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Abstract— This paper presents a framework for analyzing
probabilistic safety and reachability problems for discrete time
stochastic hybrid systems in scenarios where system dynamics
are affected by rational competing agents. In particular, we
consider a zero-sum game formulation of the probabilistic
reach-avoid problem, in which the control objective is to
maximize the probability of reaching a desired subset of the
hybrid state space, while avoiding an unsafe set, subject to
the worst-case behavior of a rational adversary. Theoretical
results are provided on a dynamic programming algorithm
for computing the maximal reach-avoid probability under the
worst-case adversary strategy, as well as the existence of a max-
min control policy which achieves this probability. The modeling
framework and computational algorithm are demonstrated
using an example derived from a robust motion planning
application.

I. INTRODUCTION

Hybrid dynamical models naturally arise in engineering

systems where qualitative behaviors can be abstracted in

terms of discrete modes of operation and quantitative behav-

iors can be characterized in terms of evolution of continuous

states. Examples of such systems can be found in a variety

of application domains, including air traffic management [1],

[2], [3], communication networks [4], systems biology [5],

[6], and robotic motion planning [7], [8], [9]. In cases where

uncertainties in the system dynamics, for example due to

modeling imperfections and environmental disturbances, can

be captured using statistical models, the stochastic hybrid

system framework [10] provides a powerful tool for analysis

and control.

The problem of probabilistic safety for stochastic hybrid

systems involves determining the probability that the system

trajectory, starting from a given initial condition, will remain

inside a safe subset of the discrete and continuous state space

(called a hybrid state space) over some given time horizon.
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On the other hand, the problem of probabilistic reachability

involves determining the probability that the system trajec-

tory will reach a desired target set. These problems are of

interest, for example, in control and verification problems

with safety and target attainability objectives. Here we are

interested in a mixture of these two problems, called the

reach-avoid problem, in which the objective is to maximize

the probability that the target set can be attained subject to

a safety constraint.

For stochastic hybrid systems, theoretical results on the

probabilistic safety and reachability problems are established

in [11] and [12]. On the computational side, methods have

been proposed for estimating the safety probability through

a Markov chain approximation [13] and barrier certificates

[14]. A discrete time formulation of the safety problem

is studied in [15], under the framework of Discrete Time

Stochastic Hybrid Systems (DTSHS), using techniques from

stochastic optimal control [16]. This analysis approach has

been generalized to address the reach-avoid problem in [17]

for static safe sets and target sets. Extensions to time-varying

[18] and stochastic [19] sets have also been considered.

In this paper, we extend the analysis of the probabilistic

reach-avoid problem for a single control agent, as described

in [17], to a two-player dynamic game setting. The moti-

vation is that in scenarios where the system dynamics is

affected by inputs from rational agents with competing ob-

jectives, for example in a network security application [20],

or a pursuit-evasion game [21], it is no longer sufficient to

simply model adversarial actions as random noise. These sce-

narios can be more naturally formulated as non-cooperative

stochastic games where both the control and adversary are

allowed to select rational strategies. Under this setting, we

are interested in maximizing the probability of satisfying

the reach-avoid objective under the worst-case strategy of

a rational adversary. We call this the max-min reach-avoid

probability. Also, we would like to find conditions under

which there exists an optimal control policy which achieves

this optimal probability of success. This will be referred to

as a max-min policy.

The contributions of this paper are several fold. First,

we formulate a modeling framework for studying the prob-

abilistic reach-avoid problem in a hybrid dynamical game

setting, based upon the single player discrete time stochastic

hybrid system model given in [15]. Second, we show that

the max-min reach-avoid probability can be computed as the

solution of an appropriate dynamic programming algorithm.

Furthermore, under mild assumptions on the system model,

we show that there always exists a max-min control policy,
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for which a sufficient condition of optimality can be derived

in terms of the value functions obtained from the proposed

dynamic programming recursion. Third, we discuss the nu-

merical implementation of the derived recursion and illustrate

the relevance of the modeling and analysis framework using

a practical application.

Although there is a large number of previous results in

the field of non-cooperative stochastic games [22]–[26], we

found the direct application of these results to our problem

difficult, for several reasons. First, the pay-off function

for the reach-avoid problem is sum-multiplicative, which

prevents the use of results from the more common additive

cost problems [23], [22]. Second, although there is previous

work on more general utility functions which depend on the

entire history of the game [24], [25], the results are primarily

for the existence of randomized policies under a symmetric

information pattern. Due to practical implementation and

also robustness concerns, we are more interested in the

existence of deterministic policies under a non-symmetric

information pattern. Finally, an important feature of hybrid

systems is that the dynamics in the continuous state space can

change abruptly across certain switching boundaries. This

requires a relaxation of the continuity assumptions in the

continuous state space such as those given in [26].

The paper is organized as follows. In Section II, we discuss

the model for a discrete time stochastic hybrid dynamical

game. In Section III we formulate the reach-avoid problem in

a stochastic game setting. In Section IV, we provide the main

result of the paper on the computation of the reach-avoid

probability and existence of optimal policies. In Section V

we apply the modeling and analysis framework to a motion

planning application. Finally, we provide some concluding

remarks in Section VI.

II. DISCRETE TIME STOCHASTIC HYBRID DYNAMICAL

GAME

In this section, we develop an extension of the discrete

time hybrid system modeling framework for a single player

proposed in [15] to allow the stochastic kernels character-

izing the hybrid state evolution to depend on the actions

of a control and of an adversary. This will be called a

Discrete Time Stochastic Hybrid Dynamic Game (DTSHG).

Following standard conventions, we refer to the control as

Player I and to the adversary as Player II, and denote by

B(·) the Borel σ-algebra on a topological space.

Definition 1 (DTSHG). A discrete-time stochastic hybrid

dynamical game between two players is a tuple H =
(Q, n,A,D, τv, τq, τr) defined as follows.

• Discrete state space Q := {q1, q2, ..., qm}, m ∈ N;

• Dimension of continuous state space n : Q → N: a

map which assigns to each discrete state q ∈ Q the

dimension of the continuous state space R
n(q). The

hybrid state space is given by X :=
⋃

q∈Q{q}×R
n(q);

• Player I control space A: a nonempty, compact Borel

space;

• Player II control space D: a nonempty, compact Borel

space;

• Continuous state transition kernel τv(dv
′|(q, v), a, d): a

Borel-measurable stochastic kernel on R
n(q) given x =

(q, v) ∈ X , a ∈ A, and d ∈ D;

• Discrete state transition kernel τq(q
′|(q, v), a, d): a dis-

crete stochastic kernel on Q given x = (q, v) ∈ X ,

a ∈ A, and d ∈ D;

• Reset transition kernel τr(dv
′|(q, v), a, d, q′): a Borel-

measurable stochastic kernel on R
n(q′) given x =

(q, v) ∈ X , a ∈ A, d ∈ D, and q′ ∈ Q.

We note briefly that the measurability requirements are

necessary for the formal characterization of the probability

that the system state remains within or reaches certain desired

subsets of the state space, under the executions of a DTSHG,

which will be described below.

First, given the non-cooperative dynamic game setting, it

is necessary to define how the player I and player II actions

are chosen at each time step. To be somewhat conservative,

we consider an information pattern favorable to Player II.

Specifically, at each time step, Player I is allowed to select

inputs based upon the current state of the system, while

Player II is allowed to select inputs based upon both the

system state and the control input of Player I. A mathematical

description of this is given below.

Definition 2 (Markov Policy). A Markov policy for player

I is a sequence µ = (µ0, µ1, ..., µN−1) of Borel measurable

maps µk : X → A, k = 0, 1, ..., N − 1. The set of all

admissible Markov policies for player I is denoted by Ma.

Definition 3 (Markov Strategy). A Markov strategy for

player II is a sequence γ = (γ0, γ1, ..., γN−1) of Borel

measurable maps γk : X × A → D, k = 0, 1, ..., N − 1.

The set of all admissible Markov strategies for player II is

denoted by Γd.

For a given initial condition x0 = (q0, v0) ∈ X , player

I policy µ ∈ Ma, and player II strategy γ ∈ Γd, the

execution of a DTSHG proceeds as follows. At the beginning

of each time step k, each player obtains a measurement of

the current system state xk = (qk, vk) ∈ X . Using this

information, player I selects his/her controls as ak = µk(xk),
following which player II selects his/her controls as dk =
γk(xk, ak). The discrete state is then updated according to

the discrete transition kernel as qk+1 ∼ τq(·|xk, ak, dk). If

the discrete state remains the same, namely qk+1 = qk, then

the continuous state is updated according to the continuous

state transition kernel as vk+1 ∼ τv(·|xk, ak, dk). On the

other hand, if there is a discrete jump, the continuous state

is instead updated according to the reset transition kernel as

vk+1 ∼ τr(·|xk, ak, dk, qk+1).
From this description, we can define in an analogous

fashion as in [15] a stochastic kernel τ(dx′|x, a, d) which

describes the evolution of the hybrid state under player I

and player II controls.

τ((q′, dv′)|(q, v), a, d) = (1)
{

τv(dv
′|(q, v), a, d)τq(q

′|(q, v), a, d), if q′ = q
τr(dv

′|(q, v), a, d, q′)τq(q
′|(q, v), a, d), if q′ 6= q.
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(a) For each x = (q, v) ∈ X and E1 ∈ B(Rn(q)), the

function (a, d) → τv(E1|x, a, d) is continuous on A×D;

(b) For each x = (q, v) ∈ X and q′ ∈ Q, the function

(a, d) → τq(q
′|x, a, d) is continuous on A×D;

(c) For each x = (q, v) ∈ X , q′ ∈ Q, and E2 ∈ B(Rn(q′)),
the function (a, d) → τr(E2|x, a, d, q

′) is continuous on

A×D.

It should be noted that we only assume continuity of the

stochastic kernels in the actions of Player I and Player II,

but not necessarily in the system state. Thus, our Borel-

measurable model still allows for stochastic hybrid sys-

tems where transition probabilities have a discontinuous

dependence on the system state. Furthermore, if the action

spaces A and D are finite or countable, then the above

assumptions are clearly satisfied under the discrete topol-

ogy on A and D. Also, if τv(·|(q, v), a, d) has a density

function fv(v
′|(q, v), a, d), v′ ∈ R

n(q) for every q ∈ Q, and

fv(v
′|(q, v), a, d) is continuous in a and d, it can be checked

that the assumption for τv is satisfied. A similar condition

can also be formulated for the reset kernel τr.

Now define a dynamic programming operator T which

maps a Borel-measurable function J : X → [0, 1] to a

function T (J) : X → [0, 1] as

T (J)(x) = sup
a∈A

inf
d∈D

1K(x) + 1K′\K(x)H(x, a, d, J), (6)

where H(x, a, d, J) :=
∫

X
J(x′)τ(dx′|x, a, d). The main

result of the paper is as follows.

Theorem 1. Let H be a DTSHG satisfying Assumption 1.

Let K,K ′ ∈ B(X) be Borel sets such that K ⊆ K ′. Let

the operator T be defined as in (6). Then the composition

TN = T ◦ T ◦ · · · ◦ T (N times) is well-defined and

(a) r∗x0
(K,K ′) = TN (1K)(x0), ∀x0 ∈ X;

(b) There exists a player I policy µ∗ ∈ Ma and player II

strategy γ∗ ∈ Γd satisfying

rµ,γ
∗

x0
(K,K ′) ≤ r∗x0

(K,K ′) ≤ rµ
∗,γ

x0
(K,K ′), (7)

for every x0 ∈ X , µ ∈ Ma, and γ ∈ Γd. In particular,

µ∗ is a max-min policy for player I.

(c) If µ∗ ∈ Ma is a Markov policy which satisfies

µ∗
k(x) ∈ arg sup

a∈A
inf
d∈D

H(x, a, d, Jk+1), x ∈ K ′ \K,

(8)

where Jk = TN−k(1K), k = 0, 1, ..., N , then µ∗ is a

max-min policy for Player I.

Aside from providing us with a dynamic programming al-

gorithm for computing the max-min reach-avoid probability,

this result gives a more precise characterization of the max-

min policy. In particular, we have by (7) that if the control

were to select the max-min policy µ∗ and the adversary

were to deviate from the worst-case strategy γ∗, then the

reach-avoid probability will be at least r∗x0
(K,K ′). On the

other hand, if the control were to deviate from the max-

min policy µ∗ and the adversary were to choose the worst-

case strategy γ∗, then the reach-avoid probability will be at

most r∗x0
(K,K ′). Thus, µ∗ can be interpreted as a robust

control policy which optimizes a worst-case performance

index. Furthermore, from Equation (8) we obtain a sufficient

condition for optimality, which can be used to synthesize the

optimal controls from the value functions computed through

the dynamic programming recursion.

Due to space limitations, the proof of the theorem is

omitted. Instead we will highlight here the main points of

the proof. The interested reader is referred to [27] for further

details. First, we can show in a similar manner as in [15]

and [17] that the reach-avoid probability rµ,γx0
(K,K ′) under

fixed µ ∈ Ma and γ ∈ Γd is computed by a recursive

formula. Second, we can prove a max-min selection theorem

for T , as an application of [28], showing that the operator

T preserves measurability properties and that there exist

Borel-measurable selectors which achieve the supremum and

infimum in (6). Finally, using the recursive formula for

rµ,γx0
(K,K ′) and the selection theorem for T , we can show

that TN (1K) simultaneously upper bounds and lower bounds

r∗x0
(K,K ′) and that there exist a player I policy and player

II strategy which satisfy (7). The last step can be seen

as an extension of the dynamic programming results for

additive cost stochastic games [22], [23], [26] to the sum-

multiplicative case.

On a computational note, the dynamic programming re-

cursion in Theorem 1 can be carried out in an approximate

fashion through a discretization of the continuous state space

and player control spaces. Specifically, suppose that an

analytic characterization of the hybrid state transition kernel

τ is available (for example as a probability density function

over the continuous state space within each mode), then for

each grid point xg ∈ X , and discretized inputs ag ∈ A and

dg ∈ D, the operator H(xg, ag, dg, J) in (6) can be computed

by integration of τ(·|xg, ag, dg) over the grid volume. In [29],

this type of discretization scheme is shown to converge

uniformly to the maximal safety probability at a rate that

is linear in the grid size parameter. For the case where

an analytic expression for τ is not available, Monte Carlo

simulation may be used to approximate the transition proba-

bilities. We note however that the computational complexity

of this approach scale exponentially with the dimension of

the continuous state space. Finding methods to reduce this

computational complexity is a topic of ongoing research [30].

V. COMPUTATIONAL EXAMPLE

Here we provide a practical example from the domain of

robust motion planning to illustrate the modeling framework

and solution approach discussed previously. Specifically, we

consider a target tracking application where the control

objective is to drive an autonomous quadrotor helicopter

to a hover region over a moving ground vehicle within

finite time, while satisfying certain velocity constraints. This

problem has been addressed in [31] using a continuous

time robust control framework, and experimental tests have

been performed on the Stanford Testbed of Autonomous

Rotorcraft for Multi-Agent Control (STARMAC) [32].
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Through experimental trials, the position-velocity dynam-

ics of the quadrotor is found to be well-approximated by

a double integrator model in the planar axis x and y, with

some added disturbance terms to account for the effects of

model uncertainties and actuator noise. Using the DTSHG

framework, we will assume a probabilistic model for the

noise entering into the quadrotor dynamics, while allowing

the ground vehicle to choose its acceleration rationally within

certain bounds. More specifically, consider the following

stochastic model for the relative motion between the quadro-

tor and the ground vehicle:

x1(k + 1) =x1(k) + ∆tx2(k)+

∆t2

2
(g sin(φ(k)) + dx(k)) + η1(k)

x2(k + 1) =x2(k) + ∆t(g sin(φ(k)) + dx(k)) + η2(k)

y1(k + 1) =y1(k) + ∆ty2(k)+

∆t2

2
(g sin(−θ(k)) + dy(k)) + η3(k)

y2(k + 1) =y2(k) + ∆t(g sin(−θ(k)) + dy(k)) + η4(k),

where x1, x2, y1, y2 are the position and velocity of the

quadrotor relative to the ground vehicle in the x−axis and

y−axis respectively, ∆t is the discretization step, φ is the

quadrotor roll angle command, θ is the quadrotor pitch

angle command, and g is the gravitational constant. The

disturbance parameters in this model include dx and dy ,

which are the acceleration inputs of the ground vehicle in

the x and y directions, as well as ηi, i = 1, . . . , 4, which

represent the model uncertainties and actuator noise. Given

that the ground vehicle may be a rational agent, we take

dx and dy to be the inputs of player II. On the other

hand, we model ηi as normally distributed according to

ηi ∼ N (0, (σi∆t)2). The inputs φ and θ are selected from a

quantized input range due to digital implementation. These

quantization levels can be viewed as the discrete states of

the system, resulting in a discrete time switched system.

For the target tracking application, the target set is chosen

to be a square-shaped hover region centered on the ground

vehicle, with some tolerance on the relative velocity. In

(x1, x2) coordinates, this is specified as

Kx = [−0.2, 0.2]m× [−0.2, 0.2]m/s.

The safety constraint in this case is chosen to be a bound

on the permissible relative position and velocity. In (x1, x2)
coordinates, this is specified as

K ′
x = [−1.2, 1.2]m× [−1, 1]m/s.

The corresponding target set Ky and safe set K ′
y in the y

direction are specified identically. The target and safe sets in

two dimensions are then defined as K = Kx×Ky and K ′ =
K ′

x ×K ′
y respectively. Under a stochastic game formulation

of the problem, the objective of the quadrotor (player I) is

to reach the hover region K while satisfying the state and

velocity constraint K ′, subject to the worst-case acceleration

inputs (dx, dy) of the ground vehicle.
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Fig. 2. Max-min reach-avoid probability for the relative position and
velocity of the quadrotor with respect to the ground vehicle.

Given the problem description, we decouple the reach-

avoid probability computation into two independent calcu-

lations in the (x1, x2) and (y1, y2) coordinates. For the

numerical results to be shown here, the roll and pitch

commands are chosen from the range [−10◦, 10◦], quantized

at 2.5◦ intervals, while the acceleration bounds for dx and

dy are chosen to be [−.4, .4] m/s2 and are discretized at

0.1m/s2 intervals for numerical computation. The variance

of the noise parameters is set to be σi = 0.4. The time step

is selected as ∆t = 0.1s, with a time horizon of N = 10.

Using the dynamic programming algorithm discussed in

Section IV, we compute the max-min reach-avoid probability

for the quadrotor over the safety constraint set K ′
x in (x1, x2)

coordinates, using a discrete grid of 61 × 41 nodes. The

result is shown in Fig. 2. The corresponding contours of

this probability map are plotted in Fig. 3, with the target

set K shown in the center with probability contour one.

Due to the symmetry of the problem, only the results for

the x−axis are shown. An interpretation of these results

can be given as follows. Suppose we initialize the quadrotor

at a relative x-position x1(0) and relative x-velocity x2(0)
within the 0.8 probability contour in Fig. 2, namely where

r∗(x1(0),x2(0))
(K,K ′) ≥ 0.8. Then by Theorem 1, if the

quadrotor were to select its roll angle commands according

to the max-min control policy µ∗ over a time interval of

one second, then it will safely reach the hover region with

a probability of at least 80%, regardless of the choice of

acceleration inputs by the ground vehicle. Thus, the set

of states
{

(x1, x2) : r
∗
(x1,x2)

(K,K ′) ≥ 0.8
}

form the set of

feasible initial conditions for which there exists a feedback

policy satisfying the target tracking specifications with at

least 80% probability over the time horizon of interest.

VI. CONCLUSION

In this work, we described a framework for extending the

study of probabilistic safety and reachability problems for

discrete time stochastic hybrid systems to a stochastic game

setting in which the evolution of the system state is affected

by the decisions of two rational agents. The probabilistic

reach-avoid problem is formulated within this framework

as a zero-sum game between a control and an adversary.
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Fig. 3. Max-min reach-avoid probability contours.

A solution to this problem is provided in the form of a

dynamic programming algorithm for computing the max-

min reach-avoid probability and the max-min control policy.

Some directions for future work include tractable approxi-

mation schemes for the reach-avoid probability, extensions

to infinite horizon reachability problems, and investigation

of alternative information patterns between the control and

the adversary.
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