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Abstract— Models of dynamical systems become increasingly
complex. While this allows a more accurate description of the
underlying process, it often renders the application of model-
based control algorithms infeasible. In this paper, we propose a
model reduction procedure for systems described by nonlinear
ordinary differential equations. The reduced model used to
approximate the input-output map of the system is parameter-
ized via the observability normal form. To preserve the steady
states of the system and their stability properties, the set of
feasible parameters of the reduced model has to be constrained.
Therefore, we derive necessary and sufficient conditions for

simultaneous exponential stability of a set of steady states
of the nonlinear reduced model. The local approximation of
these constraints results in a sequential convex program for
computing the optimal parameters. The proposed approach is
evaluated using the Fermi-Pasta-Ulam model.

I. INTRODUCTION

Models of electrical, mechanical, (bio-)chemical, and bio-

logical processes become more and more detailed to achieve

a more accurate description of the underlying mechanisms

and process dynamics. Unfortunately, this complicates con-

troller design, as most of the model-based control algorithms,

e.g., flatness based approaches, only allow for the consider-

ation of small and medium size systems. Therefore, model

reduction for linear and nonlinear systems has become more

and more important over the last decade. While reducing the

model size and complexity, it is often crucial to preserve

certain properties, such as stability.

Most of the research in the field of model reduction

focuses on linear systems [2]. Common approaches are

balanced truncation [3] and Krylov methods [4]. Balanced

truncation has also been extended to nonlinear systems [5, 6]

employing the concept of energy functions, respectively

empirical gramians. To preserve or guarantee the stability

during model reduction, approaches exploiting, e.g., proper

orthogonal decomposition [7] and piecewise-linear approxi-

mation [8] have been developed.

Another approach is the trajectory-based model reduction

procedure proposed in [9] and [10]. In [10], the reduced

model is given in observability normal form, thereby im-

plicitly defining a nonlinear mapping from the detailed to
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the reduced model states. Then, by using system identi-

fication to determine the parameters of the observability

normal form, a convex formulation for the model reduction

problem is derived. Unfortunately, the last method does not

admit the explicit consideration of location and stability of

steady states. However, preserving these qualitative aspects

is important to ensure the correct asymptotic behavior. In

this work, we extend the approach of [10] to allow for

the integration of knowledge about location and stability

of steady states, by introducing a necessary and sufficient

condition for the simultaneous stability of a predefined set

of steady states. As the resulting problem is nonconvex, it

is relaxed to a sequential convex optimization problem. This

ensures efficient computations which facilitate the reduction

of high-dimensional systems.

The paper is structured as follows: In Section II we

describe the problem setup. Subsequently, the steady state

stability preserving model reduction procedure is presented

in Section III. In Section IV we apply the procedure to

the Fermi-Pasta-Ulam lattice. The paper is concluded in

Section V.

Mathematical notation: The space of real symmetric

n × n matrices is denoted as S
n. The nonnegative real

numbers are given by R+. The notation I and 0 represents

the identity and zero matrix, and tr(X) is the trace of

X ∈ R
n×n. The positive definiteness and semidefiniteness of

a symmetric matrix X ∈ S
n is denoted X ≻ 0 and X < 0,

respectively. When writing u(·) we refer to the trajectory of

u. The first and n-th derivative of u with respect to time is

represented by u̇ and
(n)
u , respectively. The notation u(i) is

used to number the elements u within a set
{

u(i)
}N

i=1
.

II. PROBLEM STATEMENT

In this work, we consider the problem of model reduction

for a system of nonlinear ODEs. The system to be reduced

will be called detailed model in the following and abbre-

viated using the subscript D. For notational simplicity the

detailed model is assumed to be a SISO system,

ΣD :

{

ẋ = fD(x, u), x(0) = x0
yD= hD(x, u),

in which x ∈ R
n is the state of the system, u ∈ R is the

input, and yD ∈ R is the output. The initial condition is

denoted by x0 ∈ R
n. To ensure existence and uniqueness of

solutions the vector field fD : Rn × R → R
n is assumed to

be globally Lipschitz continuous. Additionally, the mapping

hD : Rn × R → R is assumed to be sufficiently smooth.
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While performing model reduction the main goal is to

preserve the key features of the detailed model. Two of these

key properties are the location and the stability of steady

states. Therefore, we assume that the set of locally expo-

nentially stable steady states of ΣD, S =
{

(u(s), y(s))
}ns

s=1
,

is available. Note that, as I/O-based model reduction is

considered, we only specify steady states via a constant

output y(s). Thus, we allow for internal dynamics, e.g., due

to limit cycle oscillations, which are not observable at the

output.

Given the detailed model ΣD, a reduced model ΣR shall

be computed which (i) reflects the location and exponential

stability of the steady states and (ii) provides a good approx-

imation of the I/O-behavior of ΣD on a finite time interval

[0, Tend]. To compute a reduced model achieving (ii), we use

the model reduction procedure presented in [10] and extend

it to enforce (i). In the remainder of this section we provide

a short summary of the methods presented in [10].

To allow for the development of problem-specific and

thus smaller reduced models, we allow for the integration

of prior knowledge about relevant initial conditions x0 and

input trajectories u(·). Therefore, importance weights for

x0 and u(·) are introduced and denoted by px and pϕ,

respectively. For ease of presentation, the input trajectories

are assumed to be parameterized by ϕ ∈ R
nϕ , e.g., a finite

Fourier series. This allows us to express the importance

weight pϕ as a function of the parameters ϕ. In the following

the parametrized input is denoted by uϕ. For the weighting

functions px : Rn → R+ and pϕ : Rnϕ → R+ we assume,

that the integrals
∫

Rn px(x0)dx0 and
∫

R
nϕ pϕ(ϕ)dϕ exist and

are equal to one.

To facilitate an efficient model reduction procedure, in the

first step the reduced model is parameterized. The reduced

model is chosen to have observability normal form [11],

ΣR :



















ξ̇i= ξi+1, i = 1, . . . , nR − 1

ξ̇nR
= θT m(ξ, µ), ξk(0) =

(k−1)
yD (0;x0, uϕ),

k = 1, . . . , nR

yR= ξ1,
(1)

with state ξ ∈ R
nR and state dimension nR. The aug-

mented input vector is denoted by µ = [uϕ, u̇ϕ, · · · ,
(nR)
uϕ ]T .

Therefore, we allow only nR times differentiable inputs

uϕ(·). The right hand side of ξ̇nR
is a weighted sum

of ansatz functions, θTm(ξ, µ). We denote the weighting

parameters by θ ∈ R
nθ and the ansatz functions by

m(ξ, µ) = [m1(ξ, µ), . . . ,mnθ
(ξ, µ)]T . The ansatz functions

mi(ξ, µ), i = 1, . . . , nθ , are assumed to be Lipschitz con-

tinuous. Common ansatz functions are polynomials or radial

basis functions.

The main advantage of the observability normal form is

that the states of the reduced model are the time derivatives

of the output, ξ = [yR, ẏR, · · · ,
(nR−1)
yR ]T . By using the

observability normal form, we exploit the fact that model

reduction – and not classical parameter estimation from

measurement data – is performed, i.e., the time derivatives

of the output are available. Furthermore, this is beneficial as

a direct link between the states ξ of the reduced model and

the output of the detailed model yD is established, which,

e.g., makes ξk(0) =
(k−1)
yD (0;x0, uϕ), k = 1, . . . , nR,

a reasonable choice for the mapping of the initial states.

The time derivatives of the output
(k−1)
yD (0;x0, uϕ) can be

computed using the observability map given in [11].

Given the model structure (1), in the second step the

parameters θ have to be estimated. For a given x0 and uϕ(·),
we thereby use the integrated squared equation error

E(x0, uϕ, θ) =
1

Tend

Tend
∫

0

(

(nR)
yD (t;x0, uϕ)− θTm(ξD, µ)

)2

dt,

as error criterion, with ξD = [yD, ẏD, · · · ,
(nR−1)
yD ]T . This

error criterion is comparable to the 1-step-ahead prediction

error in discrete-time systems identification. It penalizes

differences in the change of the output of the reduced model

yR and of the detailed model yD. As the reduced system

is given in observability normal form, only the error in the

nR-th time derivative of the output has to be considered.

Based on this setup, the considered problem is:

Problem 1 Given a detailed model ΣD and the relevant

I/O-behavior defined by the weightings px(x0) and pϕ(ϕ),
compute a reduced model ΣR in observability normal form

of fixed order nR and with ansatz functions m, such that

1) the objective functional

J(θ) =

∫

Rn

∫

R
nϕ

E
(

x0, uϕ(·), θ
)

px(x0) pϕ(ϕ) dϕdx0

is minimized and

2) ΣR has locally exponentially stable steady states S.

III. MODEL REDUCTION PROCEDURE

In this section we introduce a novel procedure to esti-

mate the parameters of the reduced model in Problem 1,

i.e., minimizing the equation error while guaranteeing the

location and exponential stability of steady states. Thereby,

we employ Monte-Carlo integration, methods from control

theory and the cone complementary algorithm.

A. Evaluation of the objective function

For the evaluation of the objection function J(θ) no

analytical methods are available. Fortunately, as discussed in

[10], the values of J(θ) can be approximated by combining

the ideas of trajectory-based model reduction, for assessing

the performance of the reduced model, and Monte-Carlo

integration [12].

The high-dimensional (1+n+nϕ) integral defining J(θ)
is approximated using sampling. At first a sample of initial

conditions {x
(i)
0 }Ni=1 and input trajectories {u

(i)
ϕ (·)}Ni=1 is

drawn, with x
(i)
0 ∼ px(x0), and ϕ(i) ∼ pϕ(ϕ). Secondly,

a sample of time points {t(i)}Ni=1 is drawn from a uniform

distribution over [0, Tend]. The number of sample members

is denoted by N . Given {x
(i)
0 }Ni=1, {u

(i)
ϕ }Ni=1, and {t(i)}Ni=1,

a sample of points from I/O-trajectories is given by

T =
{

y
(i)
D (t(i);x

(i)
0 , u(i)ϕ ), u(i)ϕ (t(i))

}N

i=1
.
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From classical Monte-Carlo integration it is now known that

for N ≫ 1 a good approximation of J(θ) employing T is

Ĵ(θ) =
1

N

N
∑

i=1

(

(nR)
yD

(i)(t(i);x
(i)
0 , u

(i)
ϕ )− θT m(ξ

(i)
D , µ(i))

)2

,

in which

ξ
(i)
D = [y

(i)
D (t(i);x

(i)
0 , u

(i)
ϕ ), . . . ,

(nR−1)
yD

(i)(t(i);x
(i)
0 , u

(i)
ϕ )]T

and µ(i) = [u
(i)
ϕ (t(i)), . . . ,

(nR)
uϕ

(i)(t(i))]T . By defining

M= [m(ξ
(1)
D , µ(1)), . . . ,m(ξ

(N)
D , µ(N))],

ψ= [
(nR)
yD

(1)(t(1);x
(1)
0 , u(1)ϕ ), . . . ,

(nR)
yD

(N)(t(N);x
(N)
0 , u(N)

ϕ )]T,

the approximated objective function can be written in a

quadratic form,

Ĵ(θ) =
1

N
‖θTM − ψT ‖22.

Thus, the minimization of J(θ) can be approximated by a

convex, quadratic optimization problem, if the constraints,

which ensure the locally exponentially stable steady states,

are not considered. In the next step, a formulation for the

steady state constraints is derived.

B. Location and stability of steady states

In this section we derive necessary and sufficient con-

ditions for (u(s), y(s)) being a locally exponentially stable

steady state of the reduced system.

1) Location of steady states: In a first step it has to be

ensured that (u(s), y(s)) is a steady state. Therefore, the right

hand side of ΣR has to vanish for ξ = [y(s), 0, . . . , 0]T

and µ = [u(s), 0, . . . , 0]T . For ξ̇1, . . . , ξ̇nR−1, this is fulfilled

implicitly. Thus, the reduced model has a steady state at

(u(s), y(s)) if and only if

0 = θTm([y(s), 0, . . . , 0]T , [u(s), 0, . . . , 0]T ) := θTm(s).

2) Stability of steady states: A necessary and sufficient

condition for local exponential stability of (u(s), y(s)) is that

all poles of the Jacobi linearization of ΣR at (u(s), y(s)) lie in

the open left half plane. Linearizing the reduced model ΣR

at (u(s), y(s)) provides for the autonomous part

∆ξ̇ = A(s)(θ)∆ξ (2)

with A(s)(θ) = A+ bθTC(s) depending affinely on θ, and

A =















0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
0 0 0 · · · 0















∈ R
nR×nR , b =















0
0
...

0
1















∈ R
nR ,

C(s) =
[

c
(s)
1 · · · c

(s)
nR

]

∈ R
nθ×nR ,

c
(s)
k =

∂m

∂ξk

∣

∣

∣

∣

ξ=[y(s),0,...,0]T ,µ=[u(s),0,...,0]T
, k = 1, . . . , nR.

It is well-known that for a given θ the linear system (2) is

exponentially stable if and only if there exists a symmetric

matrix P (s) ∈ S
nR satisfying the Lyapunov inequality [13],

P (s)A(s)(θ) + (A(s)(θ))TP (s) ≺ 0, P (s) ≻ 0. (3)

To eliminate the multiplication of the two unknowns P (s)

and θ, we use the following lemma which is based on [1].

Lemma 1 Given a constant matrix A ∈ R
n×n and symmet-

ric matrix P ∈ S
n with P ≻ 0, the following statements are

equivalent:

1) PA+ATP ≺ 0

2) ∃ρ ∈ R :

[

ρP −AT − ρI

−A− ρI ρP−1

]

≻ 0.

Proof: As P ≻ 0, there exists a unique Z = ZT ≻ 0
such that Z2 = P , denoted by P 1/2 := Z . Therefore,

PA+ATP ≺ 0

⇔ P−1/2(−PA−ATP )P−1/2 ≻ 0

⇔
[

P−1/2 P 1/2
]

[

0 −AT

−A 0

] [

P−1/2

P 1/2

]

≻ 0. (4)

As the rows of U :=
[

P 1/2 −P−1/2
]

form a basis for

the null space of
[

P−1/2 P 1/2
]

, the Lemma [13, page 33]

provides that (4) is equivalent to the existence of ρ ∈ R such

that
[

0 −AT

−A 0

]

+ ρUTU ≻ 0 (5)

which concludes the proof.

Applying Lemma 1 to (3) yields the necessary and suffi-

cient conditions for local exponential stability of (u(s), y(s)):
[

ρ(s)P (s) −
(

A(s)(θ)
)T

− ρ(s)I

∗ ρ(s)
(

P (s)
)−1

]

≻ 0, P (s) ≻ 0. (6)

C. Model reduction ensuring steady state properties

From the above derivations follows:

Theorem 1 Suppose the objective Ĵ(θ) and the lineariza-

tions of ΣR at the steady states A(s)(θ) are given. Then

a parameter vector θ ensures location and local exponential

stability of the steady states in S, if and only if it is a feasible

solution of

minimize
θ,P (s),ρ

Ĵ(θ)

subject to θTm(s) = 0
}

(C1)

P (s) ≻ 0
[

ρP (s) −(A(s)(θ))T − ρI

∗ ρ
(

P (s)
)−1

]

≻ 0











(C2)

s = 1, . . . , nS

(7)

The optimization of Ĵ(θ) results in a minimization of the

prediction error.

In (C2), the same ρ is used for all steady states. This is

possible, as from the positive definiteness of UTU in (5)

it follows that (6) is also fulfilled when ρ(s) is replaced

by any value which is larger. In consequence and to avoid
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the nonlinear terms ρP (s) and ρ
(

P (s)
)−1

, we set ρ to a

predefined large value.

Unfortunately, due to the appearance of
(

P (s)
)−1

in

(C2), problem (7) is nonlinear and nonconvex. Therefore,

in the next step a relaxation is performed to allow for the

development of an efficient computational scheme.

D. Formulation as sequential convex optimization

To overcome the nonconvexity, we propose a sequential

convex programming approach employing the cone comple-

mentarity linearization [14]. Therefore, Q(s) =
(

P (s)
)−1

is

introduced into the optimization problem. Using Q(s), the

constraint (C2) for the local exponential stability of a single

steady state (u(s), y(s)) can be written as

P (s) ≻ 0, Q(s) ≻ 0 (8)

P (s)Q(s) = I (9)
[

ρP (s) −
(

A(s)(θ)
)T

− ρI

∗ ρQ(s)

]

≻ 0 (10)

Due to the equality constraint P (s)Q(s) = I , this problem is

still nonconvex. Nevertheless, an approximation of (9) can

be derived by employing the linear matrix inequality
[

P (s) I

I Q(s)

]

< 0. (11)

Therefore, note that (11) is feasible with tr(P (s)Q(s)) = nR,

P (s) ≻ 0, and Q(s) ≻ 0 if and only if P (s)Q(s) = I [14].

Otherwise tr(P (s)Q(s)) > nR. Given this, a feasible solution

for (8)–(10) may be found by solving the minimization

problem
minimize
θ,P (s),Q(s)

tr(P (s)Q(s))

subject to (8), (10) and (11)

As for this optimization problem the objective function

is nonlinear, a linear approximation is derived at a fea-

sible point (P
(s)
0 , Q

(s)
0 ). This approximation is given by

1
2 tr(P

(s)
0 Q(s) + P (s)Q

(s)
0 ). This yields the linearized prob-

lem
minimize
θ,P (s),Q(s)

1
2 tr(P

(s)
0 Q(s) + P (s)Q

(s)
0 )

subject to (8), (10) and (11),

which is solved sequentially and shown to converge within

a few iterations for similar problems [14].

Applying this procedure to all stability constraints in (7)

and defining a mixed objective, we obtain

minimize
θ,P (s),Q(s)

Ĵ(θ) + α

nS
∑

s=1

tr(P
(s)
0 Q(s) + P (s)Q

(s)
0 )

subject to θTm(s) = 0
}

(C1)

P (s) ≻ 0, Q(s) ≻ 0
[

P (s) I

I Q(s)

]

< 0
[

ρP (s) −
(

A(s)(θ)
)T

− ρI

∗ ρQ(s)

]

≻ 0



























(RC2)

s = 1, . . . , nS

where α ∈ R+ determines the weighting for the multi-

objective optimization. Instead of introducing an additional

term into the objective function, one may also add constraints

1

2
tr(P

(s)
0 Q(s) + P (s)Q

(s)
0 ) < (1 + ǫ)nR (12)

and solve the optimization problem:

Problem 2

OP({(P
(s)
0 , Q

(s)
0 )}nS

s=1) : minimize
θ,P (s),Q(s)

Ĵ(θ)

subject to (12), (C1), (RC2)
s = 1, . . . , nS

From our experience it is easier to determine a suitable

constant ǫ than a weighting α.

E. Model reduction algorithm

Based on the above results, we propose Algorithm 1 below

for model reduction ensuring steady state properties. For

ease of presentation we omit the range of s = 1, . . . , nS in

Algorithm 1. The sequential convex optimization is stopped

if the reduced model is exponentially stable in all steady

states and if the objective criterion is less than γ.

Algorithm 1 Model reduction ensuring steady state proper-

ties

Require: {(P
(s)
0 , Q

(s)
0 )} and θ0 satisfying (C1), (RC2), and

(12).

k = 0.

while A(s)(θk) not exponentially stable or Ĵ(θk) ≥ γ do

Find {(P
(s)
k+1, Q

(s)
k+1)} and θk+1 by solving the convex

optimization problem OP({(P
(s)
k , Q

(s)
k )}).

Update k = k + 1.

end while

return θk.

Finding an initially feasible solution satisfying (12), (C1),

and (RC2) is a topic for future research. We set P
(s)
0 = I

and Q
(s)
0 = I for s = 1, . . . , nS to initialize Algorithm 1,

which was no restriction for the examples considered.

Remark 1 Computing the solution of Problem 2 is indepen-

dent of the detailed model, assuming the sample of points T
has been computed beforehand. This emphasizes that only

the complexity of the detailed models I/O-behavior is relevant

for a model reduction procedure based on Theorem 1. Thus,

the model reduction procedure can be applied to large-scale

detailed models. Unfortunately, the order of the reduced

model is limited due to numerical diffulties originating from

the model structure with the derivatives of the output as

states.

IV. EXAMPLE: FERMI-PASTA-ULAM LATTICE

In this section the proposed model reduction approach is

applied to the Fermi-Pasta-Ulam (FPU) lattice.

7161



A. Introduction and FPU model

Prior to 1955, E. Fermi, J. Pasta, and S. Ulam studied

dynamical systems consisting of a chain of particles with

forces between neighbors that can be modeled by nonlinear

springs. Through numerical experiments they analyzed the

time evolution of the energy of each normal mode discover-

ing the well known FPU paradox [15], which is studied till

recently.

The FPU lattice has been chosen due to its importance in

nonlinear science and the existence of nonlinear oscillations.

Due to the nonlinear oscillations, the poles of the Jacobi

linearization around a steady state are close to, respectively

on the imaginary axis. Therefore, the reduced model is prone

to be not locally exponentially stable around the steady

states.

For this study, the FPU model as in [15, Figure 4]

consisting of 16 particles with fixed end points and cubic

forces is used. Denoting the displacement and velocity of

the i-th particle with xi and vi, respectively, the cubic force

acting on particle i, i = 2, . . . , 15, is given by

Fi(x) = (xi−1 − xi) + 8(xi−1 − xi)
3

+ (xi+1 − xi) + 8(xi+1 − xi)
3.

Due to the fixed end points the displacement and velocity of

the first and last particle is 0. Therefore, the detailed model

contains 28 states. As we require exponentially stable steady

states we extended the model with a viscous damping

Di(v) = 0.2(vi−1 − vi) + 0.2(vi+1 − vi), i = 2, . . . , 15.

Furthermore, as we consider I/O based model reduction, we

define the input as an external force acting on particle 8 and

the position of this particle as output. Thus, the differential

equations of this model are given by

ẋi =

{

0 for i = 1, 16

vi for i = 2, . . . , 15

v̇i =











0 for i = 1, 16

Di(v) + Fi(x) for i = 2, . . . , 15, i 6= 8

Di(v) + Fi(x) + uϕ for i = 8

yD = x8.

B. Model reduction

For the model reduction of the FPU model, I/O-data is

generated by simulation of the detailed model. Denote the

steady state for u = 1.5 by x and Φ(x|α, β) the probability

density of the uniform distribution in the interval x ∈ [α, β].
The weighting of the initial condition px is chosen as

px(x0) =

n
∏

i=1

Φ(x0,i|0.99xi, 1.01xi).

With the Heaviside step function denoted σ(t), the input

trajectories are chosen to be multi-step functions

uϕ(t) = 1.5 +

4
∑

i=1

(hi − hi−1)σ(t− τi)

smoothed by the transfer function G(s) = (s+ 1)−nR . The

parameters of the input trajectories are

ϕ := [h1, h2, h3, h4, τ1, τ2, τ3, τ4]
T .

The weighting function for the input is

pϕ(ϕ) =

(

4
∏

i=1

Φ(hi|0.5, 2.5)

)(

4
∏

i=1

Φ(τi|0, 100)

)

,

in which the order τ1 ≤ τ2 ≤ τ3 ≤ τ4 is assumed.

Within the interval of possible input values, the two values

ū1 = 0.75 and ū2 = 2 define the set of steady states

S = {(0.75, 1.86), (2, 3.11)}.

For the model reduction a sample with 100 members

is drawn from px(x0) and pϕ(uϕ), respectively. For the

resulting pairs the FPU model is simulated for the time

interval [0, 100]. In order to use most of the information

contained in every I/O-trajectory, the trajectories are sampled

with a sampling time of 0.1, yielding the sample of I/O-

trajectories T .

Given the sample T , the order nR of the reduced model

has to be chosen. For nR several values have been tested,

yielding that a reasonable approximation of the I/O-behavior

is achieved with nR = 2. Due to the cubic force existing in

the FPU model, the ansatz functions m(ξ, µ) consist of all

monomials with degree less or equal three. Thus, the reduced

model with 56 parameters and monomials is given by

ΣR :











ξ̇1 = ξ2

ξ̇2 = θTm(ξ, µ)

yR = ξ1.

Based on this structure of the reduced model and the

sample T , two parameterizations of the reduced model

are determined using the MATLAB toolbox Yalmip [16]

with the solver SeDuMi [17]. The first parameterization or

reduced model is determined by minimizing Ĵ(θ) subject

to (C1). The second reduced models is computed using

Algorithm 1 and thus guarantees in addition to the location

also the local exponential stability of the steady states. To

enforce sparsity of θ the ℓ1-norm formulation of [10] is

adopted. The optimization results in the reduced model 1

with 8 parameters determined by

ÿR =− 0.038 yR + 0.14 uϕ + 0.057 üϕ

+ 0.0095 uϕyR − 0.0074 y3R − 0.076 ẏ3R

− 0.02 u2ϕu̇ϕ + 0.96 u̇3ϕ

and the reduced model 2 with 13 parameters given by

ÿR =− 0.035 yR − 0.04 ẏR + 0.14 uϕ

+ 0.0019 y2R − 0.0097 yRẏR − 0.0001 uϕyR

+ 0.011 uϕẏR − 0.011 y3R + 0.017 y2RẏR

+ 0.011 uϕy
2
R − 0.035 uϕyRẏR − 0.0065 u2ϕyR

+ 0.02 u2ϕẏR.
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ÿ

0 10 20 30 40 50

−0.4

−0.2

0

0.2

Fig. 1. Input trajectory ( ) and the corresponding trajectories of the
detailed model ( ), reduced model 1 ( ) and reduced model 2 ( ).

TABLE I

POLES OF THE JACOBI LINEARIZATION AT THE STEADY STATES.

u
(s) reduced model 1 reduced model 2

0.75 0± 0.328i −0.0147± 0.336i

2.00 0± 0.482i −0.0125± 0.475i

C. Validation of reduced model

To validate the reduced model, trajectories from simula-

tions with x0 drawn according to px(x0) are used as further

validation. Exemplary, trajectories for the input trajectory

with ϕ = [0.75, 2.0, 1.5, 0.5, 0, 25, 50, 75]T are shown in

Figure 1. It is obvious, that the quantitative I/O-behavior

for increasing and decreasing steps is reproduced well by

both reduced models. Comparing the second time derivative

of the outputs, one realizes that the major oscillation, which

is apparently nonlinear, is captured by the reduced models

whereas the faster oscillations of the detailed model are not

reproduced due to the limitation to two states.

To examine the local steady state behavior, the poles of

the Jacobi linearization at the steady states of both reduced

models is given in Table I, showing that the reduced model 1

exhibits undamped oscillations. For the reduced model 2 the

locally exponential stability is guaranteed by Algorithm 1

resulting in lightly damped poles.

V. CONCLUSION

In this paper an extension of a trajectory-based nonlinear

model reduction technique with conditions for location and

stability of a set of steady states is proposed. The trajectory-

based approach parametrizes the reduced models which

results in a convex objective function, while the steady

state constraints restrict the space of feasible parameters.

To ensure a maximal number of degrees of freedom despite

the stability requirement, a novel necessary and sufficient

condition for simultaneous local exponential stability is pro-

posed. This formulation can also be utilized when performing

simultaneously stabilizing static output feedback design.

As the resulting overall optimization problem has non-

linear constraints, the cone complementarity linearization is

employed. This results in a sequential convex optimization

problem which has good convergence properties. Hence, the

model reduction for nonlinear ODEs could be reformulated

to a series of efficient convex programs.

To evaluate the proposed approach the Fermi-Pasta-Ulam’s

spring-mass system is studied. The system has sixteen

masses and nonlinear spring potentials. Employing the pro-

posed algorithm a reduced model with only two states is

computed, which reproduces the important I/O-behavior and

satisfies the stability criteria.
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