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Abstract— This paper presents a new technique for the
construction of Internal Positive Representations (IPRs) of
discrete time linear systems. The proposed method overcomes
the limitations of a previously proposed technique, which
provides stable IPRs of systems under a restrictive assumption
on the position of the eigenvalues in the complex plane. The
new method here presented exploits a suitable representation
of complex vectors and matrices by means of nonnegative
combinations of the roots of unity, and provides a stable IPR
for any stable system. The position of the eigenvalues in the
complex plane only affects the state-space dimension of the IPR.

I. INTRODUCTION

The interest in the realization problem of dynamic sys-

tems by means of positive state-space representations lies

in the fact that there are several technological frameworks

which allow high-speed implementation of positive systems

(Charge Routing Networks [2], [3], [10], fiber optic filters

[5]). In [4] the input-output behavior of a class of Single-

Input-Single-Output transfer functions is obtained as the

difference of two positive filters, and some extensions have

been studied in [12], [13]. The computation of the positive

filters is based on the quite complicated realization theory

of positive systems [1], [6], and the positive matrices of the

state-space realization are computed by numerically solving

an optimization problem.

The more general concept of Internal Positive Represen-

tation (IPR) of Multi-Input-Multi-Output systems has been

introduced in [8], [9], where also a simple and straightfor-

ward algorithm for its construction has been presented. The

only drawback of the method is that stable IPRs are obtained

if and only if the poles of the original system belong to a

given subset of the open unit disk of the complex plane (a

square subset denoted P4). In this paper, such a limitation is

overcome: the presented algorithm provides a stable IPR for

any stable system. This result is obtained thanks to a new

positive representation of complex numbers which exploits

the N -th roots of the unity, for suitable values of the integer

N .

The paper is organized as follows. The main concepts

of the algebra of positive N -representations of complex

matrices and vectors are illustrated in Section II. The new

methodology of IPR construction is presented in Section
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III, in a rather general form, while two algorithms for the

construction of stable IPR are described in Sections IV and

IV. Conclusions follow.

A. Notations

R
n
+ and R

r×c
+ denote the sets of nonnegative n-vectors

and r × c matrices, respectively. For a given x ∈ R
n, the

symbols x+ ∈ R
n
+, x− ∈ R

n
+, and |x| ∈ R

n
+ denote its

positive and negative parts, and the componentwise modulus,

respectively (i.e., such that x = x+−x− and |x| = x++x−).

Similarly, A+ and A− denote the positive and negative parts

of a real matrix A, and |A| the componentwise modulus.

‖x‖1 =
∑n

i=1 |xi| denotes the 1-norm of x ∈ R
n. Given

two integers h and N , the symbol |h|N denotes h modulo

N , i.e. the remainder of the integer division of h by N . The

symbols σ(A) and ρ(A) denote the spectrum and the spectral

radius of the square matrix A, respectively. A is said to be

stable if ρ(A) < 1. The superscript ∗ denotes componentwise

conjugation of matrices and vectors (without transposition).

II. POSITIVE N -REPRESENTATION OF COMPLEX

VECTORS AND MATRICES

In this section a formalism is introduced for the represen-

tation of real or complex vectors and matrices by means of

positive combinations of the N -th roots of unity.

A. Positive N -representation of complex numbers

For a given positive integer N , let q
(N)
k = ej

2π

N
k, with

k ∈ Z, denote the N -th roots of unity in the complex plane,

i.e. the solutions of the equation zN = 1, which are also the

vertices of PN , the regular polygon with N sides inscribed in

the unit circle. When the integer N is clear from the context,

the simpler notation qk will be used instead of q
(N)
k . Let

Q(N) be the following row vector in C
N :

Q(N) =
[
q0 q1 . . . qN−1

]
. (1)

For N > 2 (N ≥ 2) any z ∈ C (z ∈ R) can be expressed

as a nonnegative linear combination of the components of

Q(N).

Definition 1: Given z ∈ C and an integer N > 2 (or,

given z ∈ R and N ≥ 2) a vector z̃ ∈ R
N
+ is said to be a

positive N -representation of z if it is such that

z = Q(N)z̃ =

N−1∑

k=0

qk z̃k. (2)
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Fig. 1. Min-positive 5-representations of complex numbers z and v.

Obviously, a complex (real) number admits infinite posi-

tive N -representations for N > 2 (N ≥ 2). For instance, all

positive 2-representations of given a real number z are

z̃α =

[
z+ + α
z− + α

]
, α ≥ 0, (3)

(being Q(2) = [1 − 1], trivially, Q(2)z̃α = z+ − z− = z).

The simplest positive 2-representation is the one with α = 0,

and will be named the min-positive 2-representation of z and

denoted with the symbol Π2(z), i.e.

Π2(z) =

[
z+

z−

]
(4)

Note that at most one component of Π2(z) is nonzero.

The concept of min-positive representation can be ex-

tended to complex numbers for N > 2, by choosing positive

N -representations characterized by a minimal number of

nonzero components (at most two).

Definition 2: For a given integer N > 2, the min-positive

N -representation of a real or complex number z is the unique

positive N -representation z̃ ∈ R
N
+ such that at most two

components are non-zero and consecutive. The notation for

the min-positive N -representation of z is ΠN (z).
By definition, z̃ = ΠN (z) is such that for some h ∈

[0, N − 1]:

z = Q(N)ΠN (z) = qhz̃h + q|h+1|N z̃|h+1|N . (5)

Fig. 1 provides a geometrical interpretation of min-positive

N -representations. The N -th roots of unity qh, h ∈ [0, N −
1], allow to partition the complex plane into N disjoint

sectors, denoted C
(N)
h , numbered from 0 to N − 1, defined

as

C
(N)
h ={z ∈ C : z = αqh+βq|h+1|N , for someα > 0, β ≥ 0}.

(6)

Note that qh ∈ C
(N)
h , while q|h+1|N 6∈ C

(N)
h , and

z ∈ C
(N)
h ⇒ ‖ΠN (z)‖1 = z̃h + z̃|h+1|N . (7)

In Fig. 1, z ∈ C
(5)
1 and v ∈ C

(5)
2 . Thus, ‖Π5(z)‖1 = z̃1+ z̃2,

and ‖Π5(v)‖1 = ṽ2 + ṽ3.

Remark 1: The function ΠN (·) is nonlinear: in general

ΠN (z) + ΠN (v) 6= ΠN (z + v) unless z and v belong to
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Fig. 2. The sequence Pk asymptotically covers the open unit disk.

the same sector. Even so, it must be noted that the function

Q(N)ΠN (·) is linear (i.e., z + v = Q(N)ΠN (z + v)).
For a given integer N > 2, the open regular polygon

PN ⊂ C with vertices qh, h ∈ [0, N − 1], and the set ∂PN

of its frontier points can be defined as follows

PN = {z ∈ C : ‖ΠN (z)‖ < 1},

∂PN = {z ∈ C : ‖ΠN (z)‖ = 1}.
(8)

In Fig. 1, z ∈ P5, and therefore ‖Π5(z)‖1 < 1, while v 6∈
(P5 ∪ ∂P5), so that ‖Π5(v)‖1 > 1.

Theorem 1: Let z ∈ C be such that |z| < 1. Then, z ∈ PN
for all N > π/ arccos(|z|).

The main consequence of Theorem 1 is that if |z| < 1,

then ‖ΠN (z)‖1 < 1 for N large enough. This property is

visually demonstrated in Fig. 2.

B. N -Representation of the product of complex numbers

For h ∈ [0, N − 1], let S
(N)
h ∈ R

N×N denote circular

shift matrices, i.e. such that S
(N)
0 = IN and

S
(N)
h =

[
0h×(N−h) Ih
IN−h 0(N−h)×h

]
, h ∈ [1, N − 1]. (9)

Definition 3: Let p ∈ C, and N > 2, (or let p ∈ R and

N ≥ 2) and let p̃ be a positive N -representation of p (i.e.,

p = Q(N)p̃). The following N ×N Toeplitz circulant matrix

P̃=

N−1∑

h=0

S
(N)
h p̃h =




p̃0 p̃N−1 · · · p̃1
p̃1 p̃0 · · · p̃2
...

...
. . .

...
p̃N−1 p̃N−2 · · · p̃0


 . (10)

is the positive circulant N -representation of p associated to

p̃. If p̃ is the min-positive N -representation of p, i.e. p̃ =
ΠN (p), then P̃ is the min-positive circulant N -representation

of p, and will be denoted as Π̃N (p).
Proposition 2: If p̃ and x̃ are a positive N -representations

of complex numbers p and x, respectively, the product P̃x̃,

where P̃ is a positive circulant N -representation of p, is a

positive N -representation of the product p x.

The proof is achieved by demonstrating the identity

p x = Q(N)P̃x̃. (11)
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Remark 2: If p and x are real numbers, then

Π̃2(p) =

[
p+ p−

p− p+

]
, Π2(x) =

[
x+

x−

]
,

Π̃2(p)Π2(x) =

[
p+x+ + p−x−

p+x− + p−x+

]
.

(12)

It can be easily checked that Q(2)Π̃2(p)Π2(x) = p x,

although Π̃2(p)Π2(x) 6= Π̃2(p x). This is the kind of rep-

resentation used in [8], [9].

C. Example: positive representation of a simple system

Consider a transfer function W (z) characterized by a pair

of conjugate poles (p, p∗), written in the form

W (z) =
r

z − p
+

r∗

z − p∗
. (13)

It admits the following complex state-space representation:

x(t+ 1) = p x(t) + r u(t) (14)

y(t) = 2ℜ
(
x(t)

)
, (15)

Now assume that the input sequence u(t) is nonnegative. For

a given integer N , let P̃ ∈ R
N×N
+ be a positive circulant N -

representation of p, and r̃ ∈ R
N
+ a positive N -representation

of r. Then the state-transition equation (14) admits the

following positive representation:

x̃(t+ 1) = P̃x̃(t) + r̃ u(t), (16)

in that x̃(t) ∈ R
N
+ is a sequence of positive N -representations

of the complex state x(t), i.e. x(t) = Q(N)x̃(t).
The main result of this paper is that, for the given integer

N , the choice P̃ = Π̃N (p) (min-positive circulant N -

representation of p) is stable if and only if p ∈ PN . It follows,

thanks to Theorem 1, that if W (z) is stable (i.e. |p| < 1) it is

always possible to choose N such that p ∈ PN , thus ensuring

the stability of the positive representation (16).

D. Positive N -Representations of vectors

Consider a vector x = [x1 . . . xn]
T ∈ C

n, and an integer

N > 2 (or x ∈ R
n and N ≥ 2). Let ξi ∈ R

N
+ , i = 1, . . . , n,

denote some positive N -representations of the components

xi. By definition, the vectors ξi =
[
ξi,0 · · · ξi,N−1

]T
are

such that xi = Q(N)ξi, and x can be written as

x =

N−1∑

h=0

qhx̂h, where x̂h =



ξ1,h

...

ξn,h


 . (17)

Definition 4: The vector x̃ = [x̂T
0 . . . x̂T

N−1]
T ∈ R

nN
+ ,

where the subvectors x̂h are defined in (17), is called a

positive N -representation of x. If ξi = ΠN (xi), the vector

x̃ is said to be the min-positive N -representation of x.

From now on, the symbol ΠN (·) will be applied indif-

ferently to scalars and vectors, so that if x ∈ C
n, then

ΠN (x) ∈ R
nN
+ . Defining

Q(N)
n = Q(N) ⊗ In =

[
q0In q1In · · · qN−1In

]
, (18)

the sum (17) can be written as

x = Q(N)
n x̃, (19)

E. Positive circulant N -Representation of matrices

As it has been done for vectors in section II-D, the positive

N -representations of the components of a matrix A ∈ C
r×n

can be organized into N matrices Âh ∈ R
r×n
+ , such that

A =

N−1∑

h=0

qhÂh. (20)

Definition 5: Given a complex matrix A ∈ C
r×n and

N > 2 (or A ∈ R
r×n and N ≥ 2), and given N positive

matrices Âh ∈ R
r×n
+ such that (20) holds, the following

rN × nN Toeplitz block-circulant matrix:

Ã =

N−1∑

h=0

S
(N)
h ⊗Âh =




Â0 ÂN−1 · · · Â1

Â1 Â0 · · · Â2
...

...
...
...
...

...
ÂN−1 ÂN−2 · · · Â0


 . (21)

is called a positive circulant N -representation of A. If

the elements of the matrices Âh are the min-positive N -

representations of the components of A, then Ã is the min-

positive circulant N -representation of A, and is indicated as

Ã = Π̃N (A).
Proposition 3: Consider A ∈ C

r×n, x ∈ C
n and an

integer N > 2 (or N ≥ 2, if both A and x are real). Let Ã
be a positive circulant N -representation of A, and let x̃ be

a positive N -representation of x. Then, the product Ãx̃ is a

positive N -representation of the product Ax.

As in Proposition 2, the proof is achieved by showing that

Ax = Q(N)
r Ãx̃. (22)

If A is a square and stable matrix (i.e. ρ(A) < 1),

in general its positive circulant N -representations are not

guaranteed to be stable. A very useful result is the following:

Theorem 4: Given A ∈ C
n×n and N > 2 (or A ∈ R

n×n

and N ≥ 2), let Ã be any positive circulant N -representation,

as defined in (21). Let

M(Ã) =

N−1∑

k=0

Âk. (23)

Then Ã and M(Ã) have the same spectral radius, i.e. ρ(Ã) =
ρ
(
M(Ã)

)
.

As a particular case, ρ
(
Π̃N (A)

)
= ρ

(
M

(
Π̃N (A)

))

Remark 3: The min-positive 2-representations of a real

vector x and matrix A are, as in [8], [9],

Π2(x) =

[
x+

x−

]
, Π̃2(A) =

[
A+ A−

A− A+

]
. (24)

F. Positive N -Representation of products of complex matri-

ces with real vectors

Consider a complex matrix B ∈ C
n×p and a positive

circulant N -representation B̃ ∈ R
nN×pN
+ , a real vector u ∈

R
p and its min-positive N -representation ΠN (u) ∈ R

pN
+ .

Then, x̃ = B̃ΠN (u) ∈ R
nN
+ is a positive N -representation

of the product x = Bu ∈ C
n. Being u real, a suitable
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nonnegative matrix H
(N)
p ∈ R

pN×2p can be defined such

that

ΠN (u) = H(N)
p Π2(u), (25)

From this and from x̃ = B̃ΠN (u) it follows

x̃ =BΠ2(u), where B = B̃H(N)
p . (26)

Note thatB ∈ R
nN×2p, while B̃ ∈ R

nN×pN .

G. Computation of the real part of a complex product

Let C ∈ C
q×n and x ∈ C

n. Let C̃ ∈ R
qN×nN
+ be a

positive circulant N -representation of C and x̃ ∈ R
nN
+ be

a positive N -representation of x, so that Cx = Q
(N)
q C̃x̃.

Let y = ℜ(Cx) denote the real part of the product Cx. A

positive 2-representation of y can be readily computed as

ỹ = R(N)
q C̃x̃, with R(N)

q =

[
ℜ
(
Q

(N)
q

)+

ℜ
(
Q

(N)
q

)−

]
∈ R

2q×qN
+ .

(27)

III. INTERNAL POSITIVE REPRESENTATIONS (IPRS) OF

LINEAR SYSTEMS

In this paper the symbol S = {A,B,C,D;U,X, Y }
denotes a discrete-time state-space system of the form

S :

{
x(t+ 1) = Ax(t) +Bu(t), u(t) ∈ U, x(t) ∈ X

y(t) = Cx(t) +Du(t), y(t) ∈ Y,
(28)

where U,X, Y are the input, state and output spaces.

S is a Complex System if A ∈ C
n×n, B ∈ C

n×p, C ∈ C
q×n,

D ∈ C
q×p; U = C

p, X = C
n,Y = C

q;

S is a Real System if A ∈ R
n×n, B ∈ R

n×p, C ∈ R
q×n,

D ∈ R
q×p; U = R

p, X = R
n, Y = R

q;

S is a Positive System if A ∈ R
n×n
+ , B ∈ R

n×p
+ , C ∈ R

q×n
+ ,

D ∈ R
q×p
+ ; U = R

p
+, X = R

n
+, Y = R

q
+.

Given a real system S = {A,B,C,D;Rp,Rn,Rq} and

a nonsingular T ∈ C
n×n, let S(T ) denote the system

{TAT−1, TB,CT−1, D;Rp, TRn,Rq} (denoted Complex

Representation of a Real System).

A. IPRs of Real and Complex Systems

Definition 6: Let S = {A,B,C,D;U,X, Y } be a system,

with input, state, and output denoted u(t), x(t), y(t). An

Internally Positive Representation (IPR) of S is a Positive

System S = {A,B, C,D;Rp̃
+,R

ñ
+,R

q̃
+} together with four

transformations:

T f
X : X → R

ñ
+, T b

X : Rñ
+ → X,

TU : U → R
p̃
+, TY : Rq̃

+ → Y,
(29)

such that, denoting with ũ(t), x̃(t), ỹ(t) the positive input,

state, and output sequences of S̃, for any pair (x0, t0) ∈
X × Z, and for any input sequence u(t) ∈ U starting at t0,

by setting x̃(t0) = T f
X (x0) and ũ(t) = TU (u(t)) in S̃, then

x(t) = T b
X(x̃(t)), y(t) = TY (ỹ(t)), ∀t ≥ t0. (30)

Fig. 3 depicts an IPR. By Definition 6, the input-output

behavior of the IPR and of the original system are the same.

y ( t )

x ( t )

y ( t )

x ( t )

Internally
Positive

Representation

TU

TX
f

TY

u t( )

x t( )

y t( )u t( )~ y t( )~

x t( )~

x t( )00
~

x t( )00

TX
b

u ( t )u ( t )

Fig. 3. Block diagram of an Internally Positive Representation.

B. N -IPRs of Real and Complex Systems

The main result of this paper is that a straightforward

application of the algebra of positive N -representations of

vector and matrices presented in Section II can easily provide

IPRs of real and complex systems.

Theorem 5: Consider a discrete time real system S =
{A,B,C,D;Rp,Rn,Rq} and an integer N ≥ 2 (or a

complex system S = {A,B,C,D;Cp,Cn,Cq} and N > 2),

let (Ã, B̃, C̃, D̃) be positive circulant N -representations of

the system matrices (A,B,C,D). Then, the positive system

S̃ = {Ã, B̃, C̃, D̃;RpN
+ ,RnN

+ ,RqN
+ }, (31)

together with the four transformations

T f
X (x) = ΠN (x), T b

X(x̃) = Q(N)
n x̃,

TU (u) = ΠN (u), TY (ỹ) = Q(N)
q ỹ,

(32)

define an Internal Positive Representation of S (denoted N -

IPR of system S).

The proof is quite straightforward and exploits the prop-

erties of the positive N -representations discussed in the

previous section. Note that when the state of the system S
has dimension n, the state of the N -IPR has dimension nN .

Remark 4: The approach described in [8], [9] for the

construction of IPRs coincides with the method presented

in Theorem 5 when N = 2.

An IPR with matrices of smaller size can be obtained when

the input an output spaces are real (as in the case of Real

Systems or of Complex Representations of Real Systems).

Theorem 6: Let S = {A,B,C,D;Rp, X,Rq}, with X ⊂
C

n, be a Real System or a Complex Representation of a Real

System. For a given N > 2, let the matrices Ã ∈ R
nN×nN
+ ,

B̃ ∈ R
nN×pN
+ and C̃ ∈ R

qN×nN
+ be positive circulant N -

representations of A,B,C, respectively. Then, the positive

system S = {A,B, C,D;R2p
+ ,RnN

+ ,R2q
+ } where

A = Ã, B = B̃H(N)
p ,

C = R(N)
q C̃, D =

[
D+ D−

D− D+

]
,

(33)

(the matrix H
(N)
p ∈ R

pN×2p is defined in section II-

F, while R
(N)
q is defined in (27)) together with the four

transformations

T f
X (x) = ΠN (x), TU (u) = Π2(u) =

[
u+

u−

]
,

T b
X(x̃) = Q(N)

n x̃, TY (ỹ) = Q(2)
q ỹ =

[
Iq −Iq

]
ỹ,

(34)

make up an IPR of S.
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In general, the stability of an IPR of a stable system is

not guaranteed in general (see Theorem 4), and changes of

coordinates may help in finding stable IPRs.

IV. CONSTRUCTION OF STABLE IPRS

This section is aimed to exploit the method of IPR

construction of Theorems 5 and 6 to overcome the limitations

of the technique in [8], [9], that provides stable IPRs only

of systems with eigenvalues in P4.

It is shown that if a system is stable, then there always

exist a change of coordinates and an integer N such that

the constructions of Theorems 5 and 6 provide a stable IPR.

The method of stable IPR construction takes advantage of

the following theorem.

Theorem 7: Let J ∈ C
n×n be a stable matrix in the

Jordan canonical form, and let N > 0 such that σ(J) ∈ PN .

Then, Π̃N (J) is stable.

(Sketch of the Proof) By Theorem 1, there always exists N ∈
Z (large enough) such that σ(J) ∈ PN . Let J̃ = Π̃N (J), and

let Ĵk be the blocks that make up J̃ . Then, by Theorem 4,

the matrix

M(J̃) =
N−1∑

k=0

Ĵk (35)

is such that ρ
(
M(J̃)

)
= ρ(J̃). It can be shown that M(J̃)

has the same block diagonal structure of J , and that whereas

the terms on the diagonal of J are the eigenvalues λh,

the terms on the diagonal of M(J̃) are ‖ΠN (λh)‖1. By

assumption, λh ∈ PN implies that ‖ΠN (λh)‖1 < 1, which

in turn implies ρ(J̃) < 1.

The first step of the proposed algorithm for the con-

struction of a stable IPR of real systems is to change the

system coordinates and to transform the system in the Jordan

canonical form. To this aim, given a stable real system

S = {A,B,C,D;Rp,Rn,Rq}, let nr denote the number

of real eigenvalues of A, and nc the number of pairs of

conjugate complex eigenvalues, each one counted with its

own algebraic multiplicity, so that n = nr + 2nc. It is

known that there exists a nonsingular matrix T ∈ C
n×n,

with the structure T = col(Tr, Tc, T
∗
c ), Tr ∈ R

nr×n, and

Tc ∈ C
nc×n, such that J = TAT−1 is in the following

Jordan canonical form:

J = diag(Jr, Jc, J
∗
c ), (36)

where Jr ∈ R
nr×nr denotes the Jordan block associated

to the real eigenvalues, while Jc ∈ C
nc×nc denotes the

Jordan block associated to the complex eigenvalues with

positive imaginary part. Let T̄ = T−1, with the structure

T̄ = row(T̄r, T̄c, T̄
∗
c ). Then the matrices B̄ = TB and

C̄ = CT−1 have the following structure

B̄ = col(B̄r, B̄c, B̄
∗
c ),

C̄ = row(C̄r, C̄c, C̄
∗
c ),

(37)

where B̄r = TrB̄, B̄c = TcB̄, C̄r = C̄T̄r, C̄c = C̄T̄c.

J-IPR Algorithm

Given a stable real system S = {A,B,C,D;Rp,Rn,Rq},

• find the smallest N ∈ Z such that σ(A) ⊂ PN ;

• find T ∈ C
n×n, such that the matrices of the trans-

formed system S(T ) have the structure (36)-(37);

• compute the min-positive circulant representations:

J̃r = Π̃2(Jr), B̃r = Π̃2(B̄r), C̃r = Π̃2(C̄r),

J̃c = Π̃N (Jc), B̃c = Π̃N (B̄c), C̃c = Π̃N (C̄c);
(38)

• define the following matrices:

A = diag(J̃r, J̃c), B = col(B̃r, B̃cH
(N)
p ),

C = row(C̃r, 2R
(N)
q C̃c), D = Π̃2(D),

(39)

• define the following transformations:

T f
X (x) = col

(
Π2(Trx),ΠN (Tcx)

)
,

T b
X(x̃) = T−1diag

(
Q(2)

nr
, col(Q(N)

nc
, (Q(N)

nc
)∗)

)
x̃,

TU (u) = Π2(u), TY (ỹ) = Q(2)
q ỹ.

(40)

The system S = {A,B, C,D;R2p
+ ,Rñ

+,R
2q
+ }, where ñ =

2nr +Nnc, together with the four transformations (40), is a

stable IPR of the system S.

The proof that S provided by this algorithm is an IPR of

system S can be worked out by straightforward computa-

tions involving the algebra of the positive N -representations

presented in Section II. The stability is a direct consequence

of Theorem 7.

This algorithm has been used to construct the IPR for

the transfer function W (z) in the example of Sec. II-C (it

has been applied to the diagonal pole-residual state-space

representation of W (z)).

Note that Theorem 1 guarantees that if ρ(A) < 1 then

there exists N ∈ Z (large enough) such that σ(A) ⊂ PN .

The size of the state space of the IPR provided by this

algorithm is 2nr + ncN , where N depends on the position

of the complex eigenvalues of A in the complex plane (there

may be situations where N must rather large in order to

satisfy σ(A) ⊂ PN ).

V. CONSTRUCTION OF STABLE IPRS OF SMALLER SIZE

In this section a method is described for achieving stable

IPRs of smaller size than those produced by the J-IPR

Algorithm of the previous section. Due to lack of space, this

method is only sketched. The idea behind the method is to

regard the system in the Jordan coordinates as the parallel of

a set of subsystems (each one associated to the Jordan block

associated to a single eigenvalue), to separately construct

IPRs of each block. In this way, different choices of the

integer N can be made for each Jordan block, according to

the position of the eigenvalues in the complex plane.
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The following definitions are needed for the description

of this IPR construction method:

Polygon unions Pk, k = 2, 3, . . . :

P2 = P2, and Pk =

k⋃

i=1

Pi, k > 2; (41)

Polygon innovations P̃k, k = 2, 3, . . . :

P̃2 = P2, and P̃k = Pk \Pk−1, k > 2. (42)

Given a stable matrix A ∈ R
n×n, the eigenvalues can be

grouped into subsets Λk, k = 2, 3, . . . , defined as

Λk = {z ∈ σ(A) : z ∈ P̃k}. (43)

Thus, Λ2 will contain all real eigenvalues of A, if any, and

Λk, for k > 2, will contain all complex eigenvalues (conju-

gate pairs) contained in Pk and not in Pk−1. Let m denote

the number of non empty sets Λk associated to complex

eigenvalue pairs, and let k1, k2, . . . , km denote the indexes

of such sets. Let nr (possibly zero) denote the number of real

eigenvalues, counted with their algebraic multiplicity, and let

nki
, i = 1, . . . ,m denote the number of complex pairs in

Λki
, counted with their algebraic multiplicity, so that

n = nr +

m∑

i=1

nki
. (44)

Then, consider the change of coordinate T that puts the

system in the Jordan canonical form, where the Jordan blocks

of the matrix J = TAT−1 are organized according to the

indexes ki, i = 1, . . . ,m as follows

J = diag(Jr, Jk1
, J∗

k1
, . . . , Jkm

, J∗
km

),

Jr ∈ R
nr×nr , with σ(Jr) ⊂ P2 = (−1, 1),

Jk ∈ C
nk×nk , with σ(Jk) ⊂ P̃k,

k ∈ {k1, . . . .km}.

(45)

The matrix T and its inverse T̄ = T−1 have the following

structures

T = col(Tr, Tk1
, T ∗

k1
, . . . , Tkm

, T ∗
km

)

T̄ = row((T̄r, T̄k1
, T̄ ∗

k1
, . . . , T̄km

, T̄ ∗
km

).
(46)

The transformed matrices B̄ = TB and C̄ = CT−1 admit

the following block partitions, of compatible dimensions with

the blocks of J :

B̄ = col(B̄r, B̄k1
, B̄∗

k1
, . . . , B̄km

, B̄∗
km

),

C̄ = row(C̄r, C̄k1
, C̄∗

k1
, . . . , C̄km

, C̄∗
km

).
(47)

where B̄r = TrB, B̄ki
= Tk1

B, C̄r = CT̄r, C̄ki
= CT̄ki

.

Applying the J-IPR Algorithm to the real subsystem Sr =
{Jr, B̄r, C̄r, D;Rp,Rnr ,Rq} we get N = 2, while applying

it to each complex subsystem Si

Si = {diag(Jki
, J∗

ki
),col(B̄ki

, B̄∗
ki
),

row(C̄ki
, C̄∗

ki
), 0;Rp, Xki

,Rq},

with Xki
= col(Tki

, T ∗
ki
)Rn ⊂ C

nki , we get N = ki.
It follows that we get an IPR of dimension 2nr, plus m
IPRs, each one of dimension given by the product nki

ki,

i = 1, . . . ,m. The parallel of these m + 1 IPRs makes up

an IPR for the original system whose dimension is

ñ = 2nr +

m∑

i=1

kinki
, (48)

which, in general, is smaller than the dimension of the IPR

provided by the J-IPR Algorithm, which is ñ = 2nr +Nnc

(note that nc =
∑m

i=1 nki
, and N ≥ max{k1, . . . , km}).

Further details on this method can not be reported here due

to lack of space.

VI. CONCLUDING REMARKS

The technique of positive N -representation of complex

matrices and vectors by means of the N -th roots of unity has

been developed and used in this paper for the construction

of stable IPRs of stable (real or complex) systems. The

presented algorithms of IPRs construction is straightforward

and is characterized by a very low computational cost, unlike

other methods available in the literature where the matrices

of the IPR are computed by solving optimization problems.

The approach can also be extended to classes of nonlinear

systems, like polynomial systems [7].
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