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Abstract— This paper is motivated by problems from bi-
ology involving estimation of concentration fields in a tissue
sample using point measurements given by optical contactless
biosensors. Due to biological constraints, the sensors may only
be sparsely distributed and intermittently monitored. This
paper proposes a nonbiological experimental platform, based
on hydrogel and dye diffusion, for studying the problem of
concentration field estimation using point sensors. A reduced
order model for the diffusion system is derived using Karhunen-
Loéve-Galerkin method and a discrete time Kalman filter
is used to estimate the concentration field. The estimator is
then applied to experimental data consisting of subsampled
images from a diffusion process. Performance is evaluated by
comparing the state estimates to the original images. Future
work will use the experimental platform to study the effects
of spatial distribution and timing of sensor measurements, to
examine the effects of additional dynamics such as advection
and reaction, and to perform online identification of process
parameters.

I. INTRODUCTION

Biological cells react to local concentrations of chemicals,

such as oxygen, glucose, and various signaling proteins,

within their microenvironment. Moreover, cells coordinate

behavior with their neighbors by creating, passing, receiving,

and acting on chemical signals. Intercellular signaling plays

a critical role in tissue-level cellular behaviors, such as

differentiation, angiogenesis, and tumorigenesis. Cells react

to thousands of different intra- and inter-cellular signals

and environmental factors; nevertheless, many tissue-level

behaviors, such as planar polarity [1], are predominantly

mediated by a relatively small number of signals and factors

passed between cells. In order to study how behaviors are

organized at the tissue level, it would be ideal to directly

record the evolution of the concentration fields of the set of

relevant signals. In this paper, the set of concentration fields

will be referred to as the “state” of the biological system.

This is much coarser than the full state of the system, which

would necessarily include an intractable number of inter- and

intra-cellular signals and environmental factors.

It is difficult to quantitatively measure concentration fields

across the volume of a sample without interfering with the

underlying biological processes. Optical contactless biosen-

sors provide a minimally invasive method to measure local

concentrations of a specific chemical. The metal chelate

class of biosensors [11], [7], [9] generally take the form

of small (less than a few micrometers diameter) polymer
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beads or spheres coated with a compound that fluoresces with

an intensity related to the local concentration of a specific

selected chemical. The beads often contain a second com-

pound that fluoresces at an environment-independent level

to serve as a reference. Beads can be used with traditional

fluorescence microscopy or with confocal microscopy to

measure pointwise concentrations in two or three dimensions,

respectively. Optical contactless biosensors have been devel-

oped for oxygen, CO2, pH, and various biomolecules [3],

[8], [6]. A related class of optical contactless biosensors are

based on liposomes [13], [12].

Biofabrication refers to a collection of tissue-engineering

technologies, derived from rapid prototyping, for patterning

cell co-cultures in two-dimensional or three-dimensional

structures [4]. By arranging cells to mimic natural tissue,

biofabrication may be used ultimately to create improved in

vitro pharmaceutical test samples or even to fabricate replace-

ment organs from a patient’s own cells. More immediately,

biofabrication offers an important tool for studying intercel-

lular communication by enabling the creation of samples in

which initial cell arrangement, and hence local intercellu-

lar communication, is finely controlled. Intriguingly, since

biofabrication creates samples by printing successive layers

of cells, optical contactless biosensors could be incorporated

into the fabrication process, producing tissue samples that

mimic natural tissue but also contain sensors designed for

monitoring local concentration levels of one or more chem-

icals or environmental variables.

A number of constraints are associated with using optical

contactless biosensors for studying intercellular communi-

cation. First, the sensors introduce additional materials and

structure to the sample, which may alter the biological

processes being studied. In consequence, the concentration

field should be reconstructed using a minimal number of

sensors. Second, the beads are effectively point sensors,

measuring concentration locally. In order to reconstruct the

concentration field directly, a large, dense set of sensors

would be required. Third, the sensors must be illuminated

with UV light in order to fluoresce. Unfortunately, frequent

illumination alters cell behavior and ultimately causes cell

death due to phototoxicity. Thus, measurements cannot be

taken continuously and, in fact, should be taken as infre-

quently as possible.

Ultimately motivated by the problem of estimating con-

centration fields over time from intermittent measurements

by point sensors in a biofabricated system, we present in

this paper a nonbiological experimental platform for studying

the problem in a simplified setting. Specifically, the exper-
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imental platform consists of a thin section of hydrogel in

which a dye is deposited and allowed to diffuse. Camera

images are processed to provide a “true” estimate of the

entire concentration field for the dye, while specific pixel

values can be selected as point sensors. This allows direct

comparison between the “true” concentration field and an

estimate generated from measurements distributed in space

and time. The simple diffusion process was chosen as a

starting point in order to establish a baseline performance

for the estimator, before considering additional complications

from advection, reaction, and cell behavior.

Section II will present the theoretical background for

forming a reduced-order model for the diffusion equation and

a Kalman filter for estimation of the reduced state. Section III

will present numerical experiments. Section IV will present

the physical system and accompanying experiments. Finally,

Section V presents conclusions and directions for future

work.

II. BACKGROUND

In the motivating biological problem, diffusion, advection

and reaction would simultaneously affect the concentration

field, but in the present work attention is limited to diffusion

only in order to provide an initial validation of the test

platform and methodology. The two-dimensional diffusion

equation is given by

∂u

∂t
= D∇2u (1)

= D

(

∂2u

∂x2
+

∂2u

∂y2

)

where u is the concentration field describing mass concen-

tration at a place and time and D is the diffusion coefficient,

a real valued constant determining the rate of diffusion.

The diffusion PDE describes a continuum, and the state u
is infinite dimensional. A finite dimensional approximation

of the state must be formed in order to simulate or to

formulate an estimator for the system. In the Galerkin

method, the state of a continuum system is approximated

as a linear combination of finite set of orthonormal basis

functions

u(x, y, t) = ū(x, y) +

N
∑

i=1

ai(t)φi(x, y) (2)

where ū is a time-invariant function, φi are a set of basis

functions depending only on position, and ai(t) are a set

of time-varying coefficients. In the case of the Karhunen-

Loéve basis used below, ū is the ensemble average of

the observation data set. Galerkin’s method projects the

dynamics of the continuum system, in this case diffusion, in

order to form new dynamics that describe the evolution of

the coefficients in Eqn. 2 in order to optimally approximate

the solution to the continuum system. The dynamics take the

form
ȧ = Γa+ b a ∈ R

N

y = Ca y ∈ R
P (3)

and

[Γij ] =

∫

Ω

φi(x, y)∇
2φj(x, y)dxdy (4)

[bi] =

∫

Ω

∇2ū(x, y)φi(x, y)dxdy (5)

where Ω is the domain over which the PDE is to be solved.

For diffusion, the dominant slow dynamic behavior of the

system can be captured with just a few appropriately chosen

basis functions [2].

In the following work, the Karhunen-Loéve (KL) empir-

ical basis will be used with the Galerkin method, which

together are known as the Karhunen-Loéve-Galerkin (KLG)

method. The KL basis functions are principal modes of the

system extracted from an ensemble of system simulations

or observations. The KL basis is computed by subtracting

the ensemble average from the observations and then using

singular value decomposition to find the principal modes.

A detailed discussion of the derivation of the KL basis

functions, known as the method of snapshots, and the sub-

sequent Galerkin projection will be ommitted due to length

consideration. For a detailed discussion of the KLG method,

see for example [5], [10]. The key points for the present work

are that the KLG method provides a set of basis functions and

corresponding dynamics that are tuned to the combination

of continuum dynamics, boundary conditions, and initial

condition that are present in the ensemble of simulations

or observations.

While Galerkin’s method provides Γ and b for Equation

3, the output equation is determined by the locations of the

P point sensors in the system. The observation vector is

y = [y1 y2 · · · yP ]
T , (6)

where yi is the observed sensor value at the corresponding

point (xi, yi) in the domain. Thus, C ∈ R
P×N is given by

C =











φ1(x1, y1) φ2(x1, y1) · · · φN (x1, y1)
φ1(x2, y2) φ2(x2, y2) · · · φN (x2, y2)

...
...

. . .
...

φ1(xP , yP ) φ2(xP , yP ) · · · φN (xP , yP )











.

(7)

The discrete time Kalman filter estimates the state of the

system by weighting sensor measurements and predictions

given by the system dynamic model. It is assumed the

system is sampled at uniform temporal increments ts and

with negligible delay.

Integrating Eqn. 3, the dynamics in discrete time are

a(t+ ts) = Fa(t) +G

with

F = eΓts , G =

∫ ts

0

eΓ(ts−τ)b dτ .

The reduced-order discrete-time Kalman filter is given by
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Kalman Gain

Kt = Qt,t−1C
T [CQt,t−1C

T + Vs]
−1

Reduced Order Model State

ât,t = ât,t−1 +Kt[Yt − Cât,t−1]
Approximate Continuum State State

u = ū+
∑N

i=1 ai(t)φi(x)
Covariance Matrix Update

Qt,t = [I −KtCs]Qt,t−1

Predicted Next Reduced Order Model State

ât+1,t = F ât,t +G
Predicted Next Covariance Matrix

Qt+1,t = FQt,tF
T + Vy

The state of the reduced-order Kalman filter is initialized

by finding a minimum norm fit of the basis functions

to the sensor values at t = 0 using the Moore-Penrose

pseudoinverse (denoted by †),

C†[y1 y2 ... yM ]T = [a1(t = 0) a2(t = 0) ... aN (t = 0)]T

The state covariance matrix for the estimate is initialized

to the noise covariance, Q = Vy .

III. NUMERICAL EXPERIMENTS

The performance of the state estimator was first verified

through a series of numerical simulations, since the exper-

iment may introduce unmodeled dynamics, e.g. advection,

which would complicate validation.

The two dimensional diffusion equation (2) was simulated

for diffusion coefficient D = 1 over domain Ω = [0, 1] ×
[0, 1]. The initial and boundary conditions are given by

IC u(x, y, t = 0) = 1 x, y ∈ [0.3, 0.7]

BC
∂u(x,0,t)

∂x
= ∂u(x,1,t)

∂x
= 0 x, y ∈ [0, 1]

∂u(0,y,t)
∂y

= ∂u(1,y,t)
∂y

= 0 t = [0,∞)

The “true” state of the system was obtained using a high

order approximation using rectilinear discretization of the

domain in increments of 0.01. The dynamics were simulated

in Matlab using finite difference approximations with a nu-

merical method of lines solver. Since the diffusion equation

and imposed boundary conditions are homogeneous, the total

mass in the system, i.e. the integral of concentration u over

the domain, is preserved through time.

The relative error was used to assess estimator perfor-

mance,

e(t) =
‖u(t)− û(t)‖

‖u(t)‖
(8)

where u(t) is the true solution and û(t) is the approximate

solution, and the norms are in the L2 sense,

‖u(t)‖ =

(
∫

Ω

(u(t))2dA

)
1

2

. (9)

The performance of two different classes of reduced oder

model estimators was examined, one based on KL bases

and one based on Fourier bases. The KL basis was chosen

to be 4th order, i.e. N = 4, since the principal values
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Fig. 1. Comparison of percent error of 4th order Karhunen-Loéve-
Galerkin (solid blue), 16th order Fourier-Galerkin (dash-dotted red) and
pseudoinverse fit to sensors measurements (dashed green) for numerical
simulation of the 2D diffusion equation with additive white Gaussian noise.

corresponding to these modes contained more than 99.4%

of the sum of all the principal values. The Fourier basis was

chosen to be 16th order to achieve comparable performance.

More modes are required since the Fourier basis is not tuned

to the dynamics of the continuum system.

The simulated data from the “true” model was corrupted

with additive white Gaussian noise. The noisy data was

sampled at 25 equally spaced locations in the domain and

provided to the state estimators. The KL basis functions were

computed from an ensemble of snapshots taken from a sep-

arate low order simulation of the expected initial condition.

Figure 1 presents the performance of the KLG- and

Fourier-based reduced order model Kalman estimators. For

comparison, the plot also includes two additional curves for

each estimator: (i) the least squares projection of the full

camera image onto the basis of the corresponding estimator,

and (ii) the projection of the sparse sensor data onto the

basis of the corresponding estimator. Note that (i) represents

the smallest error attainable using the corresponding set of

basis function, forming a strict lower bound for estimator

performance, while (ii) represents the best estimate in terms

of the corresponding basis given only sensor data from the

current time step.

The KLG-based estimator model drives the error down

the fastest, stays the lowest and reproduces the sharp initial

condition the best. Both estimators provide superior perfor-

mance compared to the least squares fits to available sensor

data. The strong performance of the KLG reduced order

model derives from the adaptation of the KL basis to the

expected evolution of the system. Fig. 2 presents a numerical

results illustrating the effects of initial condition mismatch.

If the initial condition, and hence the snapshots used to

construct the KL basis, are misleading or incorrect, then the

performance of KLG degrades relative to the Fourier basis.

In this set of simulations, the state estimator assumes the

initial condition is in the center of the domain, while the
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Fig. 2. [Right] Comparison of percent error of 4th order Karhunen-Loéve-
Galerkin (solid blue), 16th order Fourier-Galerkin (dash-dotted red) for
numerical simulation of noiseless 2D diffusion system with offset initial
condition. [Left] The initial condition used for model generation is denoted
in dark red while the actual initial condition tracked is denoted in teal.

initial condition of the true system is actually offset. The

Fourier basis performed better in this case, since the KL

basis was actually biased away from the best solution. In

practical situations, the initial condition may only be poorly

known.

IV. PHYSICAL EXPERIMENTS

The state estimator was tested on experimental observa-

tions of a dye moving through a hydrogel.

A. Experimental Methods

A general test platform was developed for gathering

experimental data for testing estimation of concentration

fields. The platform could accommodate samples of varying

size and boundary conditions. Samples were back lit via

a Dolan-Jenner DC950 fiber optic light source diffused

through frosted acrylic in order to produce a uniformly

lit surface. The 13mm×13mm sample trays contained the

gelatin samples and enforced a Neuman boundary conditions

on the sample. An acrylic hood was placed over the samples

to slow dehydration of the gelatin. Data was collected

using a Lumenera Infinity microscope camera. A schematic

representation of the test platform is depicted in figure 3.

Knox R© brand flavorless gelatin was used as the hydrogel

medium for studying diffusion. Gelatin, i.e. denatured col-

lagen, serves as a low-cost biologically relevant hydrogel.

The gelatin was mixed in a ratio of 3.55g gelatin to 236g

water in order to tune the medium so that diffusion occurred

over a couple hours while advection is limited or eliminated.

The gelatin was held in an acrylic sample tray lined with

paraffin to discourage dye advection in a layer under the

gelatin. McCormick R© blue food dye (water, propylene gly-

col, FD&C Blue 1, 0.1% propylparaben) was chosen as the

dye for diffusion. The pigment is diluted to a 1.25% acqueous

solution. The pigment source is injected into the gelatin at

the beginning of the experiment using a syringe.

Images were taken every 15 seconds for 125 minutes

using a Lumenera Infinity camera with microscope zoom

lens. Each image was background subtracted from an initial

image, converted to grayscale and cropped. The resulting

grayscale values were directly interpreted as mass concen-

trations in these experiments. The ideal concentration profile

would have highest concentration corresponding to gray

value 255 and no concentration corresponding to 0. The

image is resized into two data sets of 21 and 81 pixels

square. Note that properties of the lighting, physical behavior

of the dye, and camera sensor and settings may cause the

relationship between mass concentration and grayscale value

to be nonlinear. Similar effects are also present when taking

measurements from optical contactless biosensors, especially

saturation of the camera sensor and saturation of the dye.

The results presented here could be further refined by taking

these effects into consideration.

The diffusion coefficient of the aqueous solution of dye

in gelatin was not initially known. The diffusion coefficient

was fit to the experiment snapshots using a gradient descent

approach. The first snapshot from the experimental data is

used as the initial condition for the 2D diffusion equation

and simulated with a coarse 21 element discretization on

each axis. The algorithm runs simulations for differing

diffusion coefficients until the integral of the relative error is

minimized. The diffusion equation is then simulated at a fine

81 element discretization on each axis. The diffusion model

fit using the gradient descent approach is simulated for the

same time period as the physical experiment. The empirically

fit diffusion coefficient was found to be D = 119µm2/s with

standard deviation 18µm2/s from a sample of 8 experimental

runs.

The simulation snapshots are used to generate a Karhunen-

Loéve basis with N = 10 modes and the corresponding

dynamics are found using the Galerkin method. The reduced-

order model is then used in a Kalman filter to estimate the

state of the system from a sparse set of observations. Sparsely

distributed point sensors are simulated by sampling only a

few pixels from the images, chosen to be in the same relative

locations as those in the numerical studies section. A state

estimator based on a Fourier basis with N = 16 modes was

also studied for comparison.

Estimator performance was evaluated in terms of relative

error as defined in Eqn 8, where the true state u at time t is

taken to be the corresponding camera image after background

subtraction, cropping, and smoothing with an averaging filter

to remove high spatial frequency camera noise.

B. Results and Discussion

Figure 4 presents the performance, in terms of relative

error, of the KLG and Fourier state estimators for a typical

experimental run. As with the numerical experiments, the

plot also includes two additional curves for each estimator:

(i) the least squares projection of the full camera image

onto the basis of the corresponding estimator, and (ii) the
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projection of the sparse sensor data onto the basis of the

corresponding estimator.

The reduced-order KLG Kalman filter estimates the true

state to within 20% relative error for most of the experiment.

This relative error rate is considerably higher than seen in the

numerical simulation, by almost a factor of 4. Nevertheless,

the estimator performance is close to the performance of

the least squares fit to the full camera image, indicating

that much of the error arises because the experimental data

is difficult to approximate for both the KL and Fourier

basis families with current number of modes. In this case,

increasing the number of modes would improve performance,

whereas in the numerical simulations, increasing the number

of modes would have had little effect.

The higher error of the state estimator for the first 20

minutes is most likely due to to an overestimate of the

noise on the sensor data. This causes the estimator to place

more trust in the current state estimate which in turn causes

the estimate to slowly converge to the true state. The KLG

estimator relative error is consistently several percent higher

than the least squares fit of all camera data, indicating that

better sensor placement improve the estimators ability to

reconstruct the state.

Examining the time evolution of the simulated and exper-

imental system calls attention to a problem with the system

mass, i.e. the area integral of the concentration, illustrated

in Figure 6. In the experimental system, mass appears to

be increasing over time, whereas the simulated system has

no source terms and Neumann boundary conditions, and

therefore cannot accrue mass. The experimental system also

has no source terms and Neumann boundary conditions,

since (i) the only addition of mass (dye) occurred at the

initial time, and (ii) the volume is finite so the mass may

not flow out. This apparent increase in mass appears to

be related to the way concentrations are interpreted from

the camera. While concentration appears to be fairly linear

over a wide range of concentrations, high concentrations get

mapped to small range of low grayscale values, effectively

saturating the sensor. The dye starts out highly concentrated

and diffuses. The effect of sensor saturation is thus to make

it appear that the system has a source term generating extra

mass. This is an unmodeled dynamic in the current version

of the system. Interestingly, similar saturation effects are

present with optical contactless biosensors. When the local

concentration of the target chemical is sufficiently high,

then all the receptors in the sensors will be “filled” and

fluorescing, and additional increases in local concentration

will not change the level of fluorescence.

The apparent source term causes two problems. First, the

diffusion coefficient is not known directly but fit to data

through simulation, but fitting data with an apparent source

term to a model without a source term will create systematic

error. Second, the model which is formed using the Galerkin

projection is composed of empirical orthogonal functions

which are recovered from simulation of an homogeneous

model. The Karhunen-Loéve-Galerkin reduced-order model

can not reproduce dynamic behavior it has not seen before.

Fig. 3. [Left] A schematic of the test platform. A light source is diffused
through filters producing a uniformly back lit fixture to hold the sample
during observation. [Right] Cross section depicting the hydrophobic paraffin
coating, gelatin and ideal ink injection in a sample tray.
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Fig. 4. Percent error plot of 10th order Karhunen-Loéve-Galerkin and
16th order Fourier-Galerkin state estimator of dye diffusing in gelatin. Least
squares fit of each basis set using sensor data and all concentration data are
plotted for comparison.

The diffusion coefficient could be characterized using an

independent experiment, but improved methods of handling

sensor saturation are still needed.

V. CONCLUSION AND FUTURE WORK

This paper has demonstrated an experimental platform

for studying the biologically motivated problem of estimat-

ing concentration fields from intermittent, pointwise sen-

sor measurements. The use of a camera to measure dye

diffusion gives a “true” measurement of the field against

which to compare estimator performance. Estimators for the

concentration field were constructed using a Kalman filter

applied to Karhunen-Loéve-Garlerkin and Fourier reduced

order models. The estimators performed reasonably well at

reconstructing the full concentration field, though not as well

as predicted by simulation. Saturation of the sensor measure-

ments were a major source of error for the estimators. The

present work demonstrates the feasibility of using reduced

order model estimators with a small number of modes and

sensors to estimate concentration fields in diffusion systems.

There are a number of directions in which to extend the

present work in order to meet the demands fo the target

application as well as to develop this system as a potential
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Fig. 5. Progression of blue dye diffusing in gelatin a 0, 10, 50, 90 minutes
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Fig. 6. Total mass, i.e. area integral of concentration, as measured by
camera (green) and a numerical simulation using the first camera frame as
the initial condition (black).

test bed for estimation theory: (i) To compensate for non-

linearities in the sensor when sensing high concentrations.

This nonlinearity appears in the model system as well as

when using optical contactless biosensors, and is thus of

considerable practical importance; (ii) To analyze sensor

placement to optimize the quality of information generated;

(iii) To adjust time between sensor measurements in order

to tradeoff the amount of information received from the

measurement with the negative impact of the measurement.

Cells suffer the more often they are exposed to UV light,

so constant monitoring is not an option; (iv) To consider

more complicated dynamics acting on the concentration field,

such as posisition-dependent diffusion rates, advection and

reaction; (v) To consider known-but-parametrically-uncertain

dynamics and adapt the parameter online as the estimator

runs, or alternatively to consider nonparametric models for

the system dynamics.
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