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Abstract— In this paper a robust sensorless cascade control
scheme for a Permanent Magnet Synchronous Motor (PMSM)
drive is proposed. A Discrete Time Variable Structure Control
(DTVSC) is considered and the rotor position and speed are
obtained through an Adaptive Extended Kalman Filter (AEKF).
The proposed solution is experimentally tested on a commercial
PMSM drive equipped with a control system based on a floating
point Digital Signal Processor (DSP).

I. INTRODUCTION

High performance control of PMSM drives requires the

knowledge of the rotor shaft position and speed in order

to synchronize the phase excitation pulses to the rotor

position [1]. This implies the need for speed or position

sensors such as an encoder or a resolver attached to the

shaft of the motor. The demand of inexpensive and reliable

drives now pushes applied research toward the elimination of

mechanical sensors, in particular for mass-produced motors

in the kW range [2]. In fact, in most applications, these

sensors present several disadvantages, such as reduced relia-

bility, susceptibility to noise, additional cost and weight and

increased complexity of the drive system. The position and

velocity sensorless control of PMSM drive overcome these

difficulties. Therefore, sensorless control of motors based

on algorithms simple enough to be executed using low-cost

industrial DSP in real-time appears susceptible of industrial

interest due to its cost-effective nature and wide applicability

to a large class of motors [3]. A comprehensive overview

of methods developed to obtain rotor position and angular

speed from measurements of electric quantities is reported

in [4]–[6].

In this paper, an Adaptive Extended Kalman Filter

(AEKF), which is a simple and efficient state estimator for

nonlinear systems with inherent robustness against parameter

variations, is proposed for the estimation of rotor position

and speed of PMSM drives from measurements of elec-

tric quantities. Recent advances in digital technology allow

nowadays adequate data processing on cost-effective DSP-

based platforms, and the EKF can be now considered a viable

and computationally efficient tool for position and speed

estimation [4]. Theoretical issues and digital implementation

of the EKF have been deeply investigated in the past [4],

[7], [8] and a novel procedure for the offline tuning of

covariance matrices in EKF-based PMSM drives has been
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delle Carceri, 62032 Camerino (MC), Italy, letizia.corradini@unicam.it

presented in [6]. Application examples reported in [5] seem

to prove that some well-known pitfalls (such as the starting

from unknown rotor position and the filter matrices tuning)

have been successfully fixed.

Nonetheless, at least one major drawback of the EKF

application to sensorless drives is still unsolved. Indeed,

the use of Kalman filtering techniques requires to derive a

stochastic state-space representation of the system model and

of the measure process, and the design and the online tuning

of the covariance matrices appearing in the EKF equations

are still an open problem. Most of the EKF techniques

proposed in the literature [4]–[8] for state estimation are

based on some fixed values of the input and measurement

noise covariance matrices. In many practical applications an

a priori information of this kind is often unavailable and

it is necessary to allow the filter to properly weight online

the incoming observations. On the other hand it is well

known how poor estimates of noise statistics may seriously

degrade the Kalman filter performance. The main feature of

the Adaptive Extended Kalman Filter (AEKF) here adopted

is its capability of online adaptively estimating such unknown

statistical parameters. This adaptive solution should reduce

customization required by each application that makes most

of the EKF-based drives incompatible with an off-the-shelf

market strategy. It is worth noticing that particular attention

has been paid, in developing the algorithm, to prevention of

filter divergence and to the simplicity of implementation, in

view of its implementation on commercial DSP.

Considering control issues requiring specific attention in

electric drive systems, it is well known that electromechan-

ical parameters are subject to significant variations. A non-

linear control strategy widely recognized and successfully

applied in recent years is the Variable Structure Control

(VSC) [9]–[11]. Indeed, VSC methods provide robustness to

matched uncertainties [10] [12], and are computational sim-

pler with respect to other robust control approaches, thus well

suited for low-cost DSP implementation. VSC schemes are

typically affected by chattering of the control signal but, as

discussed in [10], this well-known implementation drawback

of VSC does not cause difficulties for electric drives since

the on-off operation mode is the only admissible one for

power converters. For PMSM, the cascade control structure

of the Field Oriented Control (FOC) is often usefully applied

to achieve fast four quadrant operation, smooth starting and

acceleration [13]. FOC is implemented with two current

controllers in inner control loops and a speed controller in

an outer control loop. The speed controller provides the

reference current for one of the two inner current control
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loops; this reference current corresponds to the required

motor torque. As argued in [10], VSC techniques cannot be

applied for the outer speed control loop, since the reference

input of the inner control loop should have bounded time

derivatives.

To overcome this problem, different approaches have been

followed, such as, for instance, the ‘direct speed control’

[10] and the ‘second-order sliding-mode technique’ [9]. Both

techniques, however, share a formulation in the continuous

time framework, while the practical implementation on a

low-cost DSP of a real motor drive claims for a more

appropriate formulation of the problem in a sampled-data

systems context.

A possible solution was presented in [14] and here

proposed with reference to a sensorless PMSM drive. In

particular in the present study, a control policy based on

Discrete-Time VSC (DTVSC) [15]–[18], endowed with a

AEKF for the estimation of the rotor position and speed,

is developed and experimentally tested. The introduction

of a DTVSC is motivated by the need of taking directly

into account the issue of control law digitalization. Reported

experimental evidences seem to show that it is actually able

to cope with electromechanical disturbances.

Summing up, the features of the DTVSC technique com-

bined with the AEKF-based rotor position and speed es-

timator are exploited in this work to design the cascade

control architecture shown in Fig. 1. In this scheme, the

external velocity DTVS control loop, two internal current

DTVS control loops and the AEKF-based rotor position and

speed estimator can be identified. The task is to make the

speed error ω∗
r − ω̂r to tend to zero as close as possible. As

well known, the discrete-time sliding mode condition can be

imposed exactly only outside a given sector. This issue has

been addressed using the approach known as Time Delay

Control [19] [20].

The paper is organized as follows. The nonlinear state

space model of the PMSM dynamics is presented in Section

II. The AEKF algorithm is reported in Section III. In Section

IV details on the considered DTVS controller are discussed.

Results on experimental tests are reported in Section V.

Fig. 1. Block scheme of the proposed cascade controller (FOC)

II. MOTOR DYNAMICS

In the (d, q) reference frame, synchronously rotating with

the motor rotor, the electrical equations of motion of a

permanent-magnet synchronous motor can be written as [10]:

did
dt

= −
R

L
id + ωeiq +

1

L
ud (1)

diq
dt

= −
R

L
iq − ωeid −

1

L
λ0ωe +

1

L
uq (2)

where id and iq are the d−axis and q−axis stator currents,

respectively; ud and uq are the d− axis and q− axis stator

voltages, respectively; R is the winding resistance and L =
Ld = Lq is the winding inductance on axis d and q; λ0 is the

flux linkage of the permanent magnet and ωe is the electrical

angular speed of the motor rotor.

The electrical torque τe and the mechanical power P of the

motor are given by τe = Ktiq and P = τeωr in which Kt =
3
2λ0Nr is the torque constant with Nr the number of pole

pairs and ωr is the mechanical angular speed of the motor

rotor. The developed torque of the motor is proportional to

the iq current because of the assumption that there is no

reluctance torque in the considered PMSM.

The mechanical motion equation of the motor is described

by:

J
dωr

dt
+Bωr = τe − τℓ;

dθr
dt

= ωr (3)

where J is the mechanical inertia of the motor and load, B
is the coefficient of viscous friction, τℓ is the load torque

and θr denotes the mechanical angular position of the motor

rotor.

For the electrical angular position/speed and the mechan-

ical angular position/speed, these relations hold: ωe = Nrωr

and θe = Nrθr.

III. ADAPTIVE ESTIMATION OF ROTOR

POSITION AND SPEED

The proposed AEKF providing online estimates of rotor

position and speed is derived in this section. Denote with

X(t) :=
[

ωr(t) id(t) iq(t) ϑr(t)
]

the motor state and

with U(t) :=
[

ud(t) uq(t)
]

the motor control input. The

motor nonlinear dynamic state space model can be written

in the compact form of the following stochastic differential

equation:

dX(t) = F (X(t), U(t))dt+ dη(t), (4)

where F (X(t), U(t)) is obtained by (1), (2), (3) and η(t)
is a Wiener process such that E(dη(t)dη(t)T ) = Q(t)dt.
Its weak mean square derivative dη(t)/dt is a white noise

process ∼ N(0, Q(t)) representing the model inaccuracies.

Assuming a constant sampling period ∆tk = Tc and de-

noting tk+1 by (k + 1)Tc, the following sampled nonlinear

measure equation can be associated to equation (4):

Z((k + 1)Tc) = G(X((k + 1)Tc)) + v(kTc), (5)

where Z(kTc) is the vector containing measures of mo-

tor phase currents and v(kTc) is a white sequence ∼
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N(0, R(kTc)). The measure vector Z(kTc) is composed of

two elements, i.e. Z(kTc) = [z1(kTc) z2(kTc)]
T , where

z1(kTc) = id(kTc)+v1(kTc), z2(kTc) = iq(kTc)+v2(kTc).
By definition of the measurement vector one has that the

output function G(X((k + 1)Tc)) has the following form:

G(X(kTc)) =
[

id(kTc) iq(kTc)
]T

= C(kTc)X(kTc) (6)

where

C(kTc) =

[

0 1 0 0
0 0 1 0

]

(7)

and v(kTc) = [v1(kTc) v2(kTc)]
T . Assume U(t) = U(kTc)

for t ∈ [kTc, (k+1)Tc). To obtain an extended Kalman filter

with an effective state prediction equation in a simple form,

model (1) and (2) has been linearized about the current state

estimate X̂(kTc, kTc) and the control input U((k−1)Tc) ap-

plied until the linearization instant. Subsequent discretization

with period Tc of the linearized model results in the EKF

reported in [21] (where explicit dependence on Tc has been

dropped for simplicity of notation). In particular in [21], a

simplification assumption has been introduced to obtain an

input noise covariance matrix Qd(k) which is completely

known up to the unknown multiplicative scaling factor σ2
η(k).

Moreover, the covariance matrix R(k) is assumed to have the

following diagonal form:

R(k) = diag[σ2
v,1(k), σ

2
v,2(k)]; (8)

this means that no correlation is assumed between the

measurement errors introduced by the sensors [21].

The EKF can be implemented once estimates of Qd(k)
and R(k) are available. In general, a complete and reliable

information about these matrices is not available; on the other

hand it is well known how poor knowledge of noise statistics

may seriously degrade the Kalman filter performance. This

problem is here dealt with introducing an adaptive adjust-

ment mechanism of Qd(k) and R(k) values in the EKF

equations.

A. Adaptive Estimation of Qd(k) and R(k)

A considerable amount of research has been carried out in

the adaptive Kalman filtering area [22]–[24], but in practice

it is often necessary to redesign the adaptive filtering scheme

according to the particular characteristics of the problem

faced. Following [22], in view of real time applications, a

particular attention has been here devoted to simplicity of

implementation and to prevention of filter divergence, more-

over, the particular structure of the input noise covariance

matrix Qd(k), which is completely known save that for a

multiplicative scalar, has been suitably taken into account.

The following nearly stationarity assumption is made: the

parameters σ2
v,i(k), i = 1, 2, and σ2

η(k) are nearly constant

over nv ≥ 2 and nη ≥ 2 samples respectively [22].

Define γi(k + 1) = zi(k + 1) − Gi(X̂(k + 1, k)), where

zi(k + 1) and Gi(X̂(k + 1, k)) are the i-th component of

Z(k + 1) and G(X̂(k + 1, k)), respectively. For analogy

with the linear case, residuals γi(k + 1), i = 1, 2, are called

the innovation process samples and are assumed to be well

described by a white sequence ∼ N(0, si(k + 1)), where

si(k + 1), i = 1, 2 can be expressed as

si(k + 1) = Ci(k + 1)P (k + 1, k)CT
i (k + 1)

+ σ2
v,i(k + 1)

= Ci(k + 1)[Ad(k)P (k, k)AT
d (k)

+ σ2
η(k)Q̄(k)]CT

i (k + 1) + σ2
v,i(k + 1) (9)

This simplifying assumption is as more valid as discretization

and linearization of (4) is more accurate and makes it

possible to apply the methods of the adaptive filtering theory

developed for the linear case.

The two above assumptions will allow us to define a sim-

ple and efficient estimation algorithm based on the condition

of consistency, at each step, between the observed innovation

process samples γi(k + 1), i = 1, 2 and their predicted

statistics E{γ2
i (k + 1)} = si(k + 1). Imposing such a

condition, one stage estimates σ̂2
η(k) and σ̂2

v,i(k+1), i = 1, 2,

of σ2
η(k) and σ2

v,i(k + 1), i = 1, 2, respectively are obtained

at each step. To increase their statistical significance, the

one stage estimates σ̂2
η(k) and σ̂2

v,i(k + 1), i = 1, 2, are

averaged obtaining the relative smoothed versions ¯̂σ2
η(k) and

¯̂σ2
v,i(k + 1), i = 1, 2.

From (9) it is apparent that the statistical information

carried by each γi(k + 1), i = 1, 2, depends, at the same

time, on the two unknown parameters σ2
η(k) and σ2

v,i(k+1).
This indeterminateness is here dealt with using a number

(say n′
η) of innovation process samples γi(k+1), i = 1, 2, to

estimate σ2
η(k) and the others (say n′

v) to estimate σ2
v,i(k+1).

In the light of the nearly stationarity assumption, the two

integers n′
η and n′

v are chosen such that n′
η/n

′
v = nv/nη.

Assume nv ≥ nη , let α and β two coprime integers

such that α/β = nv/nη and let q and r two integers such

that α = βq + r; then, the innovation process sequence is

subdivided into intervals Iα+β composed of α+ β samples.

Each interval contains β sequences of q samples used to

estimate σ2
η(k) (the faster varying parameter), the ensembles

of q samples are separated by β sequences of one sample

used to estimate σ2
v,i(k + 1), i = 1, 2 (the more slowly

varying parameter), the last r samples of each Iα+β interval

are used to estimate σ2
η(k). This scheme minimizes the

interval of time over which either one step estimate is not

updated. A symmetric situation holds if nη ≥ nv.

When the one step estimate σ̂2
η(k)(σ̂

2
v,i(k + 1), i =

1, 2) is updated, the other single stage estimate σ̂2
v,i(k +

1), i = 1, 2, (σ̂2
η(k)) is kept constant, so that the symbol

σ̂2
η(k)(σ̂

2
v,i(k+1)) does not necessarily imply that this esti-

mate has been computed using the last observed innovation

process sample γi(k + 1), i = 1, 2.

Because of the particular form of Qd(k) and of the se-

quential scalar processing of measures, 2 one stage estimates

σ̂2
η,i(k) of the unknown σ2

η(k), i = 1, 2 can be determined

maximizing the probability of observing the corresponding

i-th component of the predicted residual γi(k + 1), i = 1, 2
[22]. Namely, each σ̂2

η,i(k) is determined by the operation

maxprobσ2

η,i
(k+1)≥0γi(k + 1).
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The maximizing σ̂2
η,i(k) is obtained by imposing the con-

dition of consistency between residuals and their predicted

statistics, namely γ2
i (k + 1) = E{γ2

i (k + 1)} = si(k + 1).
Using (9) and replacing σ2

v,i(k+1) with ¯̂σ2
v,i(k+1) one has

σ̂2
η,i(k) = max

{

(Ci(k + 1)Q̄(k)CT
i (k + 1))−1[γi(k + 1)2

−Ci(k + 1)Ad(k)P (k, k)AT
d (k)C

T
i (k + 1)

−¯̂σ2
v,i(k + 1)], 0

}

. (10)

To obtain a unique estimate of σ2
η(k) and to increase the

statistical significance of estimators (10), which are based

on only one component γi(k + 1), the following smoothed

estimate is computed

¯̂σ2
η(k) =

1

2(lη + 1)

lη
∑

j=0

2
∑

i=1

σ̂2
η,i(k − j), (11)

where lη denotes the number of one-stage estimates σ̂2
η,i(·)

yielding the smoothed estimate.

In a recursive form the proposed estimate of σ2
η(k) is

¯̂σ2
η(k) =

¯̂σ2
η(k − 1)

+
1

2(lη + 1)

[

2
∑

i=1

(

σ̂2
η,i(k)− σ̂2

η,i(k − (lη + 1))
)

]

. (12)

Analogously, the operation

maxprobσ2

v,i
(k+1)≥0γi(k + 1)

and (9) give the following one stage estimate of σ2
v,i(k +

1), i = 1, 2,

σ̂2
v,i(k + 1) = max{γ2

i (k + 1)− [Ci(k + 1)Ad(k)P (k, k)

AT
d (k)C

T
i (k + 1) + Ci(k + 1)¯̂σ2

η,i(k)Q̄(k)

CT
i (k + 1)], 0}, (13)

the smoothed version ¯̂σ2
v,i(k + 1) is

¯̂σ2
v,i(k + 1) =

1

lv + 1

lv
∑

j=0

σ̂2
v,i(k + 1− j), (14)

where lv denotes the number of one-stage estimates σ̂2
v,i(·)

yielding the smoothed estimate.

In a recursive form the proposed estimates of σ2
v,i(k + 1)

becomes

¯̂σ2
v,i(k+1) = ¯̂σ2

v,i(k)+
1

lv + 1
(σ̂2(k+1)−σ̂2(k−lv)). (15)

The proposed adaptive estimation algorithm is given by

equations (12), (15) and is able to prevent filter divergence.

In fact, as long as the innovation samples γi(k+1), i = 1, 2
are sufficiently small and consistent with their statistics, the

filter operates satisfactorily and the noise model is kept small

(or null) by (10). If a sudden increase of the absolute value

of the innovation process samples is observed, equation (10)

provides an increased Q̂d(k) = ¯̂σ2
η(k)Q̄(k), and hence an

augmented filter gain, thus preventing filter divergence.

Parameters lη and lv of estimators (12) and (15) are chosen

on the basis of two antagonist considerations: low values

would produce noise estimators which are not statistically

significant, large values would produce estimators which are

scarcely sensitive to possible rapid fluctuations of the true

σ2
η(k) and σ2

v,i(k), i = 1, 2. During filter initialization, the

starting values σ̂2
η(0) and σ̂2

v,i(0), i = 1, 2, of σ̂2
η(k) and

σ̂2
v,i(k) respectively, must be chosen on the basis of the a

priori available information. In the case of a lack of such

information, a large value of P (0, 0) is useful to prevent

divergence.

Remark 3.1: As stated in [4], to reduce the computational

effort for a real time implementation of the EKF an accept-

able approximation is to use a diagonal covariance matrix

Qd(k).

IV. CONTROL DESIGN

The discretization of the model equations with a sampling

time Tc according to standard techniques gives [21]:

ωe(k + 1) = Aωωe(k) +Bω(Ktiq(k)− τℓ) (16)

id(k + 1) = Aiid(k) +Biud(k) + f1(ωe, iq, k) (17)

iq(k + 1) = Aiiq(k) +Biuq(k)− f2(ωe, id, k).(18)

To account for possible model uncertainties, it is assumed

that model parameters may differ from their nominal values

for some unknown but bounded quantities:

Aω = Āω +∆Aω; Bω = B̄ω +∆Bω;

|∆Aω | ≤ ρAω; |∆Bω | ≤ ρBω

Ai = Āi +∆Ai; Bi = B̄i +∆Bi;

|∆Ai| ≤ ρAi; |∆Bi| ≤ ρBi. (19)

Define the following discrete-time sliding surfaces:

sω(k) = (ω̂e(k)− ω∗
e(k))

+ λω(ω̂e(k − 1)− ω∗
e(k − 1)) = 0 (20)

siq(k) = (iq(k)− i∗q(k))

+ λq(iq(k − 1)− i∗q(k − 1)) = 0 (21)

sid = id(k) + λdid(k − 1) = 0 (22)

where λω, λq, λd ∈ (−1, 1), ω̂e(k) is the estimate of ωe(k)
provided by the AEKF, ω∗

e(k) is the given reference value

for the angular velocity, and i∗q(k) will be defined in the

following.

As well known, a quasi sliding motion on the surface

sω(k) = 0 can be achieved imposing the following discrete

time sliding mode existence condition [16], [17]:

sω(k)∆sω(k + 1) < −
1

2
[∆sω(k + 1)]

2
(23)

being ∆sω(k + 1) = sω(k + 1) − sω(k). It can be easily

verified that condition (23) is ensured by the control law

i∗q(k) = ieqq (k)+inq (k), where the equivalent control is given

by:

ieqq (k) =
1

B̄ωKt

(ω∗
e(k+1)−Āωω̂e(k)−λω(ω̂e(k)−ω∗

e(k)))

(24)

As usual, the discontinuous control inq is such that the sliding

condition can be imposed exactly only outside a given sector.
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Inside such sector the sliding condition can be imposed

only approximately. To this purpose we made resort to the

approach known as Time Delay Control [19], obtaining

inq (k) =















θω
|sω(k)| − ρω

B̄ωKt

if |sω(k)| > ρω

−
sω(k)− B̄ωi

n
q (k − 1)

B̄ωKt

if |sω(k)| ≤ ρω

(25)

with |θω| ≤ 1, and with

ρω = (|B̄ω|+ ρBω)ρτ + ρAωω
max
e +KtρBωi

max
q

ρτ being the constant bound of the unknown load which can

affect the motor, i.e. |τℓ| ≤ ρτ . Note that ωmax
e and imax

q

are the largest speed achievable by the motor and the largest

current which can be supplied, respectively, according to its

constructive limits.

The control law i∗q(k) is fed as reference value, which is

the required motor torque, to one of the two inner current

control loops. The tracking of such reference is ensured

by the imposition of a quasi sliding motion of the surface

siq(k) = 0. Following the same lines as before, it can be

easily verified that the sliding condition on siq(k) = 0 is

ensured by the control law uq(k) = ueq
q (k) + un

q (k), where:

ueq
q (k) =

1

B̄i

[

i∗q(k)− Āiiq(k)− λq(iq(k)− i∗q(k))
]

(26)

un
q (k) =















θq
|siq(k)| − ρq

B̄i

if |siq(k)| > ρq

−
siq(k)− B̄iu

n
q (k − 1)

B̄i

if |siq(k)| ≤ ρq

(27)

where |θq| ≤ 1, ρq = ρAii
max
q +ρBiu

max
q +ρ+ωmax

e (imax
d +

λ0

L
)Tc, ρ being the bound of ∆i∗q(k) = |i∗q(k + 1)− i∗q(k)|.
Finally, the achievement of a quasi sliding motion on

sid(k) = 0 guarantees the vanishing of the variable id(k),
and is ensured by the control law:

ueq
d (k) = −

(Āi + λd)id(k)

B̄i

(28)

un
d (k) =











θd
|sid(k)| − ρd

B̄i

if |sid(k)| > ρd

−
sid(k)− B̄iu

n
d (k − 1)

B̄i

if |sid(k)| ≤ ρd

(29)

where |θd| ≤ 1 and ρd = ρAii
max
d +ρBiu

max
d +ωmax

e imax
q Tc.

V. EXPERIMENTAL RESULTS

The proposed DTVS controller and AEKF-based rotor

position and speed estimator have been implemented on the

Technosoft MCK28335-Pro DSP motion control kit [25]. In

the proposed solution the reference of the direct current com-

ponent (i∗d) is set to zero (see Fig. 1). This case corresponds

to the motion of the motor in the normal speed range, without

considering possible field weakening operations [10]. The

sampling frequency is selected as 1 kHz for the velocity

control loop and 10 kHz for the current control loops.

A sample of the performed speed-tracking experiments

considering the proposed DTVSC equipped with the AEKF-

based rotor position and speed estimator is shown in Fig.

2. A comparison with the performance of a PI-based FOC

equipped with a conventional backward-difference method

for speed estimation, using sampled position measurements

provided by a digital incremental encoder, has been also

made.

In particular, the Fig. 2 shows one of the tests performed

with a time-varying disturbance acting on the iq current for

the rectangular reference velocity profile. It is apparent from

the inspection of Fig. 2 that, with the PI-based FOC with the

encoder and the backward-difference based speed estimator,

in response to disturbances acting in the electrical subsystem

the actual velocity deviates significantly from the reference

(Fig. 2(b)), while the DTVSC-based FOC with the AEKF-

based rotor position and speed estimator performs a more

accurate tracking (Fig. 2(a)).

In Fig. 2(c), the AEKF-based estimated rotor position

(blue continuous line) is compared with the encoder-based

measured one (red dashed line); the estimated position shows

good correspondence to the measured rotor position. The

criterium IAE, i.e. the integral of the absolute value of the

speed-tracking error and of the error between the estimated

and the encoder-based measured rotor position, is used to

summarize the above experimental result (see Table I). In

Table I are also reported results for the motor following speed

trajectories chosen with trapezoidal and sinusoidal shapes

and without the time-varying disturbance. Fig. 2(d) shows

TABLE I

PERFORMANCE COMPARISON.

No dist. AEKF-speed backward-difference AEKF-position

Rectangular 1.98 2.90 0.16
Trapezoidal 0.35 1.01 0.14
Sinusoidal 0.35 2.19 0.30

Dist. AEKF-speed backward-difference AEKF-position

Rectangular 2.12 3.04 0.18
Trapezoidal 0.39 1.23 0.15
Sinusoidal 0.43 2.29 0.31

the behavior of the estimated ¯̂σ2
η(k) assuming lη = 5 and the

initial value ¯̂σ2
η(0) = 0.3 for the rectangular velocity profile.

These figures evidence increases of ¯̂σ2
η(k) in correspondence

of the initial time instant, time instants when step changes

of the reference trajectory occur and also when electrical

disturbances act on the motor drive.
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Fig. 2. Trapezoidal velocity profile; a time-varying disturbance acts on
the iq current. Actual (blue continuous line) and reference (red dashed line)
velocities: (a) DTVSC-based FOC with the AEKF-based rotor position and
speed estimator; (b) PI-based FOC with the encoder and the backward-
difference based speed estimator; (c) AEKF-based estimated rotor position
(blue continuous line) and encoder-based measured rotor position (red
dashed line); (d) Behavior of the estimated ¯̂σ2

η
(·) assuming lη = 5 and

¯̂σ2
η
(0) = 0.3.
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