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Abstract— In this paper nonlinear time-varying and bilinear
discrete-time systems with additive bounded disturbances are
considered. First, conditions guaranteeing uniform ultimate
boundedness for time-varying nonlinear systems are estab-
lished. Then, algebraic conditions ensuring the existence of poly-
hedral Lyapunov functions, uniform boundedness and positive
invariance for closed-loop bilinear systems are obtained. Finally,
these results are applied to various robust stabilization problems
for bilinear systems subject to persistent additive disturbances.
It is shown that these problems can be reduced to a single or
a series of linear programming problems.

I. INTRODUCTION

The dynamics of most real world systems involve nonlin-

earities in the state space description as well as time-varying

additive terms that represent either uncertainties or persistent

external disturbances. For this class of systems, there does

not exist any feedback control law ensuring asymptotic

stability of an equilibrium state. Instead, a common approach

to deal with the stability analysis and control design problem

is to identify and characterize subsets of the state space con-

taining the desired equilibrium state with special properties:

robust positively invariant sets [1], [2], disturbance invariant

sets [3], [4], or ultimately bounded sets [5], [6]. Most of

works using these set-theoretic approaches deal with linear

systems with polyhedrally bounded disturbances, allowing

the systematic computation of approximations of target sets

with special properties as minimal robust invariant sets or

maximal robust invariant sets.

In this paper, we consider bilinear discrete-time systems

with additive disturbances [7]. Stability analysis as well as

control design for this class of nonlinear systems still remains

a topic of interest, since many processes can naturally be

modelled by bilinear systems [8] and bilinear approxima-

tions are better than the linear ones, especially when well

established identification algorithms can be used [9]. For

the case of bilinear systems with no disturbances, a number

of control strategies have been proposed, see for example

[10], [11], [12]. The problem considered here concerns the

determination of a linear state feedback control law ensuring

confinement of all closed-loop trajectories starting from an

initial states set inside a target set after a finite time. In other

words, we search for a feedback control strategy in order to

characterize a target subset of the state space with ultimate
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boundedness. Due to the nonlinearities of the system, it is not

possible to achieve global ultimate boundedness, thus another

topic of interest is to compute a domain of attraction. As a

first step, using the well known comparison systems theory,

general conditions guaranteeing uniform ultimate bounded-

ness of nonlinear time-varying systems are established, Then,

known conditions related to the existence of polyhedral

Lyapunov functions [12] for bilinear systems are modified in

order to take into account the additive external disturbances.

All these results are used for the development of a systematic

robust stabilization methodology which can handle various

control objectives.

The paper is organized as follows: In section II, the basic

definitions as well as the problem statement are presented.

In section III, general conditions ensuring uniform ultimate

boundedness for nonlinear time-varying discrete-time sys-

tems are established, whereas in section IV these results are

modified in order to deal with the class of bilinear systems.

In section V, design techniques for various control objectives,

are presented along with a numerical example in section VI

illustrating the efficacy of these approaches. Conclusions are

drawn in section VII.

II. PROBLEM STATEMENT

Throughout the paper, capital letters denote real matrices

and lower case letters denote column vectors or scalars. Rn

denotes the real n-space and R
n×m denotes the set of real

n × m matrices. Given a real n × m matrix A = (aij),
A+ = (a+ij) and A− = (a−ij) are n × m matrices with

entries defined by the relations a+ij = max{aij , 0} and

a−ij = −min{aij , 0}. Thus, A = A+ − A−. Given a square

matrix D = (dij), D
δ = (dδij) denotes the diagonal matrix

with dδii = dii and Dµ = (dµij) denotes the square matrix

with d
µ
ii = 0 and d

µ
ij = dij for i 6= j. Thus D = Dδ +Dµ.

For two n × m matrices A = (aij) and B = (bij),

A ⊙ B =
n
∑

i=1

m
∑

j=1

aijbij denotes their component-wise inner

product called the Frobenius inner product. The inequality

A ≤ B (A < B) with A,B ∈ R
n×m is equivalent to

aij ≤ bij(aij < bij). Similar notation holds for vectors.

Finally, T denotes the time set T = {0, 1, 2, ...} and 1q
denotes the q × q identity matrix.

Bilinear discrete-time systems are described by difference
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equations of the form

x(t+1) = Ax(t)+Bu(t)+











xT (t)C1

xT (t)C2

...

xT (t)Cn











u(t)+Eη(t) (1)

where x ∈ R
n is the state vector, u ∈ R

m is the input vector,

t ∈ T is the time variable and A ∈ R
n×n, B ∈ R

n×m,

Ci ∈ R
n×m, i = 1, 2, . . . , n, E ∈ R

n×s. Function η(t),
η : T → H is assumed to be bounded and represents

unknown external disturbances or model uncertainties, H
being a compact subset of Rs containing the origin.

When a linear state-feedback control u(t) = Fx(t) with

F ∈ R
m×n is applied, the resulting closed-loop system is

described by a time-varying nonlinear system with second

order polynomial nonlinearities:

x(t+ 1) = (A+BF )x(t) +











xT (t)C1Fx(t)
xT (t)C2Fx(t)

...

xT (t)CnFx(t)











+ Eη(t).

(2)

Due to the unknown disturbances η(t), there does not exist

any control law rendering the origin an equilibrium state of

system (1). For this reason, instead of a desired equilibrium

state, a target subset of the state space R
n set containing the

origin as an interior point is given. This set is defined by

relation R(Gx, wx)
△

= {x ∈ R
n : Gxx ≤ wx} where Gx ∈

R
s×n, s ≥ n and max

1≤j≤s
{(Gxx)j} > 0 for x 6= 0 and wx ∈

R
s is a vector with positive components. Set R(Gx, wx) is

a bounded polyhedron containing the origin as an interior

point.

The stabilization problem to be investigated is formulated

as follows: Given system (1) and a target set R(Gx, wx),
determine a linear state-feedback control law u(t) = Fx(t)
and a set ∆, R(Gx, wx) ⊂ ∆ ⊆ R

n so that for any

initial state x(t0) = x0 belonging to set ∆ there exists a

positive integer N(x0) such that the corresponding trajectory

x(t; t0, x0) of the resulting closed-loop system satisfies rela-

tion x(t; t0, x0) ∈ R(Gx, wx) for all t ≥ t0+N(x0). In other

words, the control problem is to determine a linear state-

feedback control law and a domain ∆ so that all trajectories

starting from ∆ are transferred to the target set R(Gx, wx)
in a finite time and remain in it. Then, the resulting closed-

loop system is said to be uniformly ultimately bounded in

set R(Gx, wx).
Many other variations of relevant control problems may

also be considered. Such a control problem consists in the

determination of a control law that transfers to the target set

R(Gx, wx) all initial states belonging to an a priori given

domain of attraction ∆ in a prespecified transfer time N.

III. ULTIMATE BOUNDEDNESS OF NONLINEAR SYSTEMS

We consider time-varying nonlinear systems described by

a difference equation of the form

x(t+ 1) = f(t, x(t)) (3)

where f : T × R
n → R

n is a continuous function. Let X
be a compact subset of the state space R

n containing the

origin as an interior point.

Definition 1: System (3) is said to be uniformly ultimately

bounded in a subset X of the state space R
n if there exists a

subset ∆ , X ⊂ ∆ ⊆ R
n such that for any t0 ∈ T and every

initial condition x(t0) = x0 ∈ ∆ there exists a positive

integer N(x0) such that x(t; t0, x0) ∈ X for all t ≥ t0 +
N(x0). Set ∆ is said to be a domain of attraction of set X .

Definition 2: A subset X of the state space of system

(3) is said to be positively invariant if for any t0 ∈ T and

every initial condition x(t0) = x0 ∈ X the corresponding

trajectory remains in X , that is x(t; t0, x0) ∈ X for all

t ≥ t0.

It is clear that if system (3) is uniformly ultimately

bounded in a positively invariant set X , then ∆ is a

domain of attraction if and only if for each initial state

x0 ∈ ∆ there exists a positive integer N(x0) such that

x(t0 +N(x0); t0, x0) ∈ X .

The monotone nondecreasing functions defined below play

an important role in the development of the results of this

paper:

Definition 3. A vector valued function h(t, y), h : T ×
R

q → R
q is said to be monotone nondecreasing if for any

t ∈ T all its components hi(t, y1, y1, ...yq) i = 1, 2, ..., q
are nondecreasing with respect to yj j = 1, 2, ..., q.

If function h(t, y) is monotone nondecreasing, then system

y(t+ 1) = h(t, y(t)) (4)

is monotone, in the sense that y0 ≤ ŷ0 implies y(t; t0, y0) ≤
y(t; t0, ŷ0) for all t0 ∈ T and t ≥ t0.

In the following lemma, conditions for the uniform ulti-

mate boundedness of monotone systems (4) are established:

Lemma 1. If function h(t, y), h : T ×R
q → R

q is mono-

tone nondecreasing and there exist positive real numbers r1,

r2, and ε < 1 such that

h(t, rw) ≤ εrw ∀r ∈ [r1, r2], ∀t ∈ T (5)

then system (4) is uniformly ultimately bounded in set

R(1q, r1w) = {y ∈ R
q : y ≤ r1w},

and

R(1q, r2w) = {y ∈ R
q : y ≤ r2w}

is a domain of attraction.

Proof : From (5) it follows that for any t0 ∈ T

y(t0 + 1; t0,r2w) = h(t0, r2w) ≤ εr2w

for any t0 ∈ T. Let N be the minimal positive integer

satisfying inequality εNr2 < r1. Such a N exists because

ε < 1. Then r1 ≤ εkr2 ≤ r2 ∀k = 1, 2, ..., N − 1
and taking into account (5) and the hypothesis that function

h(t, y) is monotone nondecreasing, by induction, it can be

easily proven that

y(t0 + k; t0,r2w) ≤ εkr2w ∀k = 1, 2, ..., N − 1
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and

y(t0 +N ; t0,r2w) = h(t0 +N − 1, y(t0 +N − 1; t0,r2w))

≤ h(t0 +N − 1, εN−1r2w) ≤

≤ εNr2w < r1w.

On the other hand, inequality h(t, r1w) ≤ r1w, ∀t ∈ T,

implies the positive invariance of set R(1q, r1w) w.r.t. to

the monotone system (4) [13]. Therefore,

y(t0 + k; t0,r2w) ≤ r1w ∀t ≥ t0 +N.

Finally, since system (4) is monotone, if y0 ≤ r1w, that is

if y0 ∈ R(1q, r1w), then y(t; t0,y0) ≤ y(t; t0,r1w) < r1w,

or equivalently y(t; t0,y0) ∈ R(1q, r1w), for all t0 ∈ T and

t ≥ t0+N Consequently, system (4) is uniformly ultimately

bounded in R(1q, r1w) and R(1q, r2w) is a domain of

attraction.�

We are now in a position to establish conditions guaran-

teeing the uniform ultimate boundedness of system (3) in a

compact subset X of the state space R
n. Let P (v, w) be the

subset of the state space R
n defined by relation

P (v, w)
△

= {x ∈ R
n : v(x) ≤ w}

where v(x), v : R
n → R

q is a continuous vector valued

function such that v(0) = 0.
Theorem 1. If for a continuous function v(x), v : Rn →

R
q there exist a monotone nondecreasing function h(t, y), h :

T × R
q → R

q and positive real numbers r1, r2, and ε < 1
such that

P (v, r1w) ⊆ X ⊂ P (v, r2w)

v[f(t, x(t)] ≤ h(t, v(x)) (6)

h(t, rw) ≤ rεw ∀r ∈ [r1, r2], ∀t ∈ T

then system (3) is uniformly ultimately bounded in set X
and P (v, r2w) is a domain of attraction of set X .

Proof: Since function h(t, y) is monotone nondecreasing,

if v(x0) = y0 then v[x(t; t0, x0)] ≤ y(t; t0,y0) for all t0 ∈ T

and t ≥ t0, y(t; t0,y0) being the trajectory of the comparison

system

y(t+ 1) = h(t, y(t)) (7)

with initial condition y(t0) = y0. If x0 ∈ P (v, r2w), that

is if v(x0) ≤ r2w then v[x(t; t0, x0)] ≤ y(t; t0,r2w) for all

t ≥ t0. By virtue of Lemma 1 this implies inequality

v[x(t; t0, x0)] ≤ y(t; t0,r2w) ≤ εNr2w ≤ r1w (8)

for all t ≥ t0 +N, that is x(t; t0,x0) ∈ P (v, r1w) ⊆ X for

all t ≥ t0 +N.�

Remark 1. From (8) it follows that, under the hypotheses

of this theorem, all initial states x0 belonging to the domain

of attraction P (v, r2w) are transferred to the target set X
in a time not exceeding the minimal positive integer N that

satisfies inequality

εN ≤
r1

r2
. (9)

Remark 2. It is known [13] that the existence of a

nondecreasing function h(t, y) satisfying (6) and inequality

h(t, w) ≤ w ∀t ∈ T is a necessary and sufficient condition

for the positive invariance of set P (v, w) w.r.t. system

(3). Therefore, hypotheses of this theorem, besides uniform

ultimate stability in set X , imply the positive invariance of

all sets P (v, rw) ∀r ∈ [r1, r2].

We shall use this result to establish conditions of robust

stability for nonlinear systems in the presence of additive

persistent disturbances. Systems of this class are described

by state equations of the form

x(t+ 1) = f(t, x(t)) + η(t) (10)

where f : T ×R
n → R

n with f(t, 0) ≡ 0 and η : T → H,

H being a compact subset of R
n. Function η(t) represents

model uncertainties or/and external persistent disturbances.

Theorem 2. If for a continuous function v(x), v : Rn →
R

q there exist a monotone nondecreasing function h(t, y), h :
T × R

q → R
q and positive real numbers r1, r2, and ε < 1

such that

P (v, r1w) ⊆ X ⊂ P (v, r2w) (11)

v[f(t, x)] ≤ h(t, v(x)) (12)

h(t, rw) + d ≤ rεw ∀r ∈ [r1, r2], ∀t ∈ T. (13)

where d ∈ R
q,

di = max
t∈T

{vi(η(t))} i = 1, 2, ..., q

then system (10) is uniformly ultimately bounded in set X
and P (v, r2w) is a domain of attraction of set X .

IV. STABILIZATION OF BILINEAR SYSTEMS

The result established in Theorem 2 can be used for the

design of robust controllers for various types of nonlinear

systems subject to additive persistent disturbances. In this

section we develop a systematic method for stabilization of

bilinear systems described by state equations (1).

We select function v(x) and vector w to be

v(x) = G∗x =

[

G

−G

]

x, w =

[

w1

w2

]

(14)

where G ∈ R
p×n, rankG = n and wi ∈ R

p i = 1, 2
are vectors with positive components. Then set P (v, w) =
Q(G,w1, w2) where

Q(G,w1, w2)
△

= {x ∈ R
n : −w2 ≤ Gx ≤ w1}

is a bounded polyhedron containing the origin as an interior

point. Let y1 = [y11 y12 ... y1p]
T = (Gx)T , y2 =

[y21 y22 ... y2p]
T = −(Gx)T and Y M = (yMij ),

Y m = (ymij ) be p × p matrices whose elements are

defined by the relations yMij
△

= max(y1iy1j , y2iy2j), ymij
△

=
max(y1iy2j , y2iy1j). Then we can prove [12] that for the

closed-loop system (2) and function v(x) defined by (14)
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condition (12) of Theorem 2 is satisfied by the nondecreasing

function

h(y) =

[

H+ H−

H− H+

] [

y1
y2

]

+























D+
1 ⊙ Y M +D

µ−

1 ⊙ Y m

...

D+
p ⊙ Y M +Dµ−

p ⊙ Y m

D−
1 ⊙ Y M +D

µ+

1 ⊙ Y m

...

D−
p ⊙ Y M +Dµ+

p ⊙ Y m























(15)

where H ∈ R
p×p and Dj ∈ R

p×p j = 1, 2, . . . , p are

matrices satisfying relations

G(A +BF ) = HG (16)

n
∑

i=1

gjiCiF = GTDjG j = 1, 2, . . . , p. (17)

Let also d ∈ R
2p be the vector defined by relation

di =

{

max
t∈T

{(GEη(t))i} i = 1, 2, . . . , p

−min
t∈T

{(GEη(t))i} i = p+ 1, p+ 2, . . . , 2p

(18)

Then, by applying the result stated in Theorem 2 we establish

the following conditions of uniform ultimate boundedness of

closed-loop system (2) in set R(Gx, wx).
Theorem 3. If for a matrix G ∈ R

p×n, rankG = n and

a vector w ∈ R
p, w > 0, there exist matrices H ∈ R

p×p

and Dj ∈ R
p×p j = 1, 2, . . . , p and positive real numbers

r1, r2 and ε < 1 satisfying relations (16)-(17) and such that

Q(G, r1w1, r1w2) ⊆ R(Gx, wx) ⊂ Q(G, r2w1, r2w2)
(19)

and

h(rw) + d ≤ rεw ∀r ∈ [r1, r2], (20)

with function h(y) and vector d defined by (15) and (18)

respectively, then the closed-loop system (2) is uniformly

ultimately bounded in R(Gx, wx) and Q(G, r2w1, r2w2) is

a domain of attraction.�

This result cannot be applied in this form to the design

of robust controllers for bilinear system (1). For this reason,

we first replace set conditions (19) by equivalent algebraic

ones. By applying Farkas Lemma, set conditions (19) are

equivalent to the existence of nonnegative matrices K ∈
R

s×2p and L ∈ R
2p×s such that

KG∗ = Gx (21)

r1Kw ≤ wx (22)

LGx = G∗ (23)

Lwx < r2w. (24)

Conditions (21)-(22) which are equivalent to set relation

Q(G, r1w1, r1w2) ⊆ R(Gx, wx) can also be replaced by the

linear inequalities

Gxx
(j) ≤ wx j = 1, 2, ..., 2p (25)

where x(j) denote the vertices of polyhedron

Q(G, r1w1, r1w2).
Next, we replace (20) by an equivalent condition non

depending on variable r but only on the bounds r1 and

r2. Let H∗y and g∗(y) be the linear and the nonlinear part

respectively of function h(y), namely

H∗y =

[

H+ H−

H− H+

]

y (26)

and

g∗(y) =























D+
1 ⊙ Y M +D

µ−

1 ⊙ Y m

...

D+
p ⊙ Y M +Dµ−

p ⊙ Y m

D−
1 ⊙ Y M +D

µ+

1 ⊙ Y m

...

D−
p ⊙ Y M +Dµ+

p ⊙ Y m























(27)

Then, condition (20) is written as

H∗rw + g∗(rw) + d ≤ rεw ∀r ∈ [r1, r2],

or

rH∗w + r2g∗(w) + d ≤ rεw ∀r ∈ [r1, r2].

Functions

r[(H∗ − ε12p)w]j + r2g∗j (w) + dj j = 1, 2, ..., 2p

are convex. Therefore if

ri[(H
∗ − ε12p)w]j + r2i g

∗
j (w) + dj ≤ 0 j = 1, 2, ..., 2p

for i = 1, 2 then

r[(H∗ − ε12p)w]j + r2g∗j (w) + dj ≤ 0 j = 1, 2, ..., 2p

for all r ∈ [r1, r2] or, equivalently,

rH∗w + r2g∗(w) + d ≤ rεw ∀r ∈ [r1, r2].

Consequently, condition (20) is equivalent to conditions

riH
∗w + r2i g

∗(w) + d ≤ riεw i = 1, 2. (28)

Thus, we establish the following result:

Theorem 4. If for a matrix G ∈ R
p×n , rankG = n

and vectors wi ∈ R
p, wi > 0 i = 1, 2, there exist matrices

H ∈ R
p×p , Dj ∈ R

p×p j = 1, 2, . . . , p, K ∈ R
s×2p,

K ≥ 0, L ∈ R
2p×s, L ≥ 0 and positive real numbers r1, r2

and ε < 1 satisfying relations (16)-(17) and such that

KG∗ = Gx

r1Kw ≤ wx

LGx = G∗

Lwx < r2w

riH
∗w + r2i g

∗(w) + d ≤ riεw i = 1, 2 (29)

with matrix H∗ and function g∗(y) defined by (26) and (27)

respectively, then the closed-loop system (2) is uniformly

ultimately bounded in set R(Gx, wx) and Q(G, r2w1, r2w2)
is a domain of attraction.�
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V. DESIGN TECHNIQUES

Many different approaches to the stabilization of bilinear

systems can be established by applying the results stated in

Theorem 4. In this section, we develop systematic design

methods that reduce the robust stabilization problem to one

or a sequence of linear programming problems.

According to Theorem 4, a linear control law u = Fx is

a solution to the control problem if for a matrix G ∈ R
p×n

rankG = n and positive vectors w1, w2 ∈ R
p, there exist

matrices H ∈ R
p×p , Dj ∈ R

p×p j = 1, 2, . . . , p, K , L and

positive real numbers r1, r2 and ε < 1 satisfying relations

G(A +BF ) = HG (30)

n
∑

i=1

gjiCiF = GTDjG j = 1, 2, . . . , p (31)

r1H
∗w + r2i g

∗(w) + d ≤ riεw, i = 1, 2 (32)

KG∗ = Gx (33)

r1Kw ≤ wx (34)

LGx = G∗ (35)

Lwx ≤ r2w (36)

K, L ≥ 0 (37)

For the determination of a solution to the control problem

we first compute r1 so that conditions (33) and (34) guar-

anteeing that Q(G, r1w1, r1w2) ⊆ R(Gx, wx) are satisfied.

This can be done by solving the linear programming problem

linear programming problem

min
K,r

−1

1

{r−1
1 } (38)

under constraints

KG∗ = Gx (39)

Kw ≤ r−1
1 wx (40)

K ≥ 0. (41)

Then a control law u(t) = Fx(t) making sys-

tem (1) uniformly ultimately bounded in R(Gx, wx) and

Q(G, r2w1, r2w2) a domain of attraction can be determined

by solving the linear programming problem

min
F,H,D1,...,Dp,ε

{ε } (42)

under constraints (30)-(32). The computed control u = Fx is

a solution to the control problem if the optimal nonnegative

value εopt of parameter ε is less than 1.

Minimization of parameter ε results to a faster transient

behavior because from (9) it follows that all initial states

belonging to the domain of attraction Q(G, r2w1, r2w2)
are transferred to the target set R(Gx, wx) in a time not

exceeding N , where

N =
1

log(εopt)
log

(

r1

r2

)

.

Next we consider the control problem with guaranteed

performance. In this case, parameter ε that characterizes

the transient behavior of the closed-loop system is a priori

given. Then the problem is the determination of a control law

u = Fx and of a domain of attraction Q(G, r2w1, r2w2) so

that all initial states belonging to this set are transferred to

the target set R(Gx, wx) in a time N∗. Such a control law

and a domain of attraction can be determined by solving the

optimization problem

max
F,H,D1,...,Dp,L,r2

{r2 } (43)

with constraints (30)-(32), (35), (36) L ≥ 0 and ε = ε∗

where

log(ε∗) =
1

N∗
log

(

r1

r2

)

.

It can be easily shown that this optimization problem is

convex and is equivalent to a series of linear programming

problems.

VI. NUMERICAL EXAMPLE

We consider a second order bilinear system (1) with

system matrices A =

[

1 0.01
0.02 0.8

]

, B =

[

0.09
0.09

]

,

C1 =

[

0.001
0

]

, C2 =

[

0
−0.004

]

, E = I2. The

system is subject to bounded additive disturbances η(t) ∈ H,

where H =R(Gη, wη) = {η ∈ R
2 : Gηη ≤ wη}, with

Gη =





0.96 −0.22
−0.87 0.49
0.24 0.97



 , wη =





0.019
0.004
0.030



 . It is also

given a target set R(Gx, wx) = {x ∈ R
2 : Gxx ≤ wx}

and a desired domain of attraction Q(G, r2w, r2w) = {x ∈

R
2 : −r2w ≤ Gx ≤ r2w} where Gx =









1 0.1
−0.4 1
−1 −0.1
0.4 −1









,

wx =









0.34
0.51
0.34
0.51









, G =

[

1 0
0 1

]

, w =

[

0.3
0.3

]

, r2 = 5.

The first problem to be solved is the determination of a

linear state feedback control law u(t) = Kx(t) so that all

trajectories starting from set Q(G, r2w, r2w) are transferred

to the interior of the target set R(Gx, wx) = {x ∈ R
2 :

Gxx ≤ wx} in finite time N and remain in it.

In order to determine a value of parameter r1 such that

Q(G, r1w, r1w) ⊆ R(Gx, wx) we solve the linear program-

ming problem described in (38)-(41). The optimal value

of r−1
1 is equal to 1. Therefore, with r1 = 1 we obtain

Q(G,w,w) ⊆ R(Gx, wx).
Then a control law rendering the system uniformly ulti-

mately bounded in set R(Gx, wx) with set Q(G, 5w, 5w)
being a domain of attraction is obtained by solving the linear

programming problem min
F,H,D1,...,Dr,ε

{ε } under constraints

(30)-(32) and r1 = 1, r2 = 5. The optimal value of

parameter ε has found to be εopt = 0.99 where F =
[

−1.0405 −0.1111
]

. Since ε < 1, the state-feedback
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Fig. 1. The target set R(Gx, wx), the domain of attraction Q(G, 5w, 5w),
the positively invariant set Q(G,w,w) and trajectories of the closed-loop
system starting from the vertices of Q(G, 5w, 5w).
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2
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2
w) and the

trajectories of the closed-loop system starting from the vertices of this set.

control u(t) = −1.0405x1(t) − 0.1111x2(t) is a solution

to this control problem. The closed-loop bilinear system

trajectories starting from the vertices of set Q(G, 5w, 5w)
are shown in Fig. 1, along with the domain of attraction

Q(G, 5w, 5w), the target set S(Gx, wx) and the positively

invariant set Q(G,w,w).

The second problem to be solved concerns the compu-

tation of the maximal domain of attraction Q(G, rw, rw).
Since we are interested to find a large initial condition

set, we select a slow rate of convergence ε = 0.9999.

Solving the optimization problem max
F,H,D1,...,Dr,r2

{r2 } under

constraints(30)-(32), r1 = 1 and ε = 0.9999, the optimal

value of r2 and the corresponding gain matrix has been found

to be r∗2 = 116.4 where F =
[

−0.9092 −0.1111
]

. It

should be noticed that this optimization problem is convex

and it can be reduced to a sequence of linear programming

problems. In Fig. 2, the maximized domain of attraction

S(G, r∗2w, r
∗
2w) for the closed-loop system is shown together

with the trajectories emanating from the vertices of the set.

VII. CONCLUSIONS

A new approach to the robust stabilization of discrete

time bilinear systems with additive external disturbances has

been presented. First, the necessary theoretical background,

originating from comparison systems theory and leading to

conditions guaranteeing uniform ultimate boundedness for

nonlinear time varying systems has been established. Then,

using polyhedral Lyapunov functions, algebraic conditions

for the uniform ultimate boundedness of bilinear systems

subject to external persistent disturbances have been devel-

oped. These conditions have been used for the development

of systematic methods for the design of robust linear con-

trollers. Thus, the computation of stabilizing linear state

feedback control laws is reduced to a single or a series

of linear programming problems. It should be noticed that

the proposed robust stabilization methodology is versatile

because many different design objectives can be considered,

and can be naturally extended to the constrained stabilization

case.
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