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Abstract—In this paper, a fault tolerant control for induction
motors based on backstepping strategy is designed. The pro-
posed approach permits to compensate both the rotor resistance
variations and the load torque disturbance. Moreover, to avoid
the use of speed and flux sensors, a second order sliding mode
observer is used to estimate the flux and the speed. The used
observer converges in a finite time and permits to give a good
estimate of flux and speed even in presence of rotor resistance
variations and load torque disturbance. The stability of the
closed loop system (controller + observer) is shown in two steps.
First, the boundedness of the trajectories before the convergence
of the observer is proved. Second, the trajectories convergence
is proved after the convergence of the observer. The simulation
results show the efficiency of the proposed control scheme.

I. INTRODUCTION
Induction Motors (IM) are widely used in many industrial

processes due to their reliability, low cost and high perfor-
mance. However, because of several stresses (mechanical,
environmental, thermal, electrical), IM are subjected to vari-
ous faults, such as stator short-circuits and rotor failures such
as broken bars or rings,...etc. The diagnostic of IM has shown
that the presence of faults leads to parameters variations [1].
In this work, we focus on the rotor resistance variations.
Fault Tolerant Control (FTC) systems are able to main-
tain specific systems performances not only under nominal
conditions but also when faults occur (change in system
parameters or characteristic properties). There are two types
of FTC: active and passive approaches. In the passive ap-
proach, the controller is designed to maintain acceptable
performances against a set of faults without any change in
the control law. In the active approach, first the faults are
detected and isolated (fault detection and isolation step),
second the control law is changed (control reconfiguration
step) to maintain specific performances [2]. This paper is
concerned with the passive fault tolerant controller for IM
in order to compensate the rotor resistance variations and
the load torque disturbance. The proposed approach uses a
direct field oriented controller based on backstepping strategy
to steer the flux and the speed to their desired references
in presence of rotor resistance variations and load torque
disturbance. Moreover, sensorless control is considered. This
control method avoids the use of the speed sensor [3], [4],
[5]. For instance, in [5] the feedback controller uses an
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adaptive observer in order to estimate the flux and the speed.
In [4], the control scheme is based on a first order sliding
mode observer. The sliding mode observers are widely used
due to their finite time convergence, robustness with respect
to uncertainties and the possibility of uncertainty estimation
[6]. When we use the first order sliding mode approach the
chattering effect appears. To avoid the chattering effect, the
high order sliding mode techniques have been developed. In
this work, the controller uses a second order sliding mode
observer ([7], [8]) to estimate the speed and the flux.
Compared to the existing fault tolerant control schemes
reported in the literature ([9]-[12]), the contribution of this
paper is first the design of a backstepping controller in
presence of rotor resistance variations and load torque dis-
turbance and second is the estimation of the speed and the
flux by a second order sliding mode observer which uses
only the measured stator currents.

II. INDUCTION MOTOR ORIENTED MODEL

In field oriented control, the flux vector is forced on the
d-axis ( qr = d qr

dt = 0). The resulting induction motor model
in the (d−q) reference frame is described by the following
state equations ([13]):

dids
dt

=−aids+ siqs+
Lm
LsLr r

dr +
Vds
Ls

diqs
dt

=−aiqs− sids−
LmP
LsLr

dr +
Vqs
Ls

d dr
dt

=
Lm
r
ids− dr

r
d
dt

=
PLm
LrJ

iqs dr−
f
J

− T
J

(1)

with:
s = P +

Lm
r dr

iqs (2)

a= (
Rs
Ls

+
1−

r
)

Where is the coefficient of dispersion given by:

= 1− L2m
LsLr

Ls, Lr, Lm are stator, rotor and mutual inductance, respec-
tively. Rs, Rr are respectively stator and rotor resistance. s
is the stator pulsation. r is the rotor time constant ( r = Lr

Rr ).
P is the number of pole pairs. Vds, Vqs are stator voltage
components. dr, qr are the rotor flux components. is the
mechanical speed. T is the load torque. ids, iqs are stator
current components. J is the moment of inertia of the motor.
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f is the friction coefficient.
In presence of rotor resistance variations, the model (1)
becomes([12]):

dids
dt

=−aids+ siqs+
Lm
LsLr r

dr +
Vds
Ls

+h1(x)

diqs
dt

=−aiqs− sids−
LmP
LsLr

dr +
Vqs
Ls

+h2(x)

d dr
dt

=
Lm
r
ids− dr

r
+h3(x)

d
dt

=
PLm
LrJ

iqs dr−
f
J

− T
J

(3)

where x = (ids, iqs, dr, ). h1(x), h2(x), h3(x) represent the
fault terms due to rotor resistance variations, they are given
by:

h1(x) = Rr
(
−(
1−
Lr

)ids+
Lm
drLr

i2qs+
Lm
LsL2r

dr

)

h2(x) = Rr
(
−(
1−
Lr

)iqs−
Lm
drLr

idsiqs
)

h3(x) = Rr
(
Lm
Lr
ids− dr

Lr

)

Here we introduce some definitions on the practical stability
which will be used in the next section (see [14]).

III. PRELIMINARY

Consider the following system:

ẋ= f (t,x)
x(t0) =x0, t0 ≥ 0

(4)

where x ∈ Rn is the state, t ∈ R≥0 is the time and f :
R≥0 × Rn → Rn is piecewise continuous in t and locally
Lipschitz in x. (t0,x0) are the initial conditions. We introduce
the following definition in which Br denotes the closed loop
ball in Rn of radius r> 0, i.e. : Br = {x ∈ Rn: ‖x‖ ≤ r}, with
‖.‖ denotes the Euclidean norm of vectors.
Definition 1: The system (4) is said to be globally uni-

formly exponentially practically stable (or convergent to a
ball Br with radius r > 0), if there exist > 0 and k ≥ 0,
such that for all t0 ∈ R≥0 and all x0 ∈ Rn,

‖x‖ ≤ k‖x0‖exp(− (t− t0))+ r, ∀t ≥ t0

IV. BACKSTEPPING CONTROL DESIGN

This part deals with the speed and flux control by means
of backstepping control. This nonlinear control technique can
be applied efficiently to linearize a nonlinear system with the
existence of uncertainties, it is usually incorporated with the
nonlinear damping to enhance robustness ([15], [16]).

A. Step1: Flux control
The objective is to steer the flux dr to a desired reference
∗
dr , let e = dr− ∗

dr be the flux tracking error. The dynamic
of e is:

ė =
Lm
r
ids− dr

r
+h3(x)− ˙∗dr (5)

A Lyapunov function is defined as:

V =
1
2
e2 (6)

By deriving (6) we obtain:

V̇ = e ė = e
(
Lm
r
ids− dr

r
+h3(x)− ˙∗dr

)
(7)

To make V̇ negative definite, ids is chosen as virtual element
of control for stabilizing the flux, its desired value i∗ds is
defined as:

i∗ds = r
Lm

(
−k e − k1tanh(

k1h
1
e )+ dr

r
+ ˙∗dr

)
(8)

where h= 0.2785 (see [15]). k1, k and 1 are positive design
parameters.
By setting ids = i∗ds in (7) we get :

V̇ = −k e2 − k1tanh(
k1h
1
e )e +h3(x)e (9)

for k1 > |h3(x)|max we get:

V̇ ≤−k e2 − k1tanh(
k1h
1
e )e + k1|e | (10)

with:
|e | = e signe (11)

The derivative of the Lyapunov function (10) becomes:

V̇ ≤−k e2 − k1tanh(
k1h
1
e )e + k1e signe (12)

we have (see [16]):

0≤ k1e signe − k1 tanh(
k1h
1
e )e ≤ 1 (13)

The derivative of the Lyapunov function (12) becomes:

V̇ ≤−k e2 + 1 (14)

This implies that the variable e converges to a ball whose
radius can be reduced by making small the tuning parameter
1.

B. Step2: Speed control
The objective is to steer the speed to the desired

reference ∗, let e = − ∗ be the speed tracking error.
The error dynamic of the speed is:

ė =
PLm
LrJ

iqs dr−
f
J

− T
J
− ˙ ∗ (15)

A Lyapunov function is defined as:

V =
1
2
e2 (16)
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By deriving (16) we obtain:

V̇ = e ė = e (
PLm
LrJ

iqs dr−
f
J

− T
J
− ˙ ∗) (17)

iqs is chosen as virtual element of control for stabilizing the
speed, its desired value i∗qs is defined as:

i∗qs =
JLr

LmP dr
(−k e − k2 tanh

k2h
2
e +

f
J

+ ˙ ∗), dr *= 0
(18)

where k2 and k and 2 are positive design parameters.
By setting iqs = i∗qs in (17) we get:

V̇ = e (−k e − k2 tanh
k2h
2
e − T

J
) (19)

For k2 > |TJ |max we obtain:

V̇ ≤−k e2 − k2 tanh(
k2h
2
e )e + k2|e | ≤ −k e2 + 2

(20)
This implies that the variable e converges to a ball whose
radius can be reduced by making small the tuning parameter
2.

C. Step3: Currents control
The objective is to steer the currents ids and iqs to their

desired references i∗ds and i∗qs, respectively. Let ed = ids− i∗ds
and eq = iqs− i∗qs be the tracking errors of the currents, then
the dynamics of the tracking errors are:

ėd =−aids+ siqs+
Lm
LsLr r

dr +
Vds
Ls

− r
Lm

F1(e )
(
Lm
r
ids− dr

r

)
− r
Lm

¨∗dr

+ r
Lm

(
F1(e )− 1

r

)
˙∗dr +h1(x)− r

Lm
F1(e )h3(x)

ėq =−aiqs− sids−
Lm
LsLr

P dr +
Vqs
Ls

−F3(e , , dr)−
JLr

LmP dr
¨ ∗

− JLr
LmP dr

F2(e )
(
PLm
LrJ

iqs dr−
f
J

)

− JLr
LmP dr

(
f
J
−F2(e )

)
˙ ∗

+h2(x)+
LrF2(e )
PLm dr

T −F4h3(x)

ė =− k e − k1tanh(
k1h
1
e )+

Lm
r
ed +h3(x)

ė =
PLm
LrJ

eq dr− k e − k2tanh(
k2h
2
e )− T

J
(21)

where:

F1(e ) = −k − k21h
1

(
1− tanh(

k1h
1
e )2

)
+
1
r

F2(e ) = −k − k22h
2

(
1− tanh(

k2h
2
e )2

)
+
f
J

F3(e , , dr) =
(
Lm
r
ids− dr

r

)
F4(e , , dr)

F4(e , , dr) =
JLr

PLm 2
dr

(
k e + k2tanh(

k2h
2
e )− f

J
− ˙ ∗

)

The actual control inputs are chosen as follows:

Vds = Ls
(
−kded− k3tanh

(
k3h
3
ed

)
+aids−

Lm
r
e

− siqs−
Lm
LsLr r

dr +
r

Lm
F1

(
Lm
r
ids− dr

r

− r
Lm

(
F1−

1
r

)
˙∗dr +

r
Lm

¨∗dr
)

(22)

Vqs = Ls
(
−kqeq− k4tanh(

k4h
4
eq)+aiqs+ sids

+
Lm
LsLr

P dr−
PLm
JLr

e dr

+
JLr

LmP dr
F2(e )(

PLm
LrJ

iqs dr−
f
J

)+F3(e , , dr)

+
JLr

LmP dr
(
f
J
−F2(e )) ˙ ∗ +

JLr
LmP dr

¨ ∗
)

(23)

Proposition 1: Consider the system (3) and the control
inputs (22) and (23) where : kd , kq, k3, k4 are positive design
parameters. 1, 2, 3 and 4 are positive and arbitrary small
parameters. Then, if k3 >

∣∣∣h1(x)− r
Lm F1h3(x)

∣∣∣
max

and k4 >
∣∣∣h2(x)−F4h3(x)+ LrF2(e )

PLm dr
T

∣∣∣
max
, the error variables e , e ,

ed and eq are globally uniformly exponentially practically
stable.

Proof: By substituting the control laws (22) and (23)
in the error system (21) we get:

ėd =− kded− k3tanh(
k3h
3
ed)−

Lm
r
e +h1(x)− r

Lm
F1h3(x)

ėq =− kqeq− k4tanh(
k4h
4
eq)−

PLm
JLr

e dr +h2(x)

−F4h3(x)+
LrF2(e )
PLm dr

T

ė =− k e − k1tanh(
k1h
1
e )+

Lm
r
ed +h3(x)

ė =
PLm
LrJ

eq dr− k e − k2tanh(
k2h
2
e )− T

J
(24)

Consider the following Lyapunov function:

V =
1
2
(e2d + e2q+ e2 + e2 ) (25)

From the step 1 and 2 we have k1 > |h3(x)|max and k2 >

|TJ |max. Then, for k3 >
∣∣∣h1(x)− r

Lm F1h3(x)
∣∣∣
max

and k4 >
∣∣∣h2(x)−F4h3(x)+ LrF2(e )

PLm dr
T

∣∣∣
max

we get:

V̇ ≤ −k e2 − k e2 − kde2d− kqe2q+ 1+ 2+ 3+ 4
(26)
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This implies that the error variables e , e , ed and eq
converge to a ball whose radius can be reduced by making
small the tuning parameters 1, 2, 3 and 4. This means
that the error variables are globally uniformly exponentially
practically stable (see the definition 1).
In order to implement the control laws (22) and (23) without
flux and speed sensors, a second order sliding mode observer
is used to estimate the speed and the flux dr.

V. SECOND ORDER SLIDING MODE OBSERVER DESIGN

The IM model in ( − ) reference frame is given by:

i̇ s =−ai s+
Lm
LsLr r

r +
LmP
LsLr r +

V s
Ls

i̇ s =−ai s−
LmP
LsLr

r +
Lm
LsLr r

r +
V s

Ls
˙ r =−P r +

Lm
r
i s−

1
r

r

˙ r =P r +
Lm
r
i s−

1
r

r

˙ =
PLm
LrJ

(i s r− i s r)−
f
J

− T
J

(27)

with V s, V s are stator voltage components. r, r are
the rotor flux components. is the mechanical speed. T is
the load torque. i s, i s are stator current components. The
currents i s, i s are assumed to be measured.
By applying the following change of variable:

z1 =i s

z2 =i s

z3 =
Lm
LsLr r

r +
LmP
LsLr r

z4 =− LmP
LsLr

r +
Lm
LsLr r

r

z5 =ż3
z6 =ż4

(28)

the system (27) becomes as follows:

ż1 =−az1+ z3+
V s
Ls

ż2 =−az2+ z4+
V s

Ls
ż3 =z5
ż4 =z6
ż5 =z7
ż6 =z8

(29)

A second order sliding mode observer is defined as [8]:

˙̂z1 =−az1+ z̃3+ 1|z1− ẑ1|0.5sign(z1− ẑ1)+
V s
Ls

˙̃z3 = 1sign(z1− ẑ1)

˙̂z2 =−az2+ z̃4+ 2|z2− ẑ2|0.5sign(z2− ẑ2)+
V s

Ls
˙̃z4 = 2sign(z2− ẑ2)
˙̂z3 =E1E2

(
z̃5+ 3|z̃3− ẑ3|0.5sign(z̃3− ẑ3)

)

˙̃z5 =E1E2 3sign(z̃3− ẑ3)
˙̂z4 =E1E2

(
z̃6+ 4|z̃4− ẑ4|0.5sign(z̃4− ẑ4)

)

˙̃z6 =E1E2 4sign(z̃4− ẑ4)
˙̂z5 =E1E2E3E4

(
z̃7+ 5|z̃5− ẑ5|0.5sign(z̃5− ẑ5)

)

˙̃z7 =E1E2E3E4 5sign(z̃5− ẑ5)
˙̂z6 =E1E2E3E4

(
z̃8+ 6|z̃6− ẑ6|0.5sign(z̃6− ẑ6)

)

˙̃z8 =E1E2E3E4 6sign(z̃6− ẑ6)

(30)

where Ei = 1 if z̃i − ẑi = 0 else Ei = 0 for i=1,...,n. with
z̃1 = z1, z̃2 = z2. For a suitable choice of the parameters i and
i: 1 > z5max, 1 > ( 1+z5max)

√
2

1−z5max , 2 > z6max, 2 >

( 2+z6max)
√

2
2−z6max ,etc (for proof see [8]), the observation

errors (z̃i− ẑi) tend to zero in finite time. Then, the speed and
the flux are estimated as follows:
From equations (28) we have:

z3 =b r + c r

z4 =− c r +b r
(31)

where: b= Lm
LsLr r

, c= LmP
LsLr .

By solving the above equations we get:

r =
bz3− c z4
b2+ c2 2

r =
c z3+bz4
b2+ c2 2

Substituting z3 and z4 by their estimates ẑ3 and ẑ4 we obtain
the flux estimates as follows:

ˆ r =
bẑ3− c ˆ ẑ4
b2+ c2 ˆ 2

ˆ r =
c ˆ ẑ3+bẑ4
b2+ c2 ˆ 2

By deriving the equations (31) we get:

z5 =ż3 = − 1
r
z3−P z4+b

Lm
r
i s+ c

Lm
r

i s+ c r ˙

(32)

z6 =ż4 = − 1
r
z4+P z3+b

Lm
r
i s− c

Lm
r

i s− c r ˙

(33)

The estimates of the speed and its derivative ˆ and ˆ̇ can
be obtained from (32) and (33) where the variables z3, z4,
z5, z6, r and r must be replaced by their estimates ẑ3,
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ẑ4, ẑ5, ẑ6, ˆ r and ˆ r, respectively.
In the (d−q) reference frame the estimated flux and currents
are given as follows:

îds = cos( ˆ )i s+ sin( ˆ )i s

îqs = −sin( ˆ )i s+ cos( ˆ )i s

ˆ = arctan
ˆ r
ˆ r

ˆdr =
√
ˆ2r + ˆ2

r

VI. STABILITY ANALYSIS OF THE CLOSED LOOP SYSTEM

To implement the control laws (22) and (23), the speed and
the flux and the currents must be replaced by their estimates
as follows:

Vds = Ls
(
−kdêd − k3tanh

(
k3h
3
êd

)
+aîds−

Lm
r
ê − ˆsîqs

− Lm
LsLr r

ˆdr +
r

Lm
F1(ê )

(
Lm
r
îds−

ˆdr
r

)

− r
Lm

(
F1(ê )− 1

r

)
˙∗dr +

r
Lm

¨∗dr

)

(34)

Vqs = Ls
(
−kqêq− k4tanh(

k4h
4
êq)+aîqs+ ˆsîds

+
Lm
LsLr

P ˆ ˆdr−
PLm
JLr

ê ˆdr

+
JLr

LmP ˆdr
F2(ê )(

PLm
LrJ

îqs ˆdr−
f
J
ˆ )+F3(ê , ˆ , ˆdr)

+
JLr

LmP ˆdr
(
f
J
−F2(ê )) ˙ ∗ +

JLr
LmP ˆdr

¨ ∗
)

(35)

where: êd = îds− î∗ds, êq = îqs− î∗qs, ê = ˆ − ∗, ê = ˆdr−
∗
dr.

ˆs = P ˆ +
Lm
r ˆdr

îqs

î∗ds = r
Lm

(
−k ê − k1tanh(

k1h
1
ê )+

ˆdr
r

+ ˙∗dr
)

î∗qs =
JLr

LmP ˆdr
(−k ê − k2 tanh

k2h
2
ê +

f
J
ˆ + ˙ ∗)

By substituting the control laws (34) and (35) in the system
of the tracking errors (21) we get:

ėd =− kded− k3tanh
(
k3h
3

(ed + d + i∗ds− î∗ds)
)

− Lm
r
e +h1(x)− r

Lm
F1(e )h3(x)+d1( ,x, x̂)

ėq =− kqeq− k4tanh
(
k4h
4

(eq+ q+ i∗qs− î∗qs)
)

+d2( ,x, x̂)

− PLm
JLr

dre +h2(x)+
LrF2(e )
PLm dr

T −F4h3(x)

ė =− k e − k1tanh(
k1h
1
e )+

Lm
r
ed +h3(x)

ė =
PLm
LrJ

eq dr− k e − k2tanh(
k2h
2
e )− T

J
(36)

with: = ( d , q, , ) denote the vector of the estimation
errors, d = ids− îds, q = iqs− îqs, = dr− ˆdr, = −
ˆ , x= (ids, iqs, dr, ), x̂= (îds, îqs, ˆdr, ˆ ). The expression of
the perturbation terms d1( ,x, x̂) and d2( ,x, x̂) can be easly
obtained and are omitted for limited space.
The stability of the system (36) will be shown in two

steps. First, we prove the boundedness of the trajectories
before the convergence of the observer. Second, we prove
the trajectories convergence after the convergence of the
observer.
Lemma 1: Consider the system (36). If

k3 >
∣∣∣h1(x)− r

Lm F1(e )h3(x)+d1( ,x, x̂)
∣∣∣
max
, k4 >

∣∣∣h2(x)+ LrF2(e )
PLm dr

T −F4h3(x)+d2( ,x, x̂)
∣∣∣
max
, k1 > |h3(x)|max

and k2 >
∣∣T
J
∣∣
max, then the states of system (36) are uniformly

bounded before the convergence of the observer.
To study the boundedness of the system (36) we use the
following definition (see [17]).
Definition 2: The system (4) is globally uniformly

bounded, if there exists a continuous positive definite func-
tion W3(x) such that the derivative of the Lyapunov function
V along the trajectories of the system (4) satisfies:

V̇ ≤−W3(x), ∀‖x‖ ≥ µ > 0, ∀t ≥ t0 (37)

i.e for every a > 0 there exists b = b(a) > 0 such that, for
all t0 ≥ 0,

‖x(t0)‖ ≤ a⇒‖x(t)‖ ≤ b(a), ∀t ≥ t0 (38)
Proof: To show the boundedness of the system (36)

before the convergence of the observer we use the following
Lyapunov function:

V =
1
2
(e2d + e2q+ e2 + e2 ) (39)

with |tanh(x)| ≤ 1 and for: k3 >∣∣∣h1(x)− r
Lm F1(e )h3(x)+d1( ,x, x̂)

∣∣∣
max
, k4 >

∣∣∣h2(x)+ LrF2(e )
PLm dr

T −F4h3(x)+d2( ,x, x̂)
∣∣∣
max
, k1 > |h3(x)|max

and k2 >
∣∣T
J
∣∣
max we get:

V̇ ≤−kde2d−kqe2q−k e2 −k e2 +2k3|ed |+2k4|eq|+ 1+ 2
(40)

Let 0< < 1. Then V̇ can be written as follows:
V̇ ≤−kd(1− )e2d− kq(1− )e2q− k (1− )e2

− k (1− )e2 − kd e2d +2k3|ed |− kq e2q+2k4|eq|
− k e2 + 1− k e2 + 2

(41)

If: −kd e2d + 2k3|ed | ≤ 0, −kq e2q + 2k4|eq| ≤ 0, −k e2 +
1 ≤ 0 and k e2 + 2 ≤ 0 i.e.: |eq| ≥ 2k4

kq , |ed | ≥
2k3
kd
, |e | ≥

√
1

k and |e | ≥
√

2
k , V̇ becomes:

V̇ ≤−kd(1− )e2d− kq(1− )e2q− k (1− )e2

− k (1− )e2
(42)

This means that the variables ed , eq, e and e are uniformly
bounded before the convergence of the observer (see the
definition 2).
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Proposition 2: Consider the system (36) and the observer
(30), at t = t f the observer converges i.e. → 0. Then
the variables ed , eq, e and e are globally uniformly
exponentially practically stable.

Proof: When the observer converges ( = 0), the
perturbation terms vanish (d1(0,x, x̂) = 0, d2(0,x, x̂) = 0),
then the system (36) is equal to the system (24) whose
stability is proved by the Lyapunov function (25).

VII. SIMULATION RESULTS

Numerical simulations have been performed to validate the
proposed control scheme. The IM parameters are given in the
appendix.The controller parameters are chosen as follows:
k = 0.5, k = 10, k1 = 10, k2 = 300, k3 = 500, k4 = 1000,
kd = 100 and kq = 100. The speed and flux references are
fixed at ∗ = 100rd/s and ∗

dr = 0.9Wb, respectively, also a
load disturbance T = 3N.m is applied.Figure 1 and 2 show
the responses of the IM with rotor resistance variations of
+50%Rr and +100%Rr, respectively. It can be seen that the
controller rejects the rotor resistance variations.

VIII. CONCLUSION
In this paper a sensorless fault tolerant controller for IM

has been presented. First, a field oriented controller based
on backstepping strategy is designed to steer the flux and
the speed to their desired references in presence of rotor
resistance variations and load torque disturbance. Second, to
achieve the sensorless fault tolerant control, a second order
sliding mode observer is used to estimate the speed and the
flux from the stator currents measurements. The simulation
results show the robustness of the proposed control scheme.
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Fig. 1. Responses of the IM with rotor resistance variation of +50%Rr

Fig. 2. Responses of the IM with rotor resistance variation of +100%Rr

APPENDIX
The induction motor used in this work is a 1.5KW , U =

220V , 50Hz, In = 7.5A. The parameters are: Rs = 1.633 ,
Rr = 0.93 , Lr = 0.076H, Ls = 0.142H, Lm = 0.099H, J =
0.0111Kg.m2, f = 0.0018N.m/rd/s and P= 2.
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