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Abstract—Achieving fair and optimal data rates in wireless
networks is an area of continued research. Distributed algorithms
have been developed directly from mathematical optimization
problems that guarantee fair and optimal rates. However, the
algorithms developed thus far are based on simplified models
of wireless networks. This research presents a first-principles
model of wireless networks that reduces to the classical models
under certain limiting conditions. The model uses random sets
to represent the times during which a channel is perceived to
be utilized. Although the resulting optimization problem is non-
convex, its solution can be derived offline to offer insight into
situations where the classical models succeed or fail. We provide
the framework for a branch and bound solution to this offline
problem.

I. INTRODUCTION

Wireless networks are often used as a low-cost alternative to

wired infrastructures, while also accommodating mobile users.

The most prevalent medium access control (MAC) protocol

used in wireless networks is defined in the IEEE 802.11

standard. However, research has shown that when the wireless

network is extended to multiple hops the 802.11 MAC is

plagued with serious fairness and efficiency problems, some-

times completely starving one data flow in favor of another

[1]. This is in part due to the fact that sharing resources in a

wireless network is a fundamentally different problem than in

a wired network and requires some theoretical understanding

to solve.

As a result of these problems, rate allocation in wireless

networks to achieve maximum network utilization and fairness

has become a popular area of research. Seminal research in

this area includes [2], [3] for wired networks, which has been

easily extended to wireless networks in [4], [5], [6], [7], [8],

[9], [10]. See [11] for a survey on this and other active research

topics for wireless networks.

This research attempts to answer a fundamental question:

Given a wireless network topology and a set of active data

flows between source nodes and destination nodes, what

allocation of rates is optimal and fair? In the network utility

maximization (NUM) approach, an objective function for the

network is defined, typically a sum of utility functions for each

link’s or flow’s sending rate, where the form of the utility

function defines a particular notion of fairness. Next, a set
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of constraints is used to model the unique characteristics of

the wireless network, such as carrier sensing or interference

constraints. The solution to this optimization problem will then

yield a set of rates that maximize network utility for the links

or flows. These rates can then be used as input to a rate

controller that sits on top of (or inside) the MAC protocol,

limiting the packet transmission rate for each flow or link.

When the optimization problem is convex, it can often be

translated into a distributed rate control algorithm, making it

practical to deploy in a wireless network.

Our focus is on the constraints used to model the wireless

network, as this is the critical piece in the NUM approach. If

the model is inaccurate, then the optimization problem may

not yield an accurate or optimal solution. We limit our study

to stationary, multi-hop wireless networks that use CSMA,

such as the 802.11 MAC. This broadly characterizes the most

widely-used wireless networks in the field, often referred to

as mesh networks.

This paper develops a first-principles model of wireless

networks for the rate control problem. By first-principles,

we mean that the most basic assumptions are made of how

multi-hop wireless networks with CSMA operate. In this

model, perceived times that the medium is occupied are

represented as a random set. Our model may also be classified

as a measurement based model, as it takes as inputs the

probabilities of links carrier sensing or interfering with each

other. Such an approach is more realistic than physical layer

modeling, such as the various signal fading models with SINR

thresholds, and has been used significantly to model wireless

networks for various purposes [12], [13], [14], [15], [16],

[17], [9]. A combination of measurement based modeling

and physical layer modeling is used in [14] to determine

probabilities of carrier sensing and interference between pairs

of nodes. Kashyap, et al [16] extends this idea to also model

probabilities of carrier sensing and interference of groups of

nodes in order to determine the capacity of a wireless link. We

note specifically that their approach is very similar to ours,

modeling the states (transmitting, deferring, idle) of a node

as random sets. However, they also model specific aspects

of the 802.11 MAC as opposed to generic CSMA, and their

model predicts an uncontrolled environment, where there is no

rate controller other than the 802.11 MAC. In the future, we

hope to combine the qualities of ours and Kashyap’s models

to achieve further accuracy for rate control problems.

In this work, we show that, under limiting conditions, our

model reduces to previously proposed models in the literature.
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si Sending rate of link i.

ri Receiving rate of link i.

di Delivery ratio of link i.

aij Receiving interference probability of link j
interfering with link i.

L Set of links.

Li Set of all links in L except i.

C Set of maximal cliques.

C(i) Set of maximal cliques containing link i.

L(j) Set of links in maximal clique j.

TABLE I
NOTATION USED IN THE MAXIMAL CLIQUE MODEL AND THE PARTIAL

INTERFERENCE MODEL.

Specifically, with the assumption of binary, symmetric sensing,

our model reduces to the common maximal clique model used

by seminal research in this area [4], [8]. Likewise, with the

assumption of no carrier sensing between interfering links, our

model reduces to the partial interference model we previously

developed [10]. We conclude by showing that our model

induces an optimization problem and scoring mechanism that

can be used to compare the performance of various rate con-

trollers, should our model indeed prove to be more accurate.

In this case, solving the network utility maximization problem

using the first-principles model will provide an upper bound

on the performance of all rate control policies.

II. CLASSICAL MODELS

In this section we review two classical models of wireless

networks that have been used to solve the fair rate control

problem: the maximal clique model, which formulates con-

straints on the sending rates, and the partial interference

model, which supplements the maximal clique model by

formulating constraints on the receiving rates. Table I presents

the notation used in these models.

A. The Maximal Clique Model

The maximal clique model is the most widely used model

for rate optimization in wireless networks [4], [8]. Figure 1

shows how a contention graph is inferred from a wireless

network. This graph has a vertex representing each active link,

and each edge signifies that two links contend, or cannot send

at the same time. For each maximal clique j, its links’ sending

rates s must sum to at most some clique capacity, which for

our purposes will always be 1:
∑

i∈L(j)

si ≤ 1, ∀j ∈ C. (1)

B. The Partial Interference Model

The partial interference model supplements the maximal

clique model with constraints on the receiving rates [10]. The

model is based on an empirical study of carrier sensing and

interference in a wireless mesh network [17]. The constraint

on each receiving rate is

ri = disi

∏

j∈Li

(1 − aijsj), ∀i ∈ L, (2)

where the delivery ratio di implies inherent loss over the link.

Fig. 1. An example wireless network and its corresponding contention graph
with the maximal cliques circled. Links 1, 2, and 3 contend because they share
node B. Links 4 and 5 contend because sending nodes D and F are within
carrier sensing range of each other. Assuming RTS/CTS is enabled, links 3
and 4 contend because sending node D is within carrier sensing range of
receiving node C, which sends out CTS signals. This model infers that links
in a maximal clique have sending rates summing to at most one.

cij Carrier sensing probability of link j being sensed by
link i.

Si Effective sending rate of all other links as observed
by link i.

Ri Effective (receiving) interference rate at link i due
to all other links.

Ki Set of links that contend with link i.

p1\p2 Set of elements in p1 but not in p2.

P(p) Set of all subsets of p except the empty set.

Pz(p) Set of all subsets of p with |p| = z.

TABLE II
ADDITIONAL NOTATION USED IN THE FIRST-PRINCIPLES MODEL.

III. THE FIRST-PRINCIPLES MODEL

The design of the classical models raises some questions.

How do we know that mutually contending links (maximal

cliques) implies that their rates must sum to at most 1?

How can the maximal clique model be logically extended to

consider the case of partial carrier sensing, where there is a

continuous range of probabilities that nodes can sense each

other, and the notion of cliques is immediately destroyed?

Why, in the partial interference model, is the effect of each

interfering link multiplicative? We seek to answer these ques-

tions by developing a model from a more theoretical standpoint

by using random sets to represent observed times the medium

is occupied. The additional notation is given in Table II.

The following elementary assumptions are made:

• Discretization of time. Time is divided into large blocks

that are further divided into equally sized slots. During

each time slot, each link is either sending or not sending.

• Uniform random selection. For each time block T , each

link has a set F ⊂ T of available time slots in which to

send, and a set X ⊂ F when it does send. Each t ∈ F
has an equal probability of being in X .

• Negligible indirect scheduling. If link i senses links j
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and k sending during Xj , Xk ⊂ T , respectively, then

dependencies of Xj ∪ Xk on the sending times of any

link l 6= i, j, k are negligible.

When considering the effective rate of links j and k as

perceived by link i, realistically there may be some other link

l (or even a set of other links) that cause the rates of j and

k to overlap more or less than usual, which could in turn

affect how much link i can send. The last assumption simply

states that these effects are negligible. We recognize that it can

significantly impact the accuracy of the model. This concern

will be addressed in future research with empirical testing.

A. Uniform Random Sets

A link’s sending rate is restricted by how much it senses

that others are sending, in other words, their effective rate. Our

goal is to find a formula for this effective rate by calculating

the union of each random set representing a link’s sending

times. We begin by defining a uniform random set:

Definition 1. Let T and F ⊂ T be finite sets. Also let ξt : Ω →
{0, 1} for all t ∈ T be a collection of i.i.d. random variables

on the probability space (Ω,A, P ). Then X : Ω → 2T , where

X(ω) = {t ∈ F : ξt(ω) = 1} , (3)

is a uniform random set on F . Moreover, if F is a random

set, then

X(ω) = {t ∈ F (ω) : ξt(ω) = 1} (4)

also defines a uniform random set on F . The set F is called

the parent of X .

The deterministic set T can be considered as the entire time

block. If link i sends at rate si, link j hears cjisi of T being

occupied. Thus the cijsj that link i hears must be a random

set chosen from a subset of T , namely during which j did

not hear i. For this reason we include in the definition of a

uniform random set a parent set, or free space F , to which it

is restricted.

Now consider another link k adding to the effective rate that

i senses. The effective rates of j and k by themselves overlap

in the total effective rate a certain amount depending on how

much they sense each other. In this sense, the above definition

still does not fully explain the interaction of uniform random

sets. We thus define the independence of uniform random sets:

Definition 2. Let X be a collection of uniform random sets

with parents F, enumerated by N = {1, . . . , n}. Then their

independence is

h(N) = Et∈∩F

[

Pr(t ∈ ∩X)
∏

i∈N Pr(t ∈ Xi ∩ F)

]

. (5)

Let | · | denote the expected size of a random set. Averaging

over all t in ∩F, we have from (5) that

Pr(t ∈ ∩X) = h(N)
∏

i∈N

Pr(t ∈ Xi ∩ F),

| ∩ X|

| ∩ F|
= h(N)

∏

i∈N

|Xi ∩ F|

| ∩ F|
.

But |Xi ∩ F| is found by multiplying |Xi| by the probability

that an element in Fi is also in ∩F:

|Xi ∩ F| =
| ∩ F|

|Fi|
|Xi|

so that

| ∩ X| = h(N)| ∩ F|
∏

i∈N

|Xi|

|Fi|
. (6)

We can now invoke the inclusion-exclusion principle

∣

∣

∣

∣

∣

⋃

X∈X

X

∣

∣

∣

∣

∣

=
∑

p∈P(X)

(−1)|p|−1

∣

∣

∣

∣

∣

∣

⋂

X∈p

X

∣

∣

∣

∣

∣

∣

(7)

to find the size of the union of many uniform random sets.

Theorem 1. Let X be a collection of uniform random sets

with parents F, enumerated by N = {1, . . . , n}. Then

|∪X| =
∑

p∈P(N)

(−1)|p|−1





∏

i∈p

|Xi|





∣

∣

∣

⋂

i∈p Fi

∣

∣

∣

∏

i∈p |Fi|
h(p). (8)

Proof: The result follows from (6) and (7).

B. Derivation of the First-Principles Model

The sending constraint is given by

si + Si ≤ 1, ∀i ∈ L, (9)

where

Si =
∑

p∈P(Li)

(−1)|p|−1fi(p)gi(p)h(p), (10)

fi(p) =
∏

j∈p

cijsj , (11)

gi(p) =
φi(p)

∏

j∈p φi(j)
, (12)

φi(p) = 1 − si

∑

p′∈P(p)

(−1)|p
′|−1

∏

j∈p′

cji, (13)

and the independence is given by

h(p) =
∏

{i,j}∈P2(p)

(1 − cij − cji + cijcji). (14)

The receiving constraint is given by

ri = di(1 − Ri)si, (15)

where

Ri =
∑

p∈P(Li)

(−1)|p|−1f ′
i(p)h(p) (16)

and

f ′
i(p) =

∏

j∈p

aijsj . (17)

Note that (14) is an approximation of (5). If one link carrier

senses another link completely (cij = 1) then their random sets

do not intersect. If any two random sets in p do not intersect,

then the intersection of p is empty, which means that h(p)
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should equal zero. Only when all random sets are independent

should it equal one.

The formulas for Si and Ri follow immediately from

Theorem 1. In the case of Ri, since there is no intermediary

correlating link for the interferers, F is the entire space with

size 1. However, for Si, we need to derive gi(p), which

corresponds to the term of free spaces F in the theorem.

Link j observes a free space Fj of size 1− cjisi, in which

link i observes an occupied space Xj of size cijsj . The free

space Fj consists of a portion during which link i is not

sending, denoted Γ, and a portion during which link i is

sending but not heard by j, denoted Ψj . Their sizes are given

by

|Γ| = 1 − si

and

|Ψj | = (1 − cji)si.

Let F (p) = ∩j∈pFj and Ψ(p) = ∩j∈pΨj . Then, since every

Ψj is an independent uniform random set within a common

space of size si, we have by way of (6),

|Ψ(p)| =

∏

j∈p |Ψj |

s
|p|−1
i

= si

∏

j∈p

(1 − cji).

Thus

φi(p) := |F (p)| = |Γ| + |Ψ(p)|

= 1 − si + si

∏

j∈p

(1 − cji)

= 1 − si

∑

p′∈P(p)

(−1)|p
′|−1

∏

j∈p′

cji.

We call this function the transparency of i to p, and use it to

simplify the notation in gi(p).
As a side note, it is straightforward to incorporate flow

constraints into the model as well, by introducing mappings

t(·) from the hop number in the flow to the index of the link

considered. Then

st(m) ≤ rt(m−1) (18)

for each hop m and each flow mapping t ensures that no

subsequent hop sends more than it receives.

IV. REDUCTION TO THE CLASSICAL MODELS

A. Reduction to the Maximal Clique Model

The first-principles model reduces to the maximal clique

model when carrier sensing is binary and symmetric. We prove

this by showing that the set of feasible sending rates in one

model is equivalent to the feasible set in the other model.

We first formally define the two sets of feasible rates based

on each model.

Definition 3. Given a contention graph (L, C), the set S1

consists of all vectors of sending rates s that satisfy (1).

Definition 4. Given a contention graph (L, C), the set S2

consists of all vectors of sending rates s that satisfy (9), where

Si =
∑

p∈P(Ki)

(

−1

1 − si

)|p|−1

h(p)
∏

j∈p

sj

and

h(p) =

{

0, ∃i, j ∈ p : i ∈ Kj,

1, otherwise.

Theorem 2. Given a contention graph (L, C), S1 = S2.

Proof: First, note that S1 is equivalent to the set of s
satisfying

si + max {Si(j) : j ∈ C(i)} ≤ 1, ∀i ∈ L,

where Si(j) =
∑

l∈L(j)\i sl. To show that S1 = S2, it suffices

to show that, for any i ∈ L, the constraint boundary is

equivalent in S1 and S2. Thus, letting

si = 1 − max {Si(j) : j ∈ C(i)} ,

we seek to show that Si = max {Si(j) : j ∈ C(i)}.

Without loss of generality, let i = 0 and K0 = {1, . . . , n},

where L(1) = {1, . . . , m} is the most constraining maximal

clique and S0(1) =
∑m

j=1 sj . Then

S0 =
∑

p∈P(K0)

(

−1

S0(1)

)|p|−1

h(p)
∏

j∈p

sj

=
n

∑

z=1





∑

p∈Pz(K0)

(

−1

S0(1)

)z−1

h(p)
∏

j∈p

sj





=

n
∑

j=1

sj +

n
∑

z=2

(

−1

S0(1)

)z−1




∑

p∈Pz(K0)

h(p)
∏

j∈p

sj





= S0(1) +

n
∑

j=m+1

sj

+

n
∑

z=2

(

−1

S0(1)

)z−1




∑

p∈Pz(K0)

h(p)
∏

j∈p

sj



 .

We therefore must determine that

n
∑

j=m+1

sj +

n
∑

z=2

(

−1

S0(1)

)z−1




∑

p∈Pz(K0)

h(p)
∏

j∈p

sj



 = 0.

(19)

Note that h(p) = 0 for any p that has at least two elements

from L(1)\{0}, so that

∑

p∈Pz(K0)

h(p)
∏

j∈p

sj = S0(1)
∑

p∈Pz−1(K0\L(1))

h(p)
∏

j∈p

sj

+
∑

p∈Pz(K0\L(1))

h(p)
∏

j∈p

sj .
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This is substituted into the argument of the second sum of

(19) to obtain

(

−1

S0(1)

)z−1
∑

p∈Pz(K0)

h(p)
∏

j∈p

sj =

−
(−1)z−2

S0(1)z−2

∑

p∈Pz−1(K0\L(1))

h(p)
∏

j∈p

sj

+
(−1)z−1

S0(1)z−1

∑

p∈Pz(K0\L(1))

h(p)
∏

j∈p

sj .

The second term above for some z cancels with the first term

in the corresponding z + 1 equation, and the first term for

z = 2 cancels with
∑n

j=m+1 sj . We need only check that the

second term for z = n goes to zero. By inspection,

∑

p∈Pn(K0\L(1))

h(p)
∏

j∈p

sj = 0,

because |K0\L(1)| < n. Thus, S0 = S0(1) and S1 = S2.

B. Reduction to the Partial Interference Model

We now show that when interferers of link i do not contend

with each other, (15) and (16) from the first-principles model

reduce to (2) in the partial interference model. To do this, we

present a simple arithmetical theorem:

Theorem 3. For some set L of indices,

∏

j∈L

(1 − xj) = 1 −
∑

p∈P(L)

(−1)|p|−1
∏

j∈p

xj . (20)

Proof: Without loss of generality, let L = {1, . . . , n}.

We prove by induction. The base case n = 1 holds trivially.

Assuming (20) holds for n, we need to show that it holds for

n + 1. Defining N = L\(n + 1),

∏

j∈L

(1 − xj) = (1 − xn+1)
∏

j∈N

(1 − xj)

= (1 − xn+1)



1 −
∑

p∈P(N)

(−1)|p|−1
∏

j∈p

xj





= 1 −
∑

p∈P(N)

(−1)|p|−1
∏

j∈p

xj

− xn+1 +
∑

p∈P(N)

(−1)|p|−1xn+1

∏

j∈p

xj

= 1 −
∑

p∈P(L)

(−1)|p|−1
∏

j∈p

xj .

Applying this result to (2) is straightforward, replacing xj

with aijsj . Since under the limiting condition of no contending

interferers we have h(p) = 1, we see that (15) does indeed

reduce to (2).

V. SOLUTION TO THE OPTIMIZATION PROBLEM

Assuming that d is always unity, the first-principles NUM

problem is

P : maximize
∑

i∈L

ln ri

subject to ri = (1 − Ri)si, ∀i ∈ L,
si + Si ≤ 1, ∀i ∈ L,

(21)

where we have chosen the natural logarithm as the utility

function, enforcing proportional fairness. We do not show

it here, but instances of this problem are frequently non-

convex. A branch and bound solution solves the problem by

successively dividing the hypercube in which the feasible set

resides into smaller regions, and evaluating lower and upper

bound functions for the optimal value in each region. The

bounds on each region allow one to conclude that some regions

need not be divided further. A good tutorial on branch and

bound appears in [18].

To implement branch and bound, we need only develop

efficient upper and lower bound functions for each sub-

problem of P. Let Pk be the k-th sub-problem of P in the

algorithm. A standard interior point solver Φ operating on

Pk is sufficient to get a lower bound and the corresponding

feasible point. To get an upper bound, we need to formulate

a new, convex problem P′ such that its solution is an upper

bound to the solution of P.

To begin, we wish to replace the sending constraint in

P with something that is convex and will enclose the old

constraints. This is done by replacing the effective rate Si

with something smaller, since this will leave more room for

si to increase. Because Si is the size of the union of several

sets with sizes cijsj , it follows that Si ≥ max cijsj . Finally

the new constraint

si + max
j∈Li

cijsj ≤ 1

is equivalent to the family of constraints

si + cijsj ≤ 1, ∀j ∈ Li,

which are all linear.

Now we must modify the receiving constraint. First, note

that replacing it with

ri ≤ (1 − Ri)si

does not change the solution to the problem.We next introduce

the variable

yi = ri/si

so that the inequality becomes

yi + Ri ≤ 1.

Then, Ri is replaced in the same manner that Si was replaced,

which yields the family of constraints

yi + aijsj ≤ 1, ∀j ∈ Li.
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The change of variables from (s, r) to (s, y) also modifies

the appearance of the objective function to
∑

i∈L

(ln si + ln yi) .

The new, convex problem that bounds P is

P′ : maximize
∑

i∈L

(ln si + ln yi)

subject to yi + aijsj ≤ 1, ∀i, j ∈ L, i 6= j,
si + cijsj ≤ 1, ∀i, j ∈ L, i 6= j.

(22)

Let P′
k be the k-th sub-problem of P′ in the algorithm.

Then Φ operating on P′
k is sufficient to get an upper bound.

Thus the branch and bound method, supplemented with the

bound functions of Φ(Pk) and Φ(P′
k), solves P with efficient

computation at each step.

VI. CONCLUSION

This paper has analyzed the underlying models in optimiza-

tion techniques for rate control in wireless networks, specif-

ically, the maximal clique model and the partial interference

model. A new model, called the first-principles model, was

developed based on probability laws of random, overlapping

signals. This model accounts for partial and asymmetric carrier

sensing and receiving interference. It has been shown that

when the first-principles model is limited to binary, symmetric

sensing, it reduces to the maximal clique model; and when it

is limited to no carrier sensing between interfering links, it

reduces to the partial interference model.

The first-principles model still has its own limitations.

When measuring the effective rate (or amount the medium

is occupied) at a particular link i, the model accounts for

indirect scheduling of links j and k through link i, but not

through any other link. We plan to analyze the significance of

this limitation in future research through empirical testing.

The optimization problem for rate control induced by this

model is non-convex, and cannot readily be separated into

a form allowing a distributed solution; however, despite its

complexity, it is still useful in understanding the performance

of rate controllers. If the model is an accurate representation of

the behavior of real wireless networks, its associated optimiza-

tion problem produces a tight upper bound on the performance

of all controllers. An outline of a branch and bound algorithm

to do this has been presented in this paper. Future work will

implement this algorithm, and also run simulated and real test

scenarios to compare various rate controllers.
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