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Abstract— Distributed synchronization has gradually gained
importance over the last two decades. The ad-hoc nature
of new applications has increased the need for robust and
scalable distributed algorithms that are capable of generating
high precision timing information. However, current solutions
usually produce phase errors when the frequencies are het-
erogeneous. This paper proposes a distributed synchronization
procedure that can achieve consensus in both frequency and
phase. The algorithm uses only local information and is robust
to frequency heterogeneity and network topology. A sufficient
condition for global convergence is shown by leveraging recent
results on coupled oscillators. We further characterize an
invariant constant of the algorithm that relates the limiting
frequency w* with the harmonic mean of the clocks’ natural
frequencies. Simulations are provided to illustrate and verify
these properties.

I. INTRODUCTION

The need of a common time reference among network
nodes has always been an important issue in communication
networks. Historically, it was primarily used to allow co-
herent data communication among telecommunication nodes
and coordination for medium access control in cellular
networks. These solutions usually require a centralized clock
distribution architecture and depend on highly stable clocks
with relative frequency offsets of less than 10719 [17].

Nowadays, synchronization is used in a vast diversity of
applications. Examples of these include data fusion of time
sensitive measurements in distributed estimation or tracking
[5], energy efficient MAC protocols with sleep periods [18],
and collaborative transmission using space-time coding [4].

Unfortunately, traditional synchronization architectures
have become increasingly unsuitable for these applications
due to several reasons. First, the synchronization of the entire
network relies on a few number of nodes. This implies that
the whole system is fragile to the failure of those nodes.
Second, in order to achieve high precision, expensive clocks
are usually needed and cannot be placed in every node of the
network. And finally, the centralized nature of the solution
makes it not scalable since errors will accumulate when the
number of clocks grows.

Essentially, there are three requisites that an ideal synchro-
nization protocol should satisfy. It should be distributed and
independent of network topology, i.e., each node only uses
neighbors’ timing information to adjust it own time. It should
be robust to high variance in clock’s frequency distribution,
and it should minimize the phase error as much as possible.

Several synchronization algorithms have been proposed
along this line of thoughts, see e.g. [13], [14] and refer-
ences therein. One possible solution is to use discrete time
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PLLs (Phase Lock Loop). The resulting algorithms can be
shown to globally converge but they are either sensitive to
heterogenous frequencies [16], or can only be analyzed for
the two node scenario [10]. There have also been studies on
frequency and phase estimation with noisy measurements.
However, the techniques involved usually only cover large
number of nodes asymptotics [15] while guaranteeing O(1)
phase errors.

This paper builds upon related work on coupled oscillators,
e.g., [8], [7]. These systems usually need to introduce phase
mismatch to compensate the frequency differences. We solve
this problem by adding a new integrator in the loop together
with a linear consensus term. Moreover, we also provide a
global convergence result under certain conditions on the
topology, i.e. connectivity, and coupling.

The rest of the paper is organized as follows. Section II
introduces the model. In Section III, we use an invariant
property of the system to characterize the final achieved
frequency w* in term of initial conditions and system pa-
rameters. Global convergence is established in Section IV.
Simulations are used to illustrate our findings in Section V
and conclusions are presented in Section VI.

II. MOTIVATION AND MODEL
A. Modeling Clocks

We consider a network of N nodes. The connectivity of
the network is described by a graph G = (V,E) where
two nodes, 7,7 € V, are allowed to interchange timing
information if and only if there is some edge ij € E. This
exchange of information can be done by explicit transmission
or implicit estimation, and it is assumed to have negligible
delay.

Each node contains a clock of natural frequency T% which
is assumed to be implemented by a continuous counter n; €
[0,1] that increases its count according to

’fli = Til — §(nl — ].),
The Dirac’s delta function § forces the counter to restart once
it reaches the value 1. Notice 7} is also the total time needed
for n; to go through the interval [0, 1].
The main goal of this paper is to find a control strategy that
bring all the clocks to a time consensus using only neighbors’
information, i.e.,

VieV. (1)

1
ni(t) = =t +n* VieV, )

T'x
as t — +oo, with T being the final common period.

(mod 1),
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Despite the discontinuities that (1) generates, the periodic-
ity of the trajectories allows a transformation from counters
n; to phases ¢; in the unit circle $! such that (1) becomes

¢'L = Wi,
2m

with w; = T and whose corresponding trajectories are
smooth. The transformation follows from identifying the two
extremes of the interval [0, 1] to the same point in $' and
the change of variable ¢; = 27n;.

Remark 1: There are other possible implementations that
also have a phase model representation, e.g. voltage con-
trolled oscillators generating sinusoidal signals. The results
of this paper are applicable to such systems if a suitable
phase and frequency estimation is feasible.

Remark 2: This transformation also provides an interest-
ing interpretation for the time consensus problem. Since the
state space of the phase model is the N-torus T*V, the time
consensus problem is equivalent to the Second Order N-torus
Consensus which seeks convergence in both phase and fre-
quency, i.e., [l6;(t) = 4Dl — 0 and | é;(1) - di(t)|| -
0, forall 4,5 € V as t = +o0.

The system is said to reach frequency consensus if the
trajectories converge to limit cycles of the form

VieV, 3)

oi(t) =w't+¢; VieV, “)

where w* denotes the synchronizing frequency. Furthermore,
the system achieves phase consensus if ¢} = ¢, Vi € V.

To illustrate the challenge of this problem, we first con-
sider a standard model of coupled oscillators

'—Wz+Zf2] z (5)

JEN;

in which each node ¢ corrects its own frequency by an
additive term depending on the phase difference with its
neighbors. A; denotes the set of neighbors of 7 and the
function f;; is 2m-periodic and usually odd, e.g. see Figure
2. Even when the frequencies are homogeneous among the
nodes, (5) presents several limit cycles of the form of (4).
Their existence and stability depend on several factors such
as topology and coupling [8], and most of the existing
works are constrained to study either local stability or fixed
topologies [8], [9].

Only recently, global convergence results have been ob-
tained by adding constraints on f;; [11], [7]. In spite of
these global convergence results, all of them assume that
every oscillator has the same natural frequency w;.

In fact, once the frequencies are different, phase consensus
breaks. This is mainly due to the fact that in order for
synchronization to occur

o mwt Y ful6] o),
JEN;

must hold Vi € V' and thus the system needs to compensate
the frequency mismatch by introducing a certain phase
difference.

B. Combining Synchronization of Coupled Oscillators with
Consensus Algorithms

We now show how the limitation of coupled oscillators in
achieving phase consensus when the frequencies are different
can be overcome by combining ideas from coupled oscil-
lators and linear consensus literature. Instead of additively
changing the frequency as in (5), we propose to control the
clock speed using a multiplicative scalar +;, i.e.

o; = wiyi, VieV. (6)
This can be done, for example, in our clock implementation
by multiplying the counter value n; times ;. In this way,
only when ~; = 1, the ¢th clock will run at its own natural
frequency.

The problem now reduces to how to define a control
law for ;. Since our aim is to obtain consensus in both
frequency, y;w;, and phase, ¢;, then the adaptation ~; should
accept such desired solution.

For instance, a first try to solve this problem might be to

use
=Y fii(d; — )

JjEN;

YieV,

which amounts to adding an integrator to the dynamics.
Formally, we can express the dynamics in vector from as,

= -BF(B"¢) and =0, )
where = diagw;], B is the oriented incidence matrix of
G [1], ie.
1 ifk=j,
B(k,ij) =4 —1 if k=1, (8)
0 otherwise,

and F(-) is the column vector valued function

F(y) ==

What it is interesting of (7) is that even though the
frequencies w; might be different, the system still allows
phase and frequency consensus. In fact, by setting v; =
“, o7 = ¢, and integrating (7) we obtain the consensus
orbit

[fij (Wij)lijer-

d(t) = w'tly + ¢ly, Vi €V,

where 15 € RY is the column vector of all ones.

However, a more detailed study of (7) unveils an additional
oscillatory behavior that this system exhibits. To see this
consider the function W : TV x RY — R,

W(e,7)

where V(y> = ZijeE oyij fz](S)dS
The function W(¢,v) can be interpreted as the energy

function of (7). In fact, it is easy to see that gi) = 87 W and 4 =

—%—Z which means that the system (7) is Hamiltonian and

that the energy W (¢, y) remains constant along trajectories,
ie. W=0.

1
= §’YTQV +V(BT¢), 9)
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(a) Nonlinear oscillations of (7): Phases plotted relative to ¢
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(b) Adding a positive damping

Fig. 1. Oscillations and Damping

This suggests that one could possibly find trajectories in
which energy changes from kinetic (%'yTQ'y) to potential
V(BT¢) and back again over time. In Figure 1(a) we
illustrates one of these trajectories. We simulated a fully
connected network of 3 nodes with w; = 1, Vi € V and
with initial condition ¢ = (0,%,—%)", and v = 15

Therefore, although (7) allows the type of solutions we
are seeking, the additional integration introduced does not
guarantee its convergence. A standard technique to overcome
this oscillatory nonlinear behavior [12], [6] is to introduce
a damping term in (7) that disspates energy. For instance,
consider

4 =—BF(BT¢) —vQy and ¢ =0, (10)

where v is a positive scalar.

Figure 1(b) shows how now the trajectories with the
same initial conditions as before converge. Unfortunately, as
Figure 1(b) suggests, (10) can only admit limit cycles with

* = 0 which is unsuitable for our application.

The problem is that the term —v€)y in + is behaving
similarly to the system & = —vz which clearly has a unique
equilibrium in z = 0. However, if we consider instead,

di= Y ai(w; — z),
i

it is well known from linear consensus literature that under
mild conditions on a = [a;;]ijev v, the trajectories with
given initial condition z° always converge to m;(t) —
L5 2 Vi € V. More precisely, this occurs whenever
a;; > 0 and the induced graph G, = (V, E,), with E, =
{ij € V- x Vl]a;; > 0}, is connected.

Therefore, it seems promising to study

4=—-BF(BT¢) - L(a)y and ¢=Qy, (11)

where L(a) = B,diag[a;;] BT is the weighted Laplacian [1]
of the possibly different graph G, = (V, E,,) and B, denotes
the incidence matrix of G, as defined in (8).

In the Euclidean counterpart of this problem it is possible
to guarantee convergence even when only two nodes share
speed information [2]. In our case, we need to assume that
the undirected graph G, is connected.

One interpretation of the two terms of 4 in (11) is the
following. The term —BF (B ¢) seeks phase consensus, al-
though it cannot achieve it by itself. And the term —L(a)Qy
seeks frequency consensus and in fact it can achieve, but it
fails to guarantee phase consensus. Thus, the term —L(a)
acts as a damping term for the phase consensus algorithm,
or equivalently — BF(BT ¢) acts as a correction term of the
frequency consensus algorithm.

III. SYNCHRONIZATION FREQUENCY

In this section we compute the value w* achieved by (11).
We start by providing a general characterization for w*.

Proposition 1: Given initial conditions (¢°,~%). If the
system (11) converges to an orbit like (4), then the achieved
frequency can be computed using

N
* Zi:l rY?

W= S (12)

=1 w;
Proof: A well know property of B (or B,) is that
ker[BT] = span[ly] whenever G (or G,) is connected.

Using this property, it is stralghtforward to show that 1%, NY =
0. Then, given initial condition 7 we have

N
D vilt) =139t = 15(4° +/
i=1 s

s=0

t

7(s)ds)
=137 +0=137"

Thus, the quantity S | 7i(t) = S.~ , 4 is an invariant of
the system.

Suppose now that the system converges to a limit cycle,
or equivalently that ~;(¢) — f}— Then it follows

N N
A= v —
1=1 =1

Solving for w* gives the desired result. [ ]

When every clock starts with initial frequency equal to its
own natural frequency (vy; = 1), w* will be the harmonic
mean, i.e.,

The reason why the system does not achieve the average
of {w;} is that the system is in fact averaging a different
quantity. This can be seen by substituting w; with 2” in (13)
which gives, T* = 37: =W ZZ 1 o= % Zi:l Ti. Thus,
the achievable frequency is such that the cycle duration 7
is the average cycle duration among all the oscillators when
running with their natural frequencies % S.

Notice also that this property is still preserved if every
time a new clock is added to the network, its ~; is initialized
to 1, since then we will still have 1% ,7%,; = 1574 +1 =

N+ 1.
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IV. GLOBAL SYNCHRONIZATION
A. Frequency Concensus

We first present our global convergence result for fre-
quency consensus.

Theorem 1 (Frequency Consensus): Consider the system
(11) running over connected graphs G and G, with f;; being
symmetric, odd and continuously differentiable. Then, for
every initial condition, the trajectories converge to a limit
cycle as in (4) with w* as in (12).

Proof:  Consider the Lyapunov candidate function
W(¢,v) as defined in (9). Notice that the domain of W
is composed by the cross product (x) of a compact space
TY and the unbounded space R”Y. Therefore, to apply the
global version of Lassale’s Invariance Principle we only need
W to be radially unbounded with respect to « which is true
since € is positive definite.

Thus, for any given initial condition (¢°,~") with
W(¢°,7°) = ¢ we can always find a scalar 7 > 0 such
that for every 4 not in a ball B, C RY of radius r and
center 0, W(¢,7) > c for any ¢ € TV. Therefore, the set
U, = {(¢,7) : W(¢,7) < c} C TN x B, si compact.

We start by taking the derivative of W along the trajecto-
ries. This gives

W(6,7) =772+ (BVV(BT9),6)
=+TQ[-BF(B"¢) — BBTQy)
+(BVV(B"4), )
= —"QL(a)y —7"QBF(B"¢)
+~TQBF(B” ¢)
= —(Y) " L(a)() <0

where in the first two steps we use the chain rule for gradients
V(VoBT)(¢) = BVV(BT¢) and (11), in the third step we
use the identity VV (y) = F(y), and in the last step we used
the fact that L(a) is positive semidefinite, i.e. 7 L(a)z > 0
V.

Thus, we have shown that W, is a compact positively
invariant set since W(¢,7) < 0 V(¢,7) € .. Lassale
Invariance Principle then implies that the system converges
to the largest invariant M set inside {WW = 0} N ¥... Now,
since GG, connected implies that 1 is the only eigenvector
of L(a) with zero eigenvalue, then W = 0 implies

Qv(t) = w(t)ly.

Differentiating both sides, we get Q7(t) = w(¢)1x which is
also restricted to span[1y]. However, we already know that
4(t) € ker[1%]. Then, since

Q span[1y] Nker[1%] = {0},

we must have 4 = 0, which implies () = w*Q 11y for
some constant scalar w*. Therefore we must have M =
My~ x {w*Q~ 11} and the system converges to an orbit
like (4). Proposition 1 shows that w* is as in (12). [ ]

Remark 3: Theorem 1 guarantees that the system will
synchronize to the frequency harmonic mean of the nodes

(provided 7 = 1) but it does not guarantee phase consen-
sus. The main problem is that, as in the classical couple
oscillators system, there might be other attractive orbits
besides consensus. In the next section we show that certain
conditions on coupling functions can guarantee that only the
phase consensus orbit is attractive.

B. Phase Consensus

In this section we focus on studying the stability of the
limit cycles. We know from Theorem 1 that (11) converges
for every initial condition to an orbit like (4), where w* is
characterized by (12). Also, since (t) — v* with 7 = %,
then from (11) we get '

0= —BF(BT¢*) — L(a)Qy*
= —BF(B'¢*) — B,diag[a;;]BI QQ'w*1y
= —BF(B"¢")

where in the last step we used again ker[Bl] = span[1y].
Thus, ¢* must be a solution to BF(BT¢*) = 0.

These orbits are exactly the same that would be achieved
by the system of coupled oscillators (5) if w; = w* and f;;
is as in Theorem 1. Their stability, when using (5), depends
on the locations of the eigenvalues of the Laplacian

L(w(¢")) = Bdiag[f};(¢; — ¢;)]B",

which is the negation of the Jacobian of (5). Thus, if there is
at least one negative eigenvalue of L(w(¢™*)), then the orbit
defined by ¢* is unstable.

The challenge in the coupled oscillators case was finding
conditions on f;; that guarantee the instability of every non-
consensus orbit since their locations are typically unknown.
In [7] it was shown that a sufficient condition for phase
consensus is that f;; belongs to the family of functions 7,
with b € (0, 22%5], such that f;; is:

o Symmetric: f;; = fj; Vij

o Odd: fi;(=0) = —fi;(6)

« Continuously differentiable: f;; € C*

o fi;j(0;b) >0, V0 € (0,b) U (27 — b, 27), and

o fi;(0;0) <0, V0 € (b,2m —b).

See Figure 2 for an illustration with b =

s

05

-05

Fig. 2. Coupling function f;; € F for b= 3 and b=

SIE]

Although the Jacobian matrix of (11),
0 Q
—L(w(¢")) —L(a) |’

now depends on other terms like L(a) and €2, we will show
that, provided L(a) is positive definite, induces a connected

J¢* -
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graph G, and w; > 0 Vi € V, the eigenvalues of L(w(¢*))
still control the stability.

In order to see this property, consider small perturbation
d¢, 6 around a certain orbit (4) and the following change
of variable

r=T75¢, 2=TTQ6~
where 7' € RV*(V=1) g the matrix whose columns {77}
are orthonormal and span ker[1%]. Notice that by definition,
TT7T is the orthogonal projection onto ker[1%] and TTT =
In_1, the identity matrix of dimension N — 1.

The transformation 7' is clearly not invertible, but it is
quite useful to keep track of the disagreement of d¢ and
Q6~. This is because given z = T7v, x becomes zero only
when v € span[1y]. .

In other words, the change of variable maps the reference
orbit to the point x = 0, z = 0, and the corresponding
dynamics

=z and 2=TTQ[L(w(¢*))Tz+ L(a)Tz]

describes the evolution of d¢ and €24+ projected onto the
subspace ker[1%]. We now show the following theorem.

Theorem 2 (Orbits Instability): Given connected graphs
G and G,, positive definite {2 and positive semidefinite
L(a). Consider any orbit described by w* and ¢* as in (4).
Whenever L(w(¢*)) has a negative eigenvalue, the orbit is
unstable.

Proof: ~ We prove this theorem by showing that
if L(w(¢*)) has a negative eigenvalue, the equilibrium
(z*,2*) = (0,0) is unstable. Thus, since = and y are
projected version of d¢ and 20+, this shows that in fact
the orbit is unstable.

We will use Chetayev’s instability theorem ([3] Th 4.3)
to show our claim. That is, we will find a function W (x, )
such that for any arbitrary neighborhood B of (0,0), there
isaset U = {(x,2) € B[W(z,z) < 0} with boundary
oU = {(x,y) € B|W(z,y) = 0} such that

(i) U#0,
(i) (0,0) € OU, _
(iii) and V(z,y) € U, W(z,z) <O.

Let W (x, z) be a slightly modified linearized version of
), i.e.

Wiz, z2) = 22(TTQT) 2 4 27 TT L(w(¢*)) T

Notice that W(z,z) is well defined since ) is positive
definite and thus T7QT is invertible.

Also, since L(w(¢*)) is symmetric and has at least one
negative eigenvalue, there is some vector v = T'% € ker[1%]
such that W (#,0) = —e|jv||* < 0. Thus U # () and (i)
holds. Claim (ii) follows directly by definition of OU and
W(z,y).

Finally, a similar computation like the one in Theorem 1
for W (¢, ~) shows that

Wz, z) = —2"TTL(a)Tz <0, VYz#0,

where now T7 L(a)T is positive definite since the range of
T is the orthogonal complement of ker[L(a)] = span[1%/].
Therefore, (iii) follows and the orbit is unstable. |

Theorem 2 provides a connection between our clock
synchronization algorithm and equal frequency coupled os-
cillators. It essentially shows that provided w; > 0 Vi and
L(a) is positive semidefinite with only one zero eigenvalue,
both systems contain the same instability condition. This
allows us to prove the main result of the paper.

Theorem 3 (Phase Consensus): Consider the clock sys-
tem (11) running over connected undirected graphs G and
Gq. Then, provided fi; € F, with b € (0, 3225, for almost
every initial condition (¢°,~%), (11) achieves phase and
frequency consensus with w* as in (12).

Proof: Since G and G, are connected and f;; by
definition is symmetric, odd and continuously differentiable,
then by Theorem 1, (11) will always achieve frequency con-
sensus. As mentioned before, since there are many possible
synchronized orbits, this does not guarantee phase consensus.

However, since fi; € F, with b € (0, 2%, Corollary
5 of [7] guarantees that any other configuration ¢* of (4)
will produce a negative eigenvalue in L(w(¢*)). Therefore,
by Theorem 2, every limit cycle of (11) besides the phase
consensus one is unstable.

So, unless the initial condition (¢, ) belongs to the zero
measure set that converges to these unstable orbits, (11)
will always converge to the orbit with phase and frequency
consensus. |

V. SIMULATIONS

We now present simulations to illustrate our results. In
Figure 3 we simulate a network of three oscillator running
the coupled oscillator algorithm (5) and the clock synchro-
nization algorithm (11). Both graphs G and GG, are complete
and the initial condition is

¢0 = (0’ Ev QI)T and ’YO = (17 L 1>T7
373
where 7° is only used in (11). The frequency of each clock
is (wla w2, (.(.)3) = (1ﬂ 2, 3)

Figure 3(a) shows that while (11) can achieve phase con-
sensus, (5) cannot achieve it due to the frequency difference.
Figure 3(b) shows that both systems succeed in achieving
frequency consensus. Since the initial 7* sums to N = 3,
then (11) will have a w* as in (13), which in our case reduces
to w* = 1.6364.

We now show why a condition of b € (0, :2%;] is needed
in order to guarantee phase consensus. We simulate (11) over
a ring network of N = 6 nodes, set w; =1 Vi € V and ini-
tialize the state with values ¢° = [2ZF], ;51 and 70 =
1g.

Figure 4 shows two simulations of the same ring network
with exactly same initial conditions. The only difference is
the choice of f;;. Figure 4(a) shows that when we use a
b = 5 > §~5 the system stays in the orbit defined by the
initial condition. However, once b = % < ﬁ, Figure 4(b),
the orbit is no longer stable and the system converges to the
phase and frequency consensus.
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Fig. 4. De-stablizing orbits by shrinking b below

VI. CONCLUSION

This paper introduces a fully distributed synchronization

the dynamics to converge to the double consensus. However,
here we require GG, to be connected. We also plan to further
explore the relationship between coupled oscillators and our
second order dynamics. Here, we showed that the instability
of the orbits in both systems coincide but we believe there
is a deeper connection.
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