Xf is positively invariant for the system (8)
and (17), i.e. x ∈ Xf implies Ax+Bµ̃(x) ∈ Xf , and
hence, for any x0 ∈ Xf the solution for (8) and (17)
satisfies the state constraints x(t) ∈ Xf ⊆ X, t ∈ Z+.

(iii) The system (8) and (17) is asymptotically stable in Xf .
Note that, at this point we do not specify exactly what the

regular partitioning is that is being used as essentially any
partitioning with any form of polytopic regions is allowed
in our approach. As advocated in [6] and [8] we can choose
the regions to be regular simplices or we can select them
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to be hypercubes as in [5], [9] which offer interesting
implementation advantages as well.

Note also that here we assume the regular polytopic par-
titioning to be fixed, while later we will actually synthesize
it using an automatic refinement procedure.

IV. CLF-BASED APPROACH

The main approach will be based on the availability of
a CLF V : Xf → R+ for system (8) under (6) for the set
Xf . As already remarked, once a stabilizing MPC setup as
in (10) is defined, the optimal MPC costs V as in (14) is a
CLF of (6) and (8) on the feasible set Xf .

Theorem 1: Consider system (8) with input constraint set
U given by (9) and Xf as given in (13). Given a “regular”
polyhedral partition P̃ = {P̃i | i ∈ FP̃} of Xf , and a scalar
0 ≤ λ < 1, if there exist matrices Fi, gi, i ∈ FP̃ and a
function V : Xf → R+ that satisfy (4a) and for all i ∈ FP̃

Eu(Fix+ gi) ≤ eu for all x ∈ P̃i, (18a)

Ef (Ax+BFix+Bgi) ≤ ef for all x ∈ P̃i, (18b)

V (Ax+BFix+Bgi) ≤ λV (x) for all x ∈ P̃i, (18c)

then the properties (i), (ii) and (iii) of Problem 1 are satisfied.
Note that a V satisfying (18a)-(18c) for some control

law µ̃ should be a CLF for (8) and input constraint set
U. Therefore, starting the search for a low-complexity PWA
control law µ̃ benefits significantly from the availability of a
CLF V , such as the optimal cost of a stabilizing MPC setup
as in (10).

Remark 1: Let F0
P̃ := {i ∈ FP̃ | 0 ∈ cl(P̃i)}. Given that

the origin is the desired equilibrium point, we can set gi = 0,
for all i ∈ F0

P̃ , in order to satisfy (18c).
The the following subsection will be devoted to transform

the conditions (18) into a computationally tractable form.

A. Computation of Explicit Control Law

In this section, we will formulate an LP feasibility problem
to compute the low-complexity control law µ̃ solving Prob-
lem 1 based on the result of Theorem 1 using an available
PWA CLF V as in (14). We will do this step-by-step in the
sense that we will show how the individual conditions of
Theorem 1 can be turned into as linear constraints in the
control parameters Fi, gi, i ∈ FP̃ .

1) Asymptotic stability: In order to solve the stability
condition (18c) in Theorem 1 on Xf in Fi, gi, i ∈ FP̃ ,
we denote P̃i as Ω for simplicity and also replace Fi, gi by
F, g for notational convenience. We define the vertices of Ω
as

extr(Ω) := {r1, . . . , rM}, for some M ∈ Z≥1. (19)

We also define the polytopic subregions Ωl := Ω∩Pl of Ω,
and the vertices of Ωl, l ∈ FP , as

extr(Ωl) := {vl1, . . . , vlMl
}, for some Ml ∈ Z≥1. (20)

Note that {Ωl | l ∈ FP} is a polytopic partitioning of Ω. In
the following theorem, we will formulate an LP feasibility
problem that guarantees that the condition (18c) on Ω holds
by transforming it into conditions on the vertices in (20).

Theorem 2: Let V : Xf → R+ as in (14) be given and
consider a polytope Ω ⊂ Xf with polytopic partitioning {Ωl |
l ∈ FP}. The following statements are equivalent for 0 ≤
λ ≤ 1:

(i) For all x ∈ Ω,

V (Ax+BFx+Bg) ≤ λV (x). (21)

(ii) For all l ∈ FP , and all v ∈ extr(Ωl),

V (Av +BFv +Bg) ≤ λ(Hlv + hl). (22)
Hence, on the basis of Theorem 2, the condition (22) is

equivalent to (21) in the unknowns F and g on the region Ω
(when the scalar λ is fixed). By using now the form (14) of
V , (22) can be rewritten as

Hk(Av+BFv+Bg)+hk ≤ λ(Hlv+hl), for all k ∈ FP ,
(23)

which are affine constraints in F and g, which can be
included in an LP. Note that we have to solve (23) for all
vertices of v ∈ extr(P̃i ∩ Pl), all l ∈ FP and all i ∈ FP̃ to
guarantee (21) for all x ∈ Xf = ∪i∈FP̃ P̃i. Clearly, many
P̃i ∩ Pl will be empty and therefore do not impose any
constraints.

2) Input constraint satisfaction: Denote, as before, P̃i

as Ω. By convexity of Ω, for an arbitrary x ∈ Ω =
co{r1, . . . , rM}, there exist constants λr ≥ 0 such that∑

r∈extr(Ω) λr = 1, and x =
∑

r∈extr(Ω) αrr. Interestingly,
(18a) for all x ∈ Ω is equivalent to

Eu(Fr + g) ≤ eu for all r ∈ extr(Ω). (24)

Clearly, (24) is implied by (18a) for all x ∈ Ω. Conversely,
if x ∈ Ω then using that x =

∑
r∈extr(Ω) αrr leads to

Eu(Fx+ g) = Eu(F (
∑

r∈extr(Ω)

αrr) + g)

= Eu(
∑

r∈extr(Ω)

αr(Fr + g))

=
∑

r∈extr(Ω)

αr (Eu(Fr + g))︸ ︷︷ ︸
≤eu

≤ eu. (25)

3) Invariant set condition: Similarly as (24) guarantees
input constraint satisfaction, it can be shown that condition
(18b) can be equivalently characterized by

Ef (Ar +BFr +Bg) ≤ ef for all r ∈ extr(Ω). (26)

4) Overall LP problem: The result of Subsection IV-A.1,
IV-A.2 and IV-A.3 all result in LP feasibility conditions with
respect to the parameters Fi, gi, i ∈ FP̃ . In fact, we will
also search for a local decay factor 0 ≤ λi < 1 related to
P̃i, i ∈ FP̃ , instead of a global λ, to verify the stability
conditions derived in Subsection IV-A.1. Hence, if for any
i ∈ FP̃ (23) is satisfied with λ replaced by λi for all v ∈
extr(P̃i ∩ Pl), l ∈ FP , the conditions (21) hold for 0 ≤
λ = mini∈FP̃ λi < 1, as required. To summarize, we get
the following LP feasibility problem for all Ω = P̃i, i ∈ FP̃
(assuming P̃i ⊆ Xf ) to solve Problem 1:
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Find 0 ≤ λi < 1, and Fi, gi, i ∈ FP̃ such that

Eu(Fir + gi) ≤ eu for all r ∈ extr(P̃i), (27a)

Ef (Ar +BFir +Bgi) ≤ ef for all r ∈ extr(P̃i), (27b)
(Hk(Av +BFiv +Bgi) + hk) ≤ λ(Hlv + hl) (27c)

for all v ∈ extr(P̃i ∩ Pl), k ∈ FP , l ∈ I(P̃i,P),

where gi = 0, for all i ∈ F0
P̃ = {i ∈ FP̃ | 0 ∈ cl(P̃i)}.

Any feasible solution to (27a)-(27c) provides a stabilizing
PWA control law µ̃ : Xf → U defined on the regular
partitioning P̃ that guarantees properties (i)-(iii) of Problem
1. Note that instead of checking the feasibility of (27) with
0 ≤ λi < 1, one can also aim at minimizing λi.

Interestingly, each region P̃i in the new partitioning and
the corresponding control parameters Fi, gi and λi have
their own local LP feasibility problem (27) without any
relationship to the local LP for P̃j , j 6= i. In other words, the
LP feasibility problems for each P̃i, i ∈ FP̃ , are decoupled.
This indicates the possibility that for the regions P̃i’s which
resulted in an infeasible local LP, the region can be refined
by splitting it into smaller subregions to attempt to make
the condition (27) feasible. Note that we know that in case
V is a CLF obtained by a stabilizing MPC setup (10), a
PWA control law exists, namely an optimal control µ∗, which
satisfies the constraints and stability conditions. Therefore,
in the next subsection we present an automatic refinement
procedure that based on a rough initial partitioning P̃init,
refines the regions where necessary to satisfy the constraints
(27).

B. Design Algorithm

1) Refinement procedure: For the regular regions P̃i in-
side Xf that need to be refined because (27) is infeasible, we
will split the region P̃i into smaller regular subregions. For
instance, in case hypercubic regions are used one can perform
a dyadic discretization [16] and get 2n hypercubes, where n
is the dimension of the space. A dyadic discretization of a
hypercube splits the hypercube into 2n equal hypercubes by
inserting hyperplanes perpendicular to each of the coordinate
axes exactly in the middle of each edge of the hypercube (see
[16] for more details on dyadic discretization). Based on the
smaller subregions, new local problems of the form (27) are
generated and solved via LP techniques.

To avoid that the refinement procedure does not terminate
or that the number of regular regions becomes too large due
to too many refinement steps, a maximum number of regions
nmax and/or a maximum level of refinement hmax is added
as a stopping criterium to the refinement procedure.

Hence, the refinement procedure provides the means to
synthesize the partitioning automatically, one can start from
a very rough initial partitioning P̃init.

Algorithm: Automatic Refinement Procedure

Given: A CLF for system (8) V : Xf → R+ of the form (14)
for input constraint set U as in (9) is given with Xf as in (13).
The partitioning P is given according to (15). In addition,
an initial (rough) regular partitioning P̃init, the maximum

refinement level hmax ≥ 1 and the maximal number of cells
nmax ≥ 1 are available.

1: initialize, Old := P̃init, New := ∅, h(Ω) := 1 for all
Ω ∈ Old, j := 1

2: while j ≤ nmax and Old 6= ∅ do
3: select region Ω in Old
4: find the overlapping regions I(Ω,P)
5: if (27) has λi feasible for Ω then
6: Old := Old \ {Ω}
7: New := New ∪ {Ω}
8: store control parameters Fj , gj , corresponding to

Ω, obtained from (27)
9: j := j + 1

10: else if h(Ω) < hmax then
11: split Ω into subregions {Ω1, . . . ,ΩL}
12: Old := (Old \ {Ω}) ∪ {Ω1, . . . ,ΩL}
13: store h(Ωi) := h(Ω) + 1, i = 1, . . . , L
14: else
15: output ‘warning: maximal level of refinement

reached’ and terminate algorithm
16: end if
17: end while
18: if Old = ∅ then
19: output ‘done’
20: else
21: output ‘warning: maximum number of regions

reached’
22: end if
23: end

In Section V, we will give an example to illustrate the im-
plementation of this algorithm. In particular, in the example
we will use hypercubic regions for the regular regions and
use dyadic discretization to refine regions when necessary.

V. EXAMPLE

Consider system (8) with

A =

[
1.1 −0.6928

0.6928 1.1

]
, B =

[
0
1

]
,

and input and state constraints given by the sets

U = {u ∈ R | −1 ≤ u ≤ 1} , and

X =
{
x ∈ R2 | −10 ≤ x ≤ 10

}
.

For the MPC setup (10) with horizon N = 3, we set

the weighting matrices to Q =

[
1 0
0 1

]
, R = 0.1, and

by using [15] we can compute the terminal weight and the
terminal set as

P =

[
5.9079 1.6418
−9.7313 6.8375

]
, and

XT = {x ∈ Rn | ‖Px‖∞ ≤ 1.9441} ,

which guarantee (12) and (A + BK)XT ⊆ XT for K =[
0.0059 −1.8560

]
and thus closed-loop stability of (8)

and (11). Hence, the optimal cost V : Xf → R+ is a
CLF for (8) in Xf with input constraint U. The partitions
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corresponding to the optimal costs V : Xf → R+ are
computed using the method in [1]. The partitioning of µ∗

after simplified is shown in the Fig. 1. As such, the controller
partitioning is depicted with 39 irregular regions.

−1.5 −1 −0.5 0 0.5 1 1.5

−1

−0.5

0

0.5

1

x
1

x 2

Controller partition with 39 regions. 

Fig. 1: The optimal partitioning after merging the regions.

We now apply the algorithm in Section IV-B, and obtain
a stabilizing low-complexity PWA control law as depicted
in Fig. 2, which is defined over 16 regular regions. Ob-
viously, the later control law is much easier for on-line
implementation both from perspectives of computation times
and memory requirement.

−1.5 −1 −0.5 0 0.5 1 1.5
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0

0.5

1

Low−complexity controller partition over 16 regions

x
1

x 2

Fig. 2: The control law on the regular partition.

VI. CONCLUSIONS

In this paper we presented a control-Lyapunov function
(CLF) approach to synthesize low-complexity stabilizing
PWA controllers for constrained linear systems. In contrast
with PWA control law as obtained through explicit MPC
techniques that result in partitionings with a high number of
regions and regions of irregular shapes, here the objective
was to obtain stabilizing PWA controller defined on regular
partitionings in which the regular regions can have any
desirable polytopic form (e.g. regular simplices or hyper-
cubes) that enhance fast on-line implementation and reduced
memory requirements. The availability of a PWA CLF, which
is a prerequisite for our method, can be realized by taking

the optimal cost of a stabilizing MPC setup based on linear
costs using 1 or ∞ norms. Based on such a PWA CLF
a linear programming (LP) feasibility problem was derived
that guarantees a priori stability and constraints satisfaction.
An automatic refinement procedure was also presented that
refines the regular partitioning where needed in order to
satisfy the design requirements. This refinement procedure
has the advantage that it can be used to synthesize the
partitioning of the control law, next to the controller gains,
automatically by starting from a coarse initial partitioning.
Due to the flexibility of the method (any desirable regular
partitionings can be used) and allowing to search the space
of discontinuous PWA control laws, our method can result
in true low-complexity stabilizing PWA control law for
constrained linear systems. A numerical example indeed
demonstrated the effectiveness of this new approach.
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