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Abstract—We consider the problem of state estimation through
observations corrupted by both bad data and additive observa-
tion noises. A mixed `1 and `2 convex programming is used
to separate both sparse bad data and additive noises from the
observations. Using the almost Euclidean property for a linear
subspace, we derive a new performance bound for the state
estimation error under sparse bad data and additive observation
noises. Our main contribution is to provide sharp bounds on
the almost Euclidean property of a linear subspace, using
the “escape-through-a-mesh” theorem from geometric functional
analysis. We also propose and numerically evaluate an iterative
convex programming approach to solve bad data detection
problems in electrical power networks.

I. INTRODUCTION

In this paper, we study the problem of state estimation
under both bad data and observation noise. In state estimation
problems, the observations may be corrupted with abnormally
large measurement errors, called bad data, in addition to the
usual additive observation noise. More specifically, suppose we
want to estimate the state x described by an m-dimensional
real-numbered vector, and we make n measurements, then
these measurements can be written as an n-dimensional vector
y, which is related to the state vector through the measurement
equation

y = h(x) + v + e, (I.1)

where h(x) is a nonlinear function relating the measurement
vector to the state vector, and v is the vector of measurement
noise, and e is the vector of bad data imposed on the
measurement. In this paper, we assume that v is an m-
dimensional vector with i.i.d. zero mean Gaussian elements
of variance σ2. We also assume that e is a vector with only
k nonzero entries, and the nonzero entries can take arbitrary
real-numbered values, reflecting the nature of bad data.

It is well known that Least Square (LS) method can be used
to suppress the effect of observation noise on state estimations.
In LS method, we try to find a vector x minimizing

‖y − h(x)‖2. (I.2)

However, the LS method generally only works well when there
is no bad data e corrupting the observation y.

In this paper, a mixed least `1 norm and least square convex
programming is used to simultaneously detect bad data and
subtract additive noises from the observations. In our theoret-
ical analysis of the decoding performance, we assume h(x) is
a linear transformation Hx with H as an n×m matrix with
i.i.d. standard zero mean Gaussian entries. Through using the
almost Euclidean property for the linear subspace generated by
H , we derive a new performance bound for the state estimation

error under sparse bad data and additive observation noises. In
our analysis, using the “escape-through-a-mesh” theorem from
geometric functional analysis [5], we are able to significantly
improve on the bounds for the almost Euclidean property of a
linear subspace, which may be of its own interest. Compared
with earlier analysis on the same optimization problem in [11],
the analysis here uses the almost Euclidean property rather
than the restricted isometry conditions used in [11], and we are
able to give explicit bounds on the error performance, which
is sharper than the result in [11].

Inspired by bad data detection methods for linear systems,
we further propose an iterative convex programming approach
to perform combined bad data detection and denoising in
nonlinear electrical power networks. The static state of an
electric power network can be described by the vector of bus
voltage magnitudes and angles. However, in power networks,
the measurement of these quantities can be corrupted due to
errors in the sensors, communication errors in transmitting
the measurement results, and adversarial compromises of the
meters. So the state estimation of power networks needs to
detect, identify, and eliminate large measurement errors [1],
[2], [3]. Since the probability of large measurement errors
occurring is very small, it is reasonable to assume that bad data
are only present in a small fraction of the available meter mea-
surements results. So bad data detection in power networks can
be viewed as a sparse error detection problem, which shares
similar mathematical structures as sparse recoveries problem
in compressive sensing [4], [11]. However, this problem in
power networks has several unique properties when compared
with ordinary sparse error detection problem [4]. In fact, h(x)
in (I.1) is a nonlinear mapping instead of a linear mapping in
[11]. Our iterative convex programming based algorithms work
is shown by numerical examples working well in this nonlinear
setting. Compared with [12], which proposed to apply `1
minimization in bad data detection in power networks, our
approach offers a better decoding error performance when
both bad data and additive observation noises are present.
[13][14] considered state estimations under malicious data
attacks, and formulated the problem of state estimation under
malicious attacks as a hypothesis testing problem by assuming
a prior probability distribution on the state x. In contrast, our
approach does not rely on any prior information on the signal
x itself, and the performance bounds hold for arbitrary state
x.

The rest of this paper is organized as follows. In Section
II, we introduce the convex programming to perform joint
bad data detection and denoising, and derive the performance
bound on the decoding error based on the almost Euclidean
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property of linear subspaces. In Section III, a sharp bound on
the almost Euclidean property is given through the “escape-
through-mesh” theorem. In Section IV, we will present explicit
bounds on the decoding error. In Section V, we introduce our
algorithm to perform bad data detection in nonlinear systems,
and present simulation results of its performance in power
networks.

II. BAD DATA DETECTION FOR LINEAR SYSTEMS

In this section, we will introduce a convex programming
formulation to do bad data detection in linear systems, and
give a characterization of its decoding error performance. In a
linear system, the n×1 observation vector is y = Hx+e+v,
where x is the m × 1 signal vector (m < n), e is a sparse
error vector with k nonzero elements, v is a noise vector with
‖v‖2 ≤ ε. In what follows, we denote the part of any vector
w over any index set K ′ as wK′ .

We solve the following optimization problem involving
optimization variables x∗ and z, and we then estimate the
state x to be x̂, which is the optimizing value for x∗.

min
x∗,z

‖y −Hx∗ − z‖1,
subject to ‖z‖2 ≤ ε. (II.1)

We are now ready to give the main theorem which bounds the
decoding error performance of (II.1).

Theorem 2.1: Let y, H , x, e and v are specified as above.
Suppose that the minimum nonzero singular value of H is
σmin. Let C be a real number larger than 1, and suppose that
every vector w in the subspace generated by the matrix H
satisfies C‖wK‖1 ≤ ‖wK‖1 for any subset K ⊆ {1, 2, ..., n}
with cardinality |K| ≤ k, where k is an integer, and K =
{1, 2, ..., n} \K. We also assume the subspace generated by
H satisfies the almost Euclidean property for a constant α ≤ 1,
namely

α
√

n‖w‖2 ≤ ‖w‖1
holds for every w in the subspace generated by H .

Then the solution x̂ satisfies

‖x− x̂‖2 ≤ 2(C + 1)
σminα(C − 1)

ε. (II.2)

Proof: Suppose that one optimal solution set to (II.1) is
(x̂, ẑ). Since ‖ẑ‖2 ≤ ε, we have ‖ẑ‖1 ≤

√
n‖ẑ‖2 ≤

√
nε.

Since x∗ = x and z = v are feasible for (II.1), then

‖y −Hx̂− ẑ‖1
= ‖H(x− x̂) + e + v − ẑ‖1
≤ ‖H(x− x) + e + v − v‖1
= ‖e‖1.

Applying the triangle inequality to ‖H(x−x̂)+e+v− ẑ‖1,
we further obtain

‖H(x− x̂) + e‖1 − ‖v‖1 − ‖ẑ‖1 ≤ ‖e‖1.
Denoting H(x− x̂) as w, because e is supported on a set

K with cardinality |K| ≤ k, by the triangle inequality for `1

norm again,

‖e‖1 − ‖wK‖1 + ‖wK‖1 − ‖v‖1 − ‖ẑ‖1 ≤ ‖e‖1.
So we have

−‖wK‖1 + ‖wK‖1 ≤ ‖ẑ‖1 + ‖v‖1 ≤ 2
√

nε (II.3)

With C‖wK‖1 ≤ ‖wK‖1, we know

C − 1
C + 1

‖w‖1 ≤ −‖wK‖1 + ‖wK‖1.

Combining this with (II.3), we obtain

C − 1
C + 1

‖w‖1 ≤ 2
√

nε.

By the almost Euclidean property α
√

n‖w‖2 ≤ ‖w‖1, it
follows:

‖w‖2 ≤ 2(C + 1)
α(C − 1)

ε. (II.4)

By the definition of singular values,

σmin‖x− x̂‖2 ≤ ‖H(x− x̂)‖2 = ‖w‖2, (II.5)

so combining (II.4), we get

‖x− x̂‖2 ≤ 2(C + 1)
σminα(C − 1)

ε.

Note that when there are no sparse errors present, the
decoding error bound satisfies ‖x − x̂‖2 ≤ 1

σmin
ε, Theorem

2.1 shows that the decoding error of (II.1) is oblivious to
the presence of bad data, no matter how large in amplitude
these bad data can be. This phenomenon also observed in
[11] by using the restricted isometry condition for compressive
sensing.

We remark that, for given y and given ε, by strong Lagrange
duality theory, the solution x̂ to (II.1) will correspond to
the solution to x in the following problem (II.6) for some
Lagrange duality variable λ ≥ 0. As ε ≥ 0 increases, the
corresponding λ that produces the same solution to x will
correspondingly decrease.

min
x,z

‖y −Hx− z‖1 + λ‖z‖2. (II.6)

In fact, when λ →∞, (II.6) approaches

min
x

‖y −Hx‖1,
and when λ → 0, (II.6) approaches

min
x

‖y −Hx‖2.
Thus, (II.6) can be viewed as a weighed version of `1
minimization and `2 minimization (or equivalently the LS
method). We will later use numerical experiments to show
that in order to recover a sparse vector from measurements
with both noise and errors, this weighted version outperforms
both `1 minimization and the LS method.

In the next two sections, we will aim at explicitly computing
2(C+1)

σminα(C−1) ×
√

n, which will denote $ later in this paper. The
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appearance of the
√

n factor is to compensate for the energy
scaling of large random matrices and its meaning will be clear
in later context. Next, we will compute explicitly the almost
Euclidean property constant α.

III. BOUNDING THE ALMOST EUCLIDEAN PROPERTY

In this section, we would like to give a quantitative bound
on the almost Euclidean property constant α such that with
high probability (with respect to the measure for the subspace
generated by the random H), α

√
n‖w‖2 ≤ ‖w‖1 holds for

every vector w from the subspace generated by H . Here we
assume that each element of H is generated from the standard
Gaussian distribution N(0, 1). So the subspace generated by
H is a uniformly distributed (n −m)-dimensional subspaces
from the high dimensional geometry.

To ensure that the subspace generated from H satisfies the
almost Euclidean property with α > 0, we must have the
event that the subspace generated by H does not intersect
the set {w ∈ Sn−1|‖w‖1 < α

√
n‖w‖2}, where Sn−1 is the

Euclidean sphere in Rn. To evaluate the probability that this
event happens, we will need the following “escape-through-
mesh” theorem.

Theorem 3.1: [5] Let S be a subset of the unit Euclidean
sphere Sn−1 in Rn. Let Y be a random m-dimensional
subspace of Rn, distributed uniformly in the Grassmanian with
respect to the Haar measure. Let w(S) = E(supw∈S(hT w)),
where h is a random column vector in Rn with i.i.d. N(0, 1)
components. Assume that w(S) < (

√
n−m− 1

2
√

n−m
). Then

P (Y
⋂

S = ∅) > 1− 3.5e−
(
√

n−m− 1
2
√

n−m
)−w(S)

18 .

From Theorem 3.1, we can use the following programming
to get an estimate of the upper bound of w(h, S). Because
the set {w ∈ Sn−1|‖w‖1 < α

√
n‖w‖2} is symmetric,

without loss of generality, we assume that the elements of h
follow i.i.d. half-normal distributions, namely the distribution
for the absolute value of a standard zero mean Gaussian
random variables. With hi denoting the i-th element of h,
supw∈S(hT w) is equivalent to

max
n∑

i=1

hiyi (III.1)

subject to y0 ≥ 0, 1 ≤ i ≤ n (III.2)
n∑

i=1

yi ≤ α
√

n (III.3)

n∑

i=1

y2
i = 1. (III.4)

Following the method from [7], we use the Lagrange duality
to find an upper bound for the objective function of (III.1).

min
u1≥0,u2≥0,λ≥0

max
w

hT w − u1(
n∑

i=1

w2
i − 1)

−u2(
n∑

i=1

wi − α
√

n) +
n∑

i=1

λiwi, (III.5)

where λ is a vector (λ1, λ2, ..., λn).
First, we maximize (III.5) over wi, i = 1, 2, ..., n for fixed

u1, u2 and λ. By making the derivatives to be zero, the
minimizing wi is given by

wi =
hi + λi − u2

2u1
, 1 ≤ i ≤ n

Plugging this back to the objective function in (III.5), we
get

hT w − u1(
n∑

i=1

w2
i − 1)

−u2(
n∑

i=1

wi − α
√

n) +
n∑

i=1

λiwi

=
∑n

i=1 (−u2 + λi + hi)2

4u1
+ u1 + α

√
nu2. (III.6)

Next, we minimize (III.6) over u1 ≥ 0. It is not hard to see
the minimizing u∗1 is

u∗1 =

√∑n
i=1 (−u2 + λi + hi)2

2
,

and the corresponding minimized value is
√√√√

n∑

i=1

(−u2 + λi + hi)2 + α
√

nu2. (III.7)

Then, we minimize (III.7) over λ ≥ 0. Given h and u2 ≥ 0,
it is easy to see that the minimizing λ is

λi =
{

u2 − hi if hi ≤ u2;
0 otherwise,

and the corresponding minimized value is
√ ∑

1≤i≤n:hi<u2

(u2 − hi)2 + α
√

nu2. (III.8)

Now if we take any u2 ≥ 0, (III.8) serves as an upper bound
for (III.5), and thus also an upper bound for supw∈S(hT w).
Since

√· is a concave function, by Jensen’s inequality, we
have for any given u2 ≥ 0,

E(sup
w∈S

(hT w)) ≤
√

E{
∑

1≤i≤n:hi<u2

(u2 − hi)2}+ α
√

nu2.

(III.9)
Since h has i.i.d. half-normal components, the righthand side
of (III.9) equals to

(
√

(u2
2 + 1)erfc(u2/

√
2)−

√
2/πu2e−u2

2/2 + αu2)
√

n,
(III.10)

where erfc is the error function.
One can check that (III.10) is convex in u2. Given α, we

minimize (III.10) over u2 ≥ 0 and let g(α)
√

n denote the
minimum value. Then from (III.9) and (III.10) we know

w(S) = E(sup
w∈S

(hT w)) ≤ g(α)
√

n. (III.11)
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Fig. 1: α∗ over m/n

Given δ = m
n , we pick the largest α∗ such that g(α∗) <√

1− δ. Then as n goes to infinity, it holds that

w(S) ≤ g(α∗)
√

n < (
√

n−m− 1
2
√

n−m
). (III.12)

Then from Theorem 3.1, with high probability ‖w‖1 ≥
α∗
√

n‖w‖2 holds for every vector w in the subspace gen-
erated by H . We numerically calculate how α∗ changes over
δ and plot the curve in Fig. 1. For example, when δ = 0.5,
α∗ = 0.332, thus ‖w‖1 ≥ 0.332

√
n‖w‖2 for all w in the

subspace generated by H .
Note that when m

n = 1
2 , we get α = 0.332. That is much

larger than the known α used in [15], which is approximately
0.07 (see Equation (12) in [15]). When applied to the sparse
recovery problem considered in [15], we will be able to
recover any vector with no more than 0.0289n = 0.0578m
nonzero elements, which are 20 times more than the 1

384m
bound in [15].

IV. EVALUATING THE ROBUST ERROR CORRECTION
BOUND

If the elements in the measurement matrix H are i.i.d. as
the unit real Gaussian random variables N(0, 1), following
upon the work of Marchenko and Pastur [10], Geman[8] and
Silverstein [9] proved that for m/n = δ, as n → ∞, the
smallest nonzero singular value

1√
n

σmin → 1−
√

δ

almost surely as n →∞.
Now that we have already explicitly bounded α and σmin,

we now proceed to characterize C. It turns out that our
earlier result on the almost Euclidean property can be used
to computed C.

Theorem 4.1: Suppose an n-dimensional vector w satisfies
‖w‖1 ≥ α

√
n‖w‖2. Then if for some set K ⊆ {1, 2, ..., n}

with cardinality |K| = k ≤ n such that ‖wK‖1
‖w‖1 = β, then β

satisfies
β2

k
+

(1− β)2

n− k
≤ 1

α2n
.

The proof is from the Cauchy-Schwarz inequality, and we will
omit the proof here due to space limitation. From Theorem 4.1,
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Fig. 2: $ versus k
n

we have the following corollary.
Corollary 4.2: If a nonzero n-dimensional vector w satis-

fies ‖w‖1 ≥ α
√

n‖w‖2, and if for any set K ⊆ {1, 2, ..., n}
with cardinality |K| = k ≤ n, C‖wK‖1 = ‖wK‖1 for some
number C ≥ 1, then

k

n
≥ (B + 1− C2)−

√
(B + 1− C2)2 − 4B

2B
, (IV.1)

where B = (C+1)2

α2 .
So for a sparsity ratio k

n , this corollary can be used to find a
lower bound on C satisfying ‖wK‖1

‖w‖1 = 1
C+1 . Combining these

results on computing σmin, α and C, we can then compute the
bound 2(C+1)

σminα(C−1)

√
n = $ in Theorem 2.1. For example, when

δ = m
n = 1

2 , we plot the bound $ as a function of k
n in Fig.

2.

V. NUMERICAL RESULTS

Simulation 1: We first consider recovering a signal vector
from Gaussian measurements. We generate the measurement
matrix Hn×m with i.i.d. N(0, 1) entries and a vector x′ ∈ Rm

with i.i.d Gaussian entries. Let x = x′/‖x′‖2 be the signal
vector. Let m = 60 and n = 150. We first consider the recov-
ery performance when the number of erroneous measurements
is fixed. We randomly choose twelve measurements and flip
the signs of these measurements. For each measurement, we
also independently add a Gaussian noise from N(0, σ2). For
a given σ, we apply (II.6) to estimate x using λ from 0 to
13, and pick the best λ∗ with which the estimation error is
minimized. For each σ, the result is averaged over fifty runs.
Fig. 3 shows the curve of λ∗ against σ. When the number
of measurements with bad data is fixed, λ∗ decreases as the
noise level increases.

We next fix the noise level and consider the estimation
performance when the number of erroneous measurements
changes. Each measurement has a Gaussian noise indepen-
dently drawn from N(0, 0.52). Let ρ denote the percentage
of erroneous measurements. Given ρ, we randomly choose
ρn measurements, and each such measurement is added with
a Gaussian error independently drawn from N(0, 52). The
estimation result is averaged over fifty runs. Fig. 4 shows how
the estimation error changes as ρ increases for different λ.
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Fig. 3: λ∗ versus σ for Gaussian measurements
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Fig. 4: λ∗ versus ρ for Gaussian measurements

λ = 8 has the best performance in this setup compared with
a large value λ = 15 and a small value λ = 0.05.

Simulation 2: We also consider estimating the state of the
power system from available measurements and known system
configuration. The state variables are the voltage magnitudes
and the voltage angles at each bus. The measurements can
be the real and reactive power injections at each bus, and the
real and reactive power flows on the lines. All the measure-
ments are corrupted with noise, and a small fraction of the
measurements contains errors. We would like to estimate the
state variables from the corrupted measurements.

The relationship between the measurements and the state
variables for a k′-bus system can be stated as follows [12]:

Pi =

k′∑
j=1

EiEjYij cos(θij + δi − δj), (V.1)

Qi =

k′∑
j=1

EiEjYij sin(θij + δi − δj), (V.2)

Pij = EiEjYij cos(θij + δi − δj)

−E2
i Yij cos θij + E2

i Ysi cos θsi i 6= j, (V.3)

Qij = EiEjYij sin(θij + δi − δj)

−E2
i Yij sin θij + E2

i Ysi sin θsi i 6= j, (V.4)

where Pi and Qi are the real and reactive power injection at
bus i respectively, Pij and Qij are the real and reactive power
flow from bus i to bus j, Ei and δi are the voltage magnitude
and angle at bus i. Yij and θij are the magnitude and phase

angle of admittance from bus i to bus j, Ysi and θsi are the
magnitude and angle of the shunt admittance of line at bus i.
Given a power system, all Yij , θij , Ysi and θsi are known.

For a k′-bus system, we treat one bus as the reference bus
and set the voltage angle at the reference bus to be zero. There
are m = 2k′ − 1 state variables with the first k′ variables for
the bus voltage magnitudes Ei and the rest k′ − 1 variables
for the bus voltage angles θi. Let x ∈ Rm denote the state
variables and let y ∈ Rn denote the n measurements of the
real and reactive power injection and power flow. Let v ∈ Rn

denote the noise and e ∈ Rn denote the sparse error vector.
Then we can write the equations in a compact form,

y = h(x) + v + e, (V.5)

where h(·) denotes n nonlinear functions defined in (V.1) to
(V.4).

An estimate of the state variables, x̂, can be obtained by
solving the following minimization problem,

min
x,z

‖y − h(x)− z‖1 + λ‖z‖2, (V.6)

where x̂ is the optimal solution x. λ > 0 is a fixed parameter.
When λ →∞, (V.6) approaches

min
x

‖y − h(x)‖1, (V.7)

and when λ → 0, (V.6) approaches

min
x

‖y − h(x)‖2. (V.8)

Since h is nonlinear, we linearize the equations and apply
an iterative procedure to obtain a solution. We start with the
initial state x0 where x0

i = 1 for all i ∈ {1, ..., n}, and x0
i = 0

for all i ∈ {n + 1, ..., 2n− 1}. In the kth iteration, let ∆yk =
y−h(xk−1), then we solve the following convex optimization
problem,

min
∆x,z

‖∆yk −H∆x− z‖1 + λ‖z‖2, (V.9)

where Hn×m is the Jacobian matrix of h evaluated at xk−1.
Let ∆xk denote the optimal solution ∆x to (V.9), then the
state estimation is updated by

xk = xk−1 + ∆xk. (V.10)

We repeat the process until ∆xk → 0.
We evaluate the performance on the IEEE 30-bus test

system. Fig. 5 shows the structure of the test system. Then the
state vector contains 59 variables. We take 100 measurements
including the real and reactive power injection at each bus
and some of the real and reactive power flows on the lines.
We first consider how the estimation performance changes as
the noise level increases when the erroneous measurements
are fixed. The measurement errors are simulated by inverting
the sign of the real power injection at bus 2, bus 3, bus 5,
bus 26 and bus 30, and inverting the sign of the reactive
power injection at bus 30. Each measurement also contains
a Gaussian noise independently drawn from N(0, σ2). For a
fixed noise level σ, we solve (V.6) by the iterative procedure
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Fig. 5: IEEE 30-bus test system
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Fig. 6: λ∗ versus σ

using different λ (from 0.5 to 12). The estimation performance
is measured by ‖x∗− x̂‖2, where x∗ is the true state variable
and x̂ is our estimation. For a fixed σ, we choose the λ∗

minimizing ‖x∗ − x̂‖2. The result is averaged over 50 runs.
Fig. 6 shows how λ∗ changes as σ increases from 0 to 0.2.
When the noise level is low, i.e. the measurements basically
only contain errors, the estimation performance is better when
we use a larger λ. When the noise level is high, a smaller λ
leads to a better performance.

We also study how the estimation performance changes as
the number of erroneous measurements increases. Each of
the 100 measurements contains i.i.d. Gaussian noise drawn
from N(0, 0.052). Let ρ denote the ratio of measurements
with bad data. For fixed ρ, we randomly choose the set T
of erroneous measurements with cardinality |T | = ρm. Each
erroneous measurement contains an additional Gaussian error
independently drawn from N(0, 0.72). We than calculate the
solution x̂ of (V.6) and the estimation error ‖x∗ − x̂‖2. x∗

was generated i.i.d. zero-mean Gaussian and normalized to
‖x∗‖2 = 1. Fig. 7 shows how the estimation error changes as
ρ increases. The results are averaged over fifty runs. When λ
is small (λ = 0.5), (V.6) approaches (V.7), and the estimation
error is relatively large if ρ is small, i.e. the measurements
basically contain only noise. When λ is large (λ = 12), (V.6)
approaches (V.8), and the estimation error is relatively large if
ρ is large. In contrast, if we make λ equal to 7, the estimation
error is relatively small.
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