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Abstract— In this work a framework for camera-based au-
tonomous surveillance is introduced based on the theory of
stochastic reachability and random sets. We consider set-valued
models of a single pan-tilt-zoom (PTZ) camera (pursuer) and
multiple targets that need to be tracked (evaders). We define
the stochastic pursuer process and the stochastic evader pro-
cesses and consider the problem of maximizing the probability
of satisfying safety (tracking), reachability (acquisition), and
reach-avoid (tracking while acquiring) objectives. The solution
of the safety, reachability, and reach-avoid tasks are computed
via dynamic programming resulting in an optimal control policy
for the PTZ camera. Experimental results are given for a single
PTZ camera and multiple robotic evaders.

I. INTRODUCTION

Intelligent surveillance systems deal with the real-time
monitoring of persistent and transient objects within an
environment [1]. The primary objectives of these systems
are to automatically interpret scenes and to understand and
predict the actions and interactions of the observed objects.
Specific tasks of an intelligent surveillance system include
moving object detection and recognition, patrolling, tracking,
prediction, and target acquisition. The focus of this work is
on the surveillance tasks of tracking and acquisition.

The use of PTZ cameras for tracking and acquisition
objectives has recently been exploited in various works,
e.g. [2]–[10]. In [8], the problem of optimally patrolling
a one-dimensional perimeter with a network of cameras
was considered resulting in a distributed control strategy
based on local asynchronous communication. Optimal cam-
era movement for the objective of minimizing the time
necessary to monitor an environment was addressed in [7]
and experimentally tested. In [3], a multi-camera tracking
approach based on optimizing the capture of targets using a
probabilistic objective function was considered. In [6], the
authors introduced a tracking algorithm based on stochastic
Model Predictive Control (MPC) coupled with an Extended
Kalman Filter and Particle Filter for recursive target state
estimation. In [4] a stochastic MPC approach to optimal
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patrolling was considered and a target tracking algorithm
based on Min-Max and minimum time MPC was proposed.

In this work we consider surveillance tasks of target
tracking and acquisition in the form of a probabilistic pursuit-
evasion game [11]–[13] where the pursuer and the evaders
are set-valued and governed by stochastic processes. In
particular, we develop a single framework for autonomous
surveillance tasks based on the theory of stochastic reacha-
bility (for discrete-time stochastic hybrid systems (DTSHS))
and random sets [14], [15]. Here the objective is to maximize
the probability of satisfying safety, reachability, and reach-
avoid objectives which are directly related tasks of tracking
and target acquisition. It is shown that for each of these
objectives this probability can be computed by dynamic
programming, resulting in an optimal decision policy for
the camera. In addition to the optimal decision policy, the
solution of the dynamic program also provides a value for
the maximum probability of successfully completing the con-
sidered surveillance objective. We argue that this knowledge
can be useful when making high level decisions (e.g. track a
single evader or two evaders), especially when considering a
scenario involving multiple cameras where this information
may be valuable to exchange between cooperating cameras.

An experimental test bed consisting of a single PTZ
camera and multiple evaders was used to verify the fea-
sibility and applicability of the developed framework. The
accuracy of the dynamic programming solution was evalu-
ated experimentally using repeated experimental runs. The
positive results of the experimental analysis coupled with
the consistency of the constructed framework for general
surveillance objectives motivates further research in this area.

The rest of the work is arranged as follows. In Section
II we briefly recall the theory of stochastic reachability for
DTSHS. In Section III, we introduce a probabilistic reacha-
bility framework for autonomous surveillance. In Section IV,
we introduce (stochastic) models for a single PTZ camera
and multiple evaders. In Section V we provide experimental
results for the autonomous surveillance system.

II. STOCHASTIC REACHABILITY AND RANDOM SETS

Here we recall the theory of stochastic reachability for
DTSHS [14], [16] and stochastic reachability with random
sets [15], [17] upon which the framework for autonomous
surveillance is built. In particular, the results of this section
can be found in detail in the work [15].

A DTSHS H can be described as a Markov control
process with state space X , (compact) control space A, and
controlled transition probability function Q. Given a Markov
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control policy µ ∈ Mm (where Mm denotes the set of all
admissible Markov control policies) and initial state x0 ∈ X ,
the execution {xk, k = 0, ..., N} is a time inhomogeneous
stochastic process defined on the canonical sample space
Ω = XN+1, endowed with its product σ−algebra B(Ω)
where B(·) denotes the Borel σ−algebra. The probability
measure Pµx0

is uniquely defined by the transition kernel
Q, the Markov policy µ ∈ Mm, and the initial condition
x0 ∈ X (see [18]).

For k = 0, 1, 2, . . . , N , let Gk be a Borel-measurable
stochastic kernel on Y given Y , Gk : B(Y) × Y → [0, 1],
which assigns to each ξ ∈ Y a probability measure Gk(·|ξ)
on the Borel space (Y,B(Y)). That is, let Gk represent a col-
lection of probability measures on (Y,B(Y)) parameterized
by the elements of Y and indexed by time k. A discrete-time
time-inhomogeneous Markov process ξ = (ξk)k∈N0

taking
values in the Borel space Y is described by the stochastic
kernel Gk.

Definition 1: A parameterization of a discrete-time set-
valued stochastic process is a discrete-time Markov process
ξ = (ξk)k∈N0

with parameter space Y and transition prob-
ability function Gk : B(Y) × Y → [0, 1] together with a
function γ : Y → B(X) representing a stochastic (Borel)
set-valued evolution on the hybrid state space X (according
to the process ξ). Consequently, it holds that there exists a
Borel set K̄ ∈ B(X × Y) defined

K̄ = {(x, ξ) ∈ X × Y|x ∈ γ(ξ)}.
In the spirit of the theory of random closed sets [19], [20],

for all x ∈ X , ξk−1 ∈ Y , and k ∈ N, we define the following
covering function:

pγ(ξk)(x) = Pξk−1
{x ∈ γ(ξk)} = Eξk−1

[1γ(ξk)(x)]

=

∫
Y
1K̄(x, ξk)Gk(dξk|ξk−1).

For all x ∈ X and all ξk−1 ∈ Y , it follows that the covering
function pγ(ξk)(x) is Borel measurable and bounded between
0 and 1. Now consider the set valued maps γ1 : Y → B(X)
and γ2 : Y → B(X) where, for all ξ ∈ Y , γ1(ξ) ⊆ γ2(ξ). It
follows that

pγ2(ξk)\γ1(ξk)(x) = pγ2(ξk)(x)− pγ1(ξk)(x).

A. Finite Horizon Reach-Avoid

Let Kk,K
′
k ∈ B(X), with Kk ⊆ K ′k for all k =

0, 1, . . . , N . Our goal is to evaluate the probability that the
execution of the Markov control process associated with the
Markov policy µ ∈Mm and the initial condition x0 will hit
Kk before hitting X \ K ′k during the time horizon N . Let
ξ = (ξk)k∈N0 with stochastic kernel Gk : B(Y) × Y →
[0, 1] together with the functions γ1 : Y → B(X) and
γ2 : Y → B(X) be a parameterization of a discrete-time
set-valued stochastic process. We assume that the initial
set parameter state ξ0 is known, hence γ1(ξ0) = K0 and
γ2(ξ0) = K ′0 is known, and γ1(ξk) = Kk and γ2(ξk) = K ′k
for k = 1, . . . , N is an execution of the stochastic set-
valued process. The probability that the system initialized at
x0 ∈ X , with control policy µ ∈ Mm and ξ0 ∈ Y , reaches

Kk while avoiding X \K ′k for all k = 0, 1, . . . , N is given
by

rµ(x0,ξ0) := Pµ(x0,ξ0){∃j ∈ [0, N ] : xj ∈ Kj ∧
∀i ∈ [0, j − 1] xi ∈ K ′i \Ki},

where ∧ denotes the logical AND, and we operate under
the assumption that the requirement on i is automatically
satisfied when x0 ∈ K0; subsequently we will use a similar
convention for products, i.e.

∏j
i=k (·) = 1 if k > j. Note that

while we assume knowledge of the initial state and initial
set parameter, the consideration of a probabilistic initial
condition for each is straightforward.

As in [14], [16], consider

N∑
j=0

(
j−1∏
i=0

1K′i\Ki(xi)

)
1Kj (xj) = 1, if ∃j ∈ [0, N ] : xj ∈ Kj∧

∀i ∈ [0, j − 1] xi ∈ K ′i \Ki

0, otherwise.

Hence rµ(x0,ξ0) can be expressed as the expectation

rµ(x0,ξ0) = Eµ(x0,ξ0)

 N∑
j=0

(
j−1∏
i=0

1K′i\Ki(xi)

)
1Kj (xj)

 .
In [15], [17], two classes of problems are considered

for the analytical (and computational) evaluation of rµ(x0,ξ0).
In the first class, the parameterized set-valued process is
described (or can be fairly approximated) by a time-indexed
independent distribution of stochastic parameters. In the
second class, the parameters of the set-valued process are
modeled as a Markov process. In this work we consider the
former problem formulation. That is, we assume that the
product measure of the parametric process is equal to (or
well approximated by) the product measure of time-indexed
independent stochastic kernels, i.e. for N ∈ N

N∏
j=0

Gj(dξj |ξj−1) ≈
N∏
j=0

Gj(dξj).

For a DTSHS with independent set-valued reach and safe
sets (γ1(ξk) ⊆ γ2(ξk) almost surely), it can be shown that

rµ(x0,ξ0) = Eµx0

 N∑
j=0

(
j−1∏
i=0

pK′i\Ki(xi)

)
pKj (xj)

 .
The covering functions are defined

pKi(x) = E
[
1γ1(ξi)(x)

]
=

∫
Y
1γ1(ξi)(x)Gi(dξi),

pK′i(x) = E
[
1γ2(ξi)(x)

]
=

∫
Y
1γ2(ξi)(x)Gi(dξi),

pK′i\Ki(x) = pK′i(x)− pKi(x).
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Let F denote the set of functions from X to R and define
the operator H : X ×A×F → R as

H(x, a, Z) :=

∫
X

Z(y)Q(dy|x, a). (2)

The following lemma shows that rµ(x0,ξ0) can be computed
via a backwards recursion.

Lemma 3: Fix a Markov policy µ = (µ0, µ1, ...µN−1) ∈
Mm. The functions V µk : X → [0, 1], k = 0, 1, . . . , N − 1
can be computed by the backward recursion:

V µk (x) = pKk(x) + pK′k\Kk(x)H(x, µk(x), V µk+1), (4)

initialized with V µN (x) = pKN (x), x ∈ X .
Definition 5: Let H be a Markov control process, ξ =

(ξk)k∈N0
a parametric stochastic process, Kk ∈ B(X), K ′k ∈

B(X), with Kk = γ1(ξk), K ′k = γ2(ξk) and Kk ⊆ K ′k
almost surely, for all k = 0, 1, 2, . . . , N . A Markov policy
µ∗ is a maximal reach-avoid policy if and only if rµ

∗

(x0,ξ0) =

supµ∈Mm
rµ(x0,ξ0), for all x0 ∈ X .

Theorem 6: Define V ∗k : X → [0, 1], k = 0, 1, ..., N , by
the backward recursion:

V ∗k (x) = sup
a∈A
{pKk(x) + pK′k\Kk(x)H(x, a, V ∗k+1)} (7)

x ∈ X , initialized with V ∗N (x) = pKN (x), x ∈ X . Then,
V ∗0 (x0) = supµ∈Mm

rµ(x0,ξ0), x0 ∈ X and ξ0 ∈ Y . If µ∗k :

X → A, k ∈ [0, N − 1], is such that for all x ∈ X

µ∗k(x) = arg sup
a∈A
{pKk(x) + pK′k\Kk(x)H(x, a, V ∗k+1)} (8)

then µ∗ = (µ∗0, µ
∗
1, ..., µ

∗
N−1) is a maximal reach-avoid

policy.

III. AUTONOUMOUS SURVEILLANCE FRAMEWORK

Let n adversary objects be distributed in a general spatial
frame XG ⊂ R3 (e.g. an auditorium or a stadium). Each
set-valued evader O(i) ∈ B(XG), i ∈ {1, ..., n}, is param-
eterized by a set of parameters xe ∈ Xe, where Xe is the
state space of the adversary parameterization. It follows, by
the definition of the kernels in Section II, that the evader
set is constrained in XG and the parametric representation
constrained in Xe. We assume that the set-valued evaders
are independent and can intersect.

We consider a parametric model for the camera with state
x and state space X , x ∈ X . Naturally, there exists a
mapping from the state of the camera parameterization x to
the set-valued camera view in the spatial frame XG (defined
as the field of view (FOV)). In the general case, this function
can be defined as a measureable mapping L : X → B(XG).

In the spatial frame XG, the set

S1 = {xG ∈ XG : xG ∈ ∪iO(i)}

comprises all states that intersect with the set-valued region
of one or more evaders (equivalently the union of the evader
sets). S1 is the coverage of the evaders in the spatial frame.

In the camera space X , the set

S2 = {x ∈ X : L(x) ∩ O(i) 6= ∅, ∀i ∈ {1, ..., n}}

comprises all camera states for which every evader is in the
field of view of the camera. Likewise, assuming n1 < n,the
set

S3 = {x ∈ X : L(x) ∩ O(i) 6= ∅, ∀i ∈ {1, ..., n1}}

comprises all camera states for which n1 evaders are in the
view of the camera. Lastly, the set

S4 = {x ∈ X : ∃i ∈ {1, ..., n}, L(x) ∩ O(i) = ∅}

comprises all camera states for which one or more evaders
is not visible by the camera.

Uncertainty plays a large role in the estimation and pre-
diction of evader trajectories, dealing with this uncertainty is
central to the success of an automated surveillance system.
Consider, for instance, in the current example that the
parametrization of each set-valued evader i ∈ {1, ..., n} is
distributed according to some probability distribution. Under
this consideration, it is of interest to know the probability
that the evader (or set of evaders) is visible to the camera
when the camera is in state x?

It follows that S1, S2, S3, and S4 are random sets accord-
ing to the random distribution of the evader parametrization
considered above. Further, note that they are dependent
random sets (they are parameterized by the random evader
centers) and that S2 ⊆ S3 almost surely. Thus, the question
above can be answered by computing the covering func-
tions of the various sets. Specifically, the covering function
pS1

(xG) defines the probability that xG ∈ XG will intersect
with one or more evaders. Similarly, pS2

(x) and pS3
(x)

represent the probability that the camera in state x ∈ X
will visually capture evaders {1, ..., n} and {1, ..., n1} re-
spectively.

Considering the probabilistic sets detailed above, it is
possible to formulate surveillance tasks using the stochastic
reachability framework of Section II.

Safety(tracking): Minimize the probability that the cam-
era loses sight of one of the evaders at some point during
the time horizon k ∈ {0, ..., N}. It follows that the safety
problem can be formulated where X denotes the safe set and
S4 denotes the target set and the optimal control policy is
obtained by solving the DP of Theorem 6 in the minimal
case (replace the sup by inf).

Reach(acquisition): Maximize the probability that the
camera can reach all n evaders at some point during the
finite time horizon k ∈ {0, ..., N}. It follows that the reach
problem can be formulated where X denotes the safe set and
S2 denotes the target set and the optimal control policy is
obtained by solving the DP of Theorem 6.

Reach-Avoid: Maximize the probability that the camera
can reach all n evaders at some point during the finite time
horizon k ∈ {0, ..., N} while avoiding losing a subset of
evaders at each prior time point. It follows that the reach-
avoid problem can be formulated where S3 denotes the safe
set and S2 denotes the target set and the optimal control
policy is obtained by solving the DP of Theorem 6.
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Fig. 1. Pinhole camera model

IV. CAMERA AND EVADER MODELS

The scenario we consider has a PTZ camera and multiple
evaders moving on a planar ground plane, i.e. XG = B(R2).
The camera state is x = [θ, ψ, ζ]T , where θ, ψ and ζ are
respectively camera pan, tilt and zoom. By the ground plane
assumption, given the position of a point p in the camera
image, it is possible to obtain its position in XG, see [6].
In the same way, it is possible to compute L(x). We first
introduce the relation between optical center reference frame
(oc) and world reference frame (w)[
xw
yw
zw

]
=

[
0
0
H

]
+Rθ

([
D
0
0

]
+Rψ

([
xoff
yoff
zoff

]
+

[
xoc
yoc
zoc

]))
where pw = [xw, yw, zw]T are the coordinates of a point
p in XG while poc = [xoc, yoc, zoc]

T are its coordi-
nates in the optical center reference frame (see Figure
1). H,D, xoff , yoff , zoff are parameters and Rθ, Rψ the
rotation matrices involved. Given a point in optical center
reference frame, its position in the image view frame (im)
is obtained as follows

xim = λ(ζ)
yoc
xoc

yim = −λ(ζ)
zoc
xoc

where λ(ζ) = λ1ζ is the focal length for a given level
of zoom ζ, while λ1 is λ value for ζ = 1. In order to
compute L(x) we calculate the coordinates of the optical
center projected on XG, i.e. [x̄w, ȳw, z̄w]T .

Given x̃iim, ỹiim, i = 1, · · · , 4, positions of the vertices
of the FOV in the camera image, we can compute their
projection on the ground plane. Note that the FOV is located
at −λ on Xoc in the optical center reference frame. The
shift of −λ is expressed in XG coordinates. In order to
find the projection of the FOV vertices on the ground plane,
i.e. ṽiP = [x̃iPw , ỹiPw , z̃iPw ]T , we intersect the line passing
through [x̃iw ỹiw, z̃

i
w]T and [x̄w, ȳw, z̄w]T with the ground

plane Zw = 0.
The dynamics of the camera view over the time horizon

k ∈ {0, ..., N}, N ∈ N, are given by the stochastic difference
equation  x1,k+1

x2,k+1

x3,k+1

 =

 x1,k + u1,k + w1

x2,k + u2,k + w2

x3,k + u3,k + w3

 (9)

where, for all k ∈ {0, ..., N}, camera pan, tilt and
zoom [x1,k, x2,k, x3,k]T ∈ X ⊆ R3, the camera inputs
[u1,k, u2,k, u3,k]T ∈ U ⊆ R3, and the camera noise is
i.i.d. according to w1 ∼ N (0, ν1), w2 ∼ N (0, ν2) and
w3 ∼ N (0, ν3). This represents both process and measure-
ment noise as a result of innacurate motor movements and
disturbed image data.

Each set-valued evader O(i) ∈ B(XG), i ∈
{1, ..., n}, is parameterized by its center and orientation
[x

(i)
e , y

(i)
e , φ

(i)
e ]T ∈ Xe, according to the relation

O(i) ={xG∈XG : (xG,1−x(i)
e )2+(xG,2−y(i)

e )2≤(r(i)
e )2}

where O(i) is a two-dimensional circle . The dynamics for
the center of each evader i ∈ {1, ..., n} over the time horizon
k = {0, ..., N}, N ∈ N, is modeled by the stochastic
difference equation with sampling time ∆t x

(i)
e,k+1

y
(i)
e,k+1

φ
(i)
e,k+1

 =

 x
(i)
e,k + v̄

(i)
e,ksin(φ

(i)
e,k)∆t

y
(i)
e,k + v̄

(i)
e,kcos(φ

(i)
e,k)∆t

φ
(i)
e,k + Ω

(i)
e,k∆t

 (10)

where, for all k ∈ {0, ..., N}, the evader centers
[x

(i)
e,k, y

(i)
e,k]T ∈ XG, the orientation φ

(i)
e,k ∈ [−π, π], the

evader linear velocity v̄
(i)
e,k ∈ V ⊆ R. The evader angular

velocity Ω
(i)
e,k ∈ W ⊆ R is i.i.d according to N (0, w

(i)
φ ).

This represents process noise associated with movement of
the evaders and is completely independant from the camera
noise.

Clearly the evader processes defined are Markov (i.e. the
stochastic set-valued processes are driven by a parametric
Markov process). Evaluating the problem for n = 2 evaders
using the coupled approach of [15] would require an addi-
tional 6 states in the worst case (2 evaders with 3 states each)
leading to computational intractability. We therefore make
use of the following approximating assumption, to be able
to use the decoupled approach [15] introduced in Section II.
For each random parametric state ξ (where in this case ξ
is the collection of parametric states of all n evaders), we
approximate the product measure as

N∏
k=0

Gk(dξk|ξk−1) ≈
N∏
k=0

Ĝk(dξk)

where each stochastic kernel Ĝk(dξk) is taken as the
marginal (according to ξk) of the product measure, i.e.

Ĝk(dξk) =

∫
Yk

k∏
i=0

Gi(dξi|ξi−1).

This naturally leads to covering functions of the form

pγj(ξk)(x) = E
[
1γj(ξk)(x)

]
=

∫
Y
1γj(ξk)(x)Ĝk(dξk)

for j ∈ {1, 2}.
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V. EXPERIMENTAL RESULTS

Here we consider n ∈ {1, 2} and a finite time horizon of
N = 9. We evaluate four surveillance tasks as probabilistic
reach-avoid problems with random sets. In each case, the
stochastic reachability problem is solved via dynamic pro-
gramming based on the computational methods of [21]. The
result is an optimal control policy µ∗k(x) for the DTSHS
that can be applied in open loop (or receding horizon). The
dynamic program also provides the optimal value function
V ∗k (x) which represents the probability of success of the
considered surveillence tasks. Not only is this information
valuable on its own, but it can also be used to make high
level decisions. For example, if the probability of acquiring
evader 2 while tracking evader 1 is significantly lower than
only tracking evader 1, then the prudent thing for the camera
may be to track evader 1.

The camera set evolves according to an a priori calcu-
lated optimal control policy while the evaders follow the
differential robot dynamics introduced above. In the current
experimental setup we apply the optimal policy over the
time horizon in open loop in order to verify the accuracy
of the dynamic programming results. An extension towards
the application of the computed policies in receding horizon
is currently being explored. The experimental setup follows.

With the support of Videotec S.p.A., ETH has set up a lab-
oratory test bed comprising of a PTZ Ulisse compact camera
capable of covering the whole evader space. For simplicity,
we have assumed the zoom constant, an assumption that is
beeing relaxed in current work.

The calibrated values of camera set-up have been calcu-
lated in an earlier study [6] and are: H = 2.5, D = 0.124,
xoff = 0.1485 yoff = −0.0275, zoff = 0.02, λ1 = 0.0297.
The camera is positioned at xw = 0 meters and yw = 4.55
meters. The state space bounds are x1,k ∈ [−π/2, 0] and
x2,k ∈ [π/5.5, π/2] where x1,k and x2,k are measured
in radians. The control inputs are bounded according to
u1,k ∈ [−0.0262, 0.0262] and u2,k ∈ [−0.0262, 0.0262] with
units in radians and the variance of the noise is ν1 = ν2 =
ν3 = 10−6 (i.e. the camera movement is fairly accurate). The
radius of the Khepera robots (i.e. the evaders) is r(i)

e = 0.06
meters for all i ∈ {1, 2} and the linear velocity of the robots
is constant, v̄(i)

e,k = 0.24 meters per second. The angular
velocity (radians per second), however, is assumed to be ran-
dom and i.i.d. according to a bounded gaussian distribution,
i.e. Ω

(i)
e,k ∼ N (0, π/8) with |Ω(i)

e,k| ≤ π. The planar ground
plane, is XG = {[xw, yw] : xw ∈ [0, 3.8], yw ∈ [0, 4.5]} (in
meters). For computational purposes, the environment has
been discretized with step 0.015 meters on both xw and yw
and the camera state has been discretized by 0.0262 radians.
The sampling time for both processes is ∆t = 0.25 seconds.
The initial positions of the camera and robot evaders for each
survailance objective are presented in Table I.

A. Acquiring a single evader

Consider the problem of maximizing the probability that
the camera acquires evader 1 over the finite time horizon

k ∈ {0, ..., N}. For each k ∈ {0, ..., N}, we define the sets

Sk = S
(1)
k × S

(2)
k

= {xk ∈ X : L(xk) ∩ O(i)
k 6= ∅, ∀i ∈ {1}} ×X.

The target set Kk = S
(1)
k comprises all camera states where

all evaders are visible to the camera at step k. The safe
set, K ′k = S

(2)
k , comprises all camera states. Note that the

camera has achieved the acquisition criteria if there exists
a time k ∈ {0, ..., N} such that xk ∈ S

(1)
k . We pose

this problem as a reachability problem where the objective
is to maximize the probability of reaching S

(1)
k at some

point over the time horizon. The optimal value function
indicates high probabilities of success for configurations
defining FOVs close to the initial position of the evader. In
Table II, the result of applying the same optimal policy on
repeated experiments confirms the numerical results obtained
by computer simulations.

B. Tracking a single evader

Consider the problem of maximizing the probability that
the camera tracks evader 1 over the finite time horizon k ∈
{0, ..., N}. For each k ∈ {0, ..., N}, we define the sets

Sk = S
(1)
k × S

(2)
k

= {xk ∈ X : ∃i ∈ {1}, L(xk) ∩ O(i)
k = ∅} ×X.

The target set, Kk = S
(1)
k , comprises all camera states where

one or more evaders is not visible to the camera at step k. The
safe set, K ′k = S

(2)
k , comprises all camera states. Note that

the camera has failed to meet the tracking criteria if there
exists a time k ∈ {0, ..., N} such that xk ∈ S

(1)
k . Thus,

it follows that maximizing the probability that the camera
tracks the evaders (given as V ∗k (x) for k ∈ {0, ..., N}) is
equivalent to minimizing the probability that the camera loses
view of any evader at some k ∈ {0, ..., N} (given as V̂ −k (x)
for k ∈ {0, ..., N}) since V ∗k (x) = 1− V̂ −k (x) always [14],
[16], [22]. As in [14], [16], [22], we pose this problem as
a target hitting problem where the objective is to minimize
the probability of attaining S(1)

k at some point over the time
horizon. According to the solution, if the evader is covered
at k = 0 the probability of success is very high and this was
confirmed by the experiments (Table II).

C. Tracking a single evader while acquring a second evader

Here we consider the problem of maximizing the probabil-
ity that the camera acquires all n = 2 evaders at some point
during the finite time horizon k ∈ {0, ..., N} while tracking
evader 1 at each prior time point. For each k ∈ {0, ..., N},
we define the sets

Sk = S
(1)
k × S

(2)
k

= {xk ∈ X : L(xk) ∩ O(i)
k 6= ∅, ∀i ∈ {1, 2}}×

{xk ∈ X : L(xk) ∩ O(i)
k 6= ∅, ∀i ∈ {1}}.

The target set Kk = S
(1)
k comprises all camera states where

both evaders are visible to the camera at step k. Similarly,
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p
(1)
0 p

(2)
0 x0

Acquire 1 [1.9, 2, 0.46] - [-60,46]

Track 1 [1.9, 2, 0.46] - [-52,40]

Track 1, Acquire 2 [1.9, 2, 0.46] [2.5, 2.6, -2.35] [-52,37]

Track 1,2 [1.9, 2, 0.46] [2, 2.1, 0.77] [-51,40]

TABLE I
INITIAL STATE VALUES FOR THE CAMERA AND THE MULTIPLE EVADERS

V ∗
0 (x0) Success/Experiments

Acquire 1 0.967 23/25 = 0.92
Track 1 0.996 24/25 = 0.96

Track 1 and Acquire 2 0.787 19/25 = 0.76
Track 1,2 0.756 17/25 = 0.68

TABLE II
EXPERIMENTAL VALIDATION OF THE SURVEILLANCE FRAMEWORK

K ′k = S
(2)
k comprises all camera states where evader 1 is

visible to the camera at step k. Trivially, S(1)
k ⊆ S

(2)
k .(Note

that this holds always since if all 2 evaders are visible to
the camera then evader i ∈ {1} must also be visible to the
camera.) Thus, the camera has achieved the target tracking
and acquisition criteria if there exists a time k ∈ {0, ..., N}
such that xk ∈ S(1)

k and xj ∈ S(2)
j for all j ∈ {0, ..., k− 1}.

Experimental results of the tracking while acquiring problem
are reported in Table II.

D. Tracking multiple evaders

Consider the problem of maximizing the probability that
the camera tracks both evaders i ∈ {1, 2} over the horizon
k ∈ {0, ..., N}. For each k ∈ {0, ..., N}, we define the sets

Sk = S
(1)
k × S

(2)
k

= {xk ∈ X : ∃i ∈ {1, 2}, L(xk) ∩ O(i)
k = ∅} ×X.

The target set, Kk = S
(1)
k , comprises all camera states where

one or more evaders is not visible to the camera at step k. The
safe set, K ′k = S

(2)
k , comprises all camera states. We again

pose the tracking problem as a target hitting problem where
the objective is to minimize the probability of attaining S(1)

k

at some point over the time horizon. Experimental results of
tracking both evaders are reported in Table II.

VI. CONCLUSION

In this work a framework for camera-based autonomous
surveillance was introduced based on the theory stochastic
reachability and random sets. The problem of maximizing
the probability of satisfying safety (tracking), reachability
(target acquisition), and reach-avoid (target tracking while
acquiring a target) objectives was considered and solved via
dynamic programming. Experimental results were provided
for a single PTZ camera and multiple robotic evaders and
compared to the theoretical solution.
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