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Abstract— This paper deals with the problem of simulta-
neously classifying sensors and estimating hidden parameters
in a network with communication constraints. In particular,
we consider a network where sensors measure a common
parameter with different precision rank. The goal of each unit
is to estimate the unknown parameter and its own specific
type through local communication and computation. Here, we
present a decentralized version of the centralized maximum
likelihood (ML) estimator. Each sensor computes local sufficient
statistics by using its own observations and transmits its local
information to its neighborhood. By using an Input Driven
Consensus Algorithm (IDCA), the local information can be
gradually propagated through the entire network, allowing to
estimate the global parameter. We prove the convergence of the
proposed algorithm and we show that the relative classification
error converges to that of the centralized ML as the network
dimension goes to infinity. We also compare this strategy with
implementation of expectation-maximization (EM) algorithm
via numerical simulations.

I. INTRODUCTION

The recent enhancements in wireless technology have
favored the employment of sensor networks in widespread
engineering and industrial applications. Consider the problem
of estimating a parameter that each sensor can measure with a
certain degree of precision. When no supervision is available,
each unit is required to locally cooperate with its neighbors
according to rules that allow to achieve a global consensus
on the parameter’s value (see, e.g., [1] and the references
therein).

In real applications, sensors are subjected to failures
owing to which their measurements may become strongly
inaccurate. This motivates the recent research on fault-
tolerant networks, which must (a) self-detect the corrupted
sensors and (b) perform a reliable estimation on the unknown
parameter despite the partial damage. The first task is a
classification problem: the sensors cluster into two sets
(“working” and “faulty” sensors), and each of them must
evaluate its own states through local information sharing;
the second one, instead, requires the derivation of distributed
estimation algorithms robust to failures. Such a dual problem
has been studied, e.g., in [1].

The aim of this work is the development of a decentralized
algorithm that performs classification and estimation in the
same iterative procedure. The model we will consider is the
following: yi = θ + Tini is the measurement performed by
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sensor i, θ being the unknown parameter, ni’s independent
gaussian noises N(0, 1), and Ti’s sensor standard deviations.
If i is functioning regularly, Ti = α, while if i is faulty,
Ti = β >> α.

Analogously to the issue studied in [1], the problem
of estimating Ti is envisaged in the general context of
unsupervised clustering and of gaussian mixtures estimation
[2], [3]. As a difference from [1], in which Ti is an additive
term, in our model Ti is a multiplicative factor, which depicts
a different scenario. Based on maximum likelihood (ML)
estimation, the algorithm we propose in this work consists
of an iterative, decentralized procedure and has been inspired
by the consensus propagation protocol introduced in [4], [5].

A. Relation to prior literature and our contribution

1) Standard EM: The most popular technique in statistical
estimation problems, such as mixture problems, is the Expec-
tation Maximization (EM) algorithm [6]. In its centralized
form, it is an iterative procedure which seeks to compute
the ML estimates of the model parameters for which the ob-
served data are the most likely. EM alternates an expectation
step (E-step), which estimates the unobserved variables based
on the observed data, with a maximization step (M-step),
which maximizes the likelihood function using estimates
obtained in the E-step. The convergence is guaranteed since
each iteration increases the likelihood. As drawback, the
implementation of EM on a sensor network requires a
complete communication graph since the computations need
the information of all nodes in the network. We refer the
reader to [6] for a derivation of EM equations which can be
easily adapted to our specific problem.

2) Distributed EM algorithms: In [3], [7] distributed
versions of the EM algorithm are proposed for estimation of
gaussian mixtures: a network is given where each node in-
dependently performs the E-step through local observations.
In particular, in [7] a consensus filter is used to propagate
the local information. The tricky point of such techniques
is the choice of the number of averaging iterations between
two consecutive M-steps, which must be sufficient to reach
consensus.

3) Belief propagation in Bayesian networks: It is worth
mentioning a recent line of research on the use of belief
propagation (BP) as an asynchronous protocol to solve the
classification problem [5], [4]. However, the convergence
of these algorithms, providing each node with the most
probable class based on all observations, is guaranteed only
for particular topologies of the communication graph (when
the network is a tree or a regular graph).
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B. Our contribution and outline of the paper

Here, we explore a different strategy for the ML estima-
tion. More specifically, we propose a distributed algorithm,
which we call Input Driven Consensus Algorithm (IDCA).
What is new with respect to the previous literature is that the
algorithm does not perform repetitive average calculations:
it consists of computation of two averages and an hard
decision. Moreover, it is possible to obtain for IDCA an
accurate analysis of the convergence. Another advantage is
that the algorithm can be generalized to scenarios where the
parameters θ and T belong to multidimensional spaces.

The paper is organized as follows. In Section II, we
formally present our model and we approach it by classical
ML estimation; in Section III, we introduce IDCA and
the theoretical results. Afterwards, we show the outcomes
of some simulations (Section IV), and we collect some
concluding remarks in Section V. An Appendix, containing
the sketch of some theoretical proofs, completes the paper.

II. PROBLEM STATEMENT

A. The model

In our model, we consider a network, represented by a
directed graph G = (V, E), where E ⊆ V × V . G represents
the system communication architecture and |V| = N is the
number of agents. We assume that each node i ∈ V measures
the observable

yi = θ? + T ?i ni (1)

where, we recall, θ? ∈ R, ni’s are independent gaussian
noises N(0, 1) and each T ?i ∈ {α, β}. In summary, data
y = (y1, . . . , yN ) are distributed according to the probability
density function

f(y|θ?, T ?) =
∏
i∈V

f(yi|θ?, T ?i )

f(yi|θ?, T ?i ) =
1√

2πT ?i
e
− (yi−θ

?)2

2T?2
i .

We assume an a-priori distribution on the state of the sensors
T ?i ’s: they are assumed to be independent and we let p to be
the probability that each T ?i is equal β.

The goal of each unit is to estimate the parameter θ? and
its own specific configuration T ?i ∈ {α, β} that is more likely
to have generated the observation yi. Notice that the presence
of the common parameter θ? imposes a coupling between the
different nodes.

B. ML-estimator

Given two vectors v, w ∈ {α, β}N let dH(v, w) = |{i ∈
{1, . . . , N} : vi 6= λ}| where 1 = (1, 1, . . . , 1)T ∈
RN . It would be natural to take as estimators of vector
T ? = (T ?1 , . . . , T

?
N )T and of θ? the ones which minimize

E[dH(T ?, T̂ )] and E[|θ? − θ̂|2] over all T̂ ∈ {α, β}N and
over all θ̂ ∈ R. However, these optimal estimators are
computationally intractable and the computation is difficult

to decentralize. We consider instead the ML-estimator of the
posterior probability, defined as follows:

(θ̂ML, T̂ML) = argmax
θ∈R,T∈{α,β}N

f(y|θ, T )p(T ) = argmax
θ∈R,T∈{α,β}N

L(θ, T )

where

L(θ, T ) = −
N∑
k=1

(yk − θ)2

2T 2
k

− η
N∑
i=1

Ti (2)

and η = 1
β−α ln

[
(1−p)
p

β
α

]
.

The ML-estimator is typically used for finite mixtures
classification problems [3] and does not have a closed form
solution. Our goal is to find a distributed algorithm solving
this optimization problem.

The max-problem can be easily solved for a fixed T :

θ̂(T ) = argmax
θ∈R

L(θ, T ) =

∑N
k=1

yk
T 2
k∑N

k=1
1
T 2
k

(3)

Clearly, T̂ML = argmaxL(θ̂(T ), T ) and θ̂ML = θ̂(T̂ML).

Equivalently, the problem can be solved by maximizing
L(θ, T ) for a fixed θ. The classification rule becomes

T̂i(θ) =

{
α if |yi − θ| < δ

β otherwise
δ =

√√√√
2

ln
(

1−p
p

β
α

)
1
α2 − 1

β2

(4)

and θ̂ML = argmaxL(θ, T̂ (θ)), T̂ML = T̂ (θ̂ML).

C. Performance metrics
As performance metrics to evaluate the goodness of an

estimate T̂ of T ?, we take the relative classification error
over the network:

PN (T̂ ) :=
1

N
E
[
dH(T ?, T̂ )

]
.

We denote by PN (T̂ML) the classification error for the ML
estimation.

Theorem 1:

lim inf
N→+∞

PN (T̂ML) ≥ q(p, α, β)

where

q(p, α, β) = (1− p)erfc1
(

δ

α
√

2

)
+ p

[
1− erfc

(
δ

β
√

2

)]
.

The proof, which is omitted for reasons of space, is based
on the fact that q = PN (T̂LB) with

T̂LB = argmax
T∈{α,β}N

L

(
argmax
θ∈R

L(θ, T ?), T

)
.

The details can be found in [8].
For a fixed α, β ∈ R the error probability q(p, α, β)

vanishes when p goes to zero, as to be expected:
limp→0 q(p, α, β) = 0. Moreover, the dependence of func-
tion q on the parameters α and β is exclusively through their
ratio β/α. In particular, we have

lim
β/α→+∞

q(p, α, β) = 0 lim
β/α→1

q(p, α, β) = 1.

1erfc(x) is the complementary error function defined as
2√
π

∫+∞
x e−t

2
dt
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D. A naı̈ve iterative algorithm: Hard-EM
Expressions (3) and (4) suggest a possible iterative algo-

rithm. Set the initial estimate θ̂(0) = 1
N

∑
i∈V yi (which is

a usual assumption that the estimation process begins from
the average of initial conditions). Given the current estimate
θ̂(t):

T̂
(t+1)
i =

{
α if |yi − θ̂(t)| < δ
β otherwise

θ̂(t+1) =
∑N
j=1 yj

[
T̂

(t+1)
j

]−2
/∑N

j=1

[
T̂

(t+1)
j

]−2

.

The algorithm halts when |θ̂(t+1) − θ̂(t)| < ε, where ε is
a prescribed tolerance. Notice that this iterative algorithm
can be seen as an hard version of the EM-algorithm. As
drawback, the implementation of this iterative algorithm on
a sensor network requires a complete communication graph
since the computations need the information of all units in
the network. Moreover, the convergence is not guaranteed in
general cases.

III. INPUT DRIVEN CONSENSUS ALGORITHM

A. Description of the algorithm
We propose an Input Driven Consensus Algorithm (IDCA)

to make Hard-EM algorithm distributed. It seeks to estimate
the average quantities 1

N

∑
i∈V yiT

−2
i and 1

N

∑
i∈V T

−2
i and

simultaneously uses them to classify T in an iterative and
distributed way.

Formally, IDCA is parametrized by:
• a non-negative stochastic matrix P , adapted to the

communication graph G = (V, E), namely Pij > 0 if
(j, i) ∈ E and 0 otherwise;

• a real sequence γ(t) ∈ (0, 1) ∀t ∈ N, γ(t) ↘ 0.
Every node i has two messages stored in its memory at time
t, denoted with µ(t)

i , ν
(t)
i . Given the initial conditions µ(0)

i =

0, ν
(0)
i = 0 and the initial estimate T̂ (0)

i = α, the dynamics
consists of a convex combination, weighted by γ(t), of two
contributions:
• the first term is the consensus part (

∑
j Pijµj and∑

j Pijνj , respectively)
• the second one is an input which takes into account the

observations yi and the current estimate on type T̂ (t)
i

(yi/[T̂
(t)
i ]2 and 1/[T̂

(t)
i ]2).

The update of parameters θ̂(t+1)
i and of T̂ (t+1)

i is then based
on µ(t+1)

i and ν(t+1)
i .

Input driven consensus algorithm (IDCA)
1) Initialize µ(0) = 0, ν(0) = 0, T̂ (0) = α1
2) For time t ∈ N do: for all i ∈ V do

µ
(t+1)
i = (1−γ(t))

∑
j

Pijµ
(t)
j︸ ︷︷ ︸

consensus part

+γ(t) yi[
T̂

(t)
i

]2
︸ ︷︷ ︸

input

(5a)

ν
(t+1)
i = (1− γ(t))

∑
j

Pijν
(t)
j︸ ︷︷ ︸

consensus part

+γ(t) 1[
T̂

(t)
i

]2
︸ ︷︷ ︸

input

(5b)

θ̂
(t+1)
i = µ

(t+1)
i /ν

(t+1)
i (6a)

T̂
(t+1)
i =

{
α if |yi − θ̂(t+1)

i | < δ
β otherwise

(6b)

3) end for

Since γ(t) t→+∞−→ 0 the injection of inputs vanishes when
the number of iterations increases.

This algorithm provides a distributed protocol since the
computations at each node require only information that is
locally available.

B. Convergence and performance

The following theorem ensures the convergence of IDCA.
Theorem 2: Let γ(t) ∈ (0, 1) ∀t ∈ N, γ(t) ↘ 0 and∑
t γ

(t) = +∞. Let P ∈ RN×N+ be doubly-stochastic,
symmetric, primitive and such that all its eigenvalues are
non-negative. Then,

1) there exist t0 ∈ N and T̂ (∞) ∈ {α, β}N such that

T̂ (t) a.s.
= T̂ (∞) ∀t ≥ t0

lim
t→+∞

θ̂(t) a.s.
= θ̂(∞) =

∑N
k=1 yk

[
T̂

(∞)
k

]−2

∑N
k=1

[
T̂

(∞)
k

]−2 1;

2) (θ̂(∞), T̂ (∞)) is a local maximum of log-likelihood
function L(θ, T ) defined in (2).

This result guarantees that the estimates T̂ (t) converge in
a finite time almost surely. Moreover, it will be clear from
the proof (see Appendix) that ||θ̂(t) − θ̂(∞)|| = O(γ(t)) for
t→∞.

Notice that the requirement of positive eigenvalues does
not affect the generality of the problem. P in fact must match
the network’s topology (i.e., the zero entries are fixed), but its
non-zero entries can always be chosen so that the eigenvalues
are positive (it is sufficient to assign a sufficiently large
weight on the diagonal).

It is easy to verify that lim infN→+∞ PN (T̂ (∞)) ≥
q(p, α, β) where q is defined in Theorem 1. We will show
via simulations that for our algorithm the classification error
is exactly given by q, for sufficiently large N .

IV. SIMULATIONS

In this section, we test IDCA and we compare it with the
standard centralized EM and Hard-EM in terms of fraction of
nodes that are not correctly identified. The sensors measure
data according to the model in (1) with θ = 0, α = 0.3
and β = 10. The prior probability of having Ti = β
is set to p = 0.25. We consider different communica-
tion architectures: the complete graph, a circulant graph,
a 2-dimensional grid and a random geometric graph with
confidence radius r = 0.3. IDCA is parametrized by the
matrix P adapted to the topology of the graph and by a
sequence {γ(t)}t∈N. More precisely, letting deg(i) be the
number of agents communicating with i (i itself included),
we have chosen Pij = 1/deg(i) if (j, i) ∈ E and Pij = 0
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Fig. 1. Complete graph.
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Fig. 2. Circulant graph.

otherwise. Although the classification procedure requires a
finite number of iterations, the choice of sequence {γ(t)}t∈N
is critical, since it determines both the final accuracy and
the convergence time of the continuous parameter θ. This
raises the question of how to choose the sequence parameters
{γ(t)}t∈N for a particular graph. Figs. 1-4 show the average
(over 1000 Monte Carlo runs) of the relative classification
error as a function of the number of nodes in the network.
Results are obtained with γ(t) = 1/(t + 1)ζ for different
choices of ζ ∈ {0.3, 0.5, 0.7, 0.9}. These figures put into
evidence that IDCA has better performance than EM and
Hard-EM, and the asymptotically behavior is very close to
the lower bound predicted in Theorem 1.

V. CONCLUDING REMARKS

In this paper, the problem of distributively estimating
hidden parameters in sensor networks with limited com-
munication capability is studied. In particular, a distributed
protocol (IDCA) is proposed. The main contribution includes
the convergence of the algorithm to a local maximum of the
ML-estimator. Different variants are possible, such as the
generalization to multiple classes with unknown prior prob-
abilities and to multidimensional estimation-classification
problems. The choice of sequence {γ(t)}t∈N affects both
convergence time and the final accuracy. The determination
of a protocol for the adaptive search of sequence {γ(t)}t∈N
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Fig. 3. 2d-grid.
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Fig. 4. Random geometric graph.

and the study of the tightness of lower bound in Theorem 1
for both ML and IDCA are left for a future work.
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APPENDIX

PROOF OF THEOREM 2

Our aim is to prove the convergence of (6) through the
analysis of system (5). The proof is organized as follows.

1) First, we show that for sufficiently large t µ(t), ν(t),
and θ̂(t) are close to consensus vectors and we prove
their convergence, assuming T̂ (t) has already stabi-
lized.

2) Second, we prove the stabilization of T̂ (t) in finite
time, by modeling (5)- (6) as a switching dynamical
system.

3) Finally, combining these facts together we conclude
the proof of Theorem 2.

Some proofs are omitted for reasons of space. The interested
reader is referred to [8] for further details.

1) Towards consensus: Let Ω = I − 1
N 11

T. Given x ∈
RN , let x = 1

N 1
Tx be its average. Then x = x1+Ωx. Given

a bounded sequence u(t) ∈ RN , consider the dynamics

x(t+1) =
(

1− γ(t)
)
Px(t) + γ(t)u(t) t ∈ N (7)

where, we recall the standing assumptions, γ(t) ∈ (0, 1) and
γ(t) ↘ 0, and P ∈ RN×N+ is a doubly-stochastic, symmetric,
primitive (irreducible and aperiodic) matrix. x(0) is any fixed
vector.

Lemma 3:
lim

t→+∞
Ωx(t) = 0.

Proof: Let z(t) = Ωx(t). From (7) and the fact that
ΩP = PΩ we get

z(t+1) = (1− γ(t))Pz(t) + γ(t)
(
u(t) − u(t)1

)
from which

||z(t+1)||2 ≤
t∏
s=0

(
1− γ(s)

)
||z(0)||2 +

t∑
s=0

γ
(s)
∣∣∣∣∣∣P t−su(s) − u(s)

1

∣∣∣∣∣∣
2
.

Perron-Frobenius Theorem [9] and boundness of u(t) imply
that there exists |ρ| < 1 and c ∈ R such that ||P t−su(s) −
u(s)1||2 ≤ c|ρ|t. We finally get

||z(t+1)||2 ≤ e−
∑t
s=0 γ

(s) ||z(0)||2 + c
∑t
s=0 γ

(t−s)|ρ|s.
Since

∑
t γ

(t) = +∞ from hypothesis, the first term vanishes
when t→ +∞. The second term can be splitted as follows

t∑
s=0

γ(t−s)|ρ|s ≤
bt/3c∑
s=0

γ(t−s)|ρ|s +

t∑
s=bt/3c+1

γ(t−s)|ρ|s

≤ γ(b 23 tc) + |ρ|bt/3c
1− |ρ|

t→∞−→ 0.

We now go back to θ̂(t).
Lemma 4:

θ̂(t) =
µ̄(t)

ν̄(t)
1+

1

ν̄(t)
Ω

(
µ(t) − µ̄(t)

ν̄(t)
ν(t)
)

+ o
(
γ(t)
)

(8)

Proof: For any i ∈ V ,

µ
(t)
i

ν
(t)
i

− µ̄(t)

ν̄(t)
=

1

ν̄(t)

(
Ωµ(t)

)
i
− µ

(t)
i

ν
(t)
i ν̄(t)

(
Ων(t)

)
i
.

It follows from Lemma 3 that µ(t) = µ̄(t)1+o(1) and ν(t) =
ν̄(t)1+ o(1) for t→ +∞. This yields

µ
(t)
i

ν
(t)
i ν̄(t)

(
Ων(t)

)
i

=
µ̄(t)

ν̄(t)

(
Ων(t)

)
i

ν̄(t) + o (1)
+ o

(
γ(t)
)
.

Finally, since ν̄(t) is positive and bounded away from 0, we
can write

[
ν̄(t) + o (1)

]−1
= 1/ν̄(t) (1 + o (1)) from which

the thesis follows.
The following corollary is a straightforward consequence

of Lemmas 3 and 4.
Corollary 5:

lim
t→+∞

Ωθ̂(t) = 0.

Corol. 5 says that the estimate θ̂(t) is close to a consensus
for sufficiently large t. The following proposition guarantees
the convergence under the assumption of input stabilization.

Proposition 6: If ∃ t0 ∈ N s.t. u(t) = u ∀t ≥ t0 then

lim
t→+∞

x(t) = u1.

Proof: The vector x(t) can be written as x(t) =
x(t)1 + Ωx(t). From Lemma 3 it is sufficient to prove that
limt→+∞ x(t)1 = u1. Since P is a doubly-stochastic matrix,
we have

x(t+1) − u =
∏t
t=t0

(1− γ(t))(x(t) − u)

which goes to zero from the non-summability of γ(t).
If T̂ (t) stabilizes at finite time in T̂ (∞), Prop. 6 guarantees
that µ(t) and ν(t) converge to 1

N

∑
i∈V yi[T̂

(∞)
i ]−21 and

1
N

∑
i∈V [T̂

(∞)
i ]−21, respectively.

Corollary 7: If ∃ t0 ∈ N s.t. T̂ (t) = T̂ (∞) ∀t ≥ t0 then

lim
t→+∞

θ̂(t) = θ̂(∞) =

∑N
k=1 yk

[
T̂

(∞)
k

]−2

∑N
k=1

[
T̂

(∞)
k

]−2 1.

2) Stabilization (a.s) of T̂ (t): Since T̂ (t) can only assume
values in a finite set, equations in (5) and (6) can be
conveniently modeled by a switching system. Indeed, given
observations y and ω ∈ {α, β}N , define

Θω := {x ∈ RN : |xi−yi| < δ, if ωi = α, |xi−yi| ≥ δ, if ωi = β}.

When θ̂(t) ∈ Θω we, abstractly, rewrite (5a) and (5b) as

µ(t+1) = fω(t, µ(t)) ν(t+1) = gω(t, ν(t)).

Together with θ̂
(t)
i = µ

(t)
i /ν

(t)
i , it describes a closed-loop

switching system, the switching policy being determined by
θ̂(t). It is clear that the stabilization of T̂ (t) is equivalent to
the fact that there exist an ω? ∈ {α, β}N and a time t0 such
that θ̂(t) ∈ Θω? for all t ≥ t0. From Corol. 7 candidate limit
points for θ̂(t) are

ȳω =

∑
i∈V yiω

−2
i∑

i∈V ω
−2
i

1 ω ∈ {α, β}N .
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From Corol. 5, the dynamics can be analyzed by studying
it in a neighborhood of the line Λ = {λ1|λ ∈ R}. Notice
that the line Λ crosses facets of regions almost surely. Given
ε > 0, define the following sets

Θε := {x ∈ RN : ||Ωx||2 < ε}, Θε
ω := Θε ∩Θω

Γ := {ω ∈ {α, β}N : Θω ∩ Λ 6= ∅}.
In the sequel, we will use the natural ordering on Γ. Two

elements ω, ω′ ∈ Γ are called consequent if
C1) ωi = ω′i for all i 6= i0 and ωi0 6= ω′i0 ;
C2) Θω ∩ Λ < Θω′ ∩ Λ.

Given two consequent ω, ω′ ∈ Γ, consider the following
subsets of RN :

Mε
ω := {x ∈ Θε

ω : x1+ Ωz ∈ Θε
ω, ∀z : ||z||2 < ε}

Lεω,ω′ := {x ∈ Θε :Mε
ω ∩ Λ < x̄ <Mε

ω′ ∩ Λ} .
We clearly have Θε =

⋃
ω,ω′∈ΓMε

ω ∪ Lεω,ω′ (see Fig. 5).

Λ

Θω Θω′

ε

Mε
ω

Lε
ω,ω′

Fig. 5. Given the couple (ω, ω′) the sets Lε
ω,ω′ and Mε

ω are visualized.

Notice that we can always choose ε0 > 0 such that

ȳω1, yi1 ∈
⋃
ω′∈Γ

Mε0
ω′ ∀ω ∈ Γ,∀i ∈ V

and, moreover, there exists c̄ > 0 such that

d

( ⋃
ω′∈Γ

∂ (Mε
ω′ ∩ Λ) , {ȳω, yi}

)
≥ c̄, ∀ε ≤ ε0 (9)

where ∂(s) indicates the endpoints of segment s and d is the
Euclidean distance between sets.

Fix now ε ≤ ε0 and choose tε such that θ̂(t) ∈ Θε for
all t ≥ tε (it exists by Corol. 5). From now on we consider
times t ≥ tε.

Lemma 8: If θ̂(t) ∈ Θω then there exist constants 0 <
c1 < c(t) < c2 such that

µ(t+1)

ν(t+1)
− µ(t)

ν(t)
= c(t)γ(t)

(
ȳω −

µ(t)

ν(t)

)
Proposition 9: If ȳω1 ∈ Θω , there exists t0 ≥ tε such

that
θ̂(t) ∈Mε

ω ⇒ θ̂(t+1) ∈Mε
ω ∀t ≥ t0 .

Proof: A straightforward application of Lemmas 4 and
8 allows to write

θ̂
(t+1)

= θ̂
(t)

+ c(t)γ(t)

(
ȳω − θ̂

(t)
)

+ r (10)

where r = o(γ(t)). If θ̂(t) ∈ Mε
ω , we have, by convexity,

that
z := θ̂

(t)

+ c(t)γ(t)

(
ȳω − θ̂

(t)
)
∈Mε

ω.

Moreover, because of (9) and the fact that c(t) is bounded
away from 0, there exists c′ > 0 such that d(z, ∂(Mε

ω ∩
Λ)) ≥ c′γ(t). Proof is then completed by selecting t0 such
that |r| < c′γ(t)/2.

Our next goal is to prove that if yω1 /∈ Mε
ω , then, at a

certain time t, θ̂(t) will definitely be outsideMε
ω . A technical

lemma based on convexity arguments is required [8].
Lemma 10: Suppose ω, ω′ ∈ Γ are consequent. Then

ȳω > Θω ∩ Λ ⇒ ȳω′ > Θω ∩ Λ
ȳω′ < Θω′ ∩ Λ ⇒ ȳω < Θω′ ∩ Λ.

Proposition 11: If yω1 /∈ Θω , then there exists t0 ∈ N
such that θ̂(t) /∈ Θε

ω ∀t > t0.
Proof: Suppose yω > Θω ∩ Λ (the case when is <

can be treated analogously). Let ω′ ∈ Γ such that ω, ω′ are
consequent. Lemma 10 implies that yω′ > Θω ∩ Λ. Put

A := {x ∈ Θε
ω ∪Θε

ω′ | x ≤ α := min{yω, yω′} − c/2}.
Choose t1 in such a way that c2(max{yi}−min{yi})γ(t) +
r < c/2 and |r| < c1cγ

(t)/4 for all t ≥ t1. It follows from
(10) that, if for some t ≥ t1 θ̂(t) ∈ A, then,

θ̂
(t+1)

≥ θ̂
(t)

+ c1c γ
(t)/4.

Owing to the non-summability of γ(t) it follows that if θ̂(t)

enters in Θε
ω for some t ≥ t1, then, in finite time it will

enter into A\Θε
ω and then it will finally exit A. In particular

there must exist t2 ≥ t1 such that θ̂
(t2)

> α. Now, by the

way t1 has been chosen, if θ̂
(t)

> α for t ≥ t1, necessarily

θ̂
(t+1)

> min{yω, yω′} − c. This implies that after time t2,
θ̂(t) will never enter Θε

ω again.

Vector θ̂(t) in principle might belong definitively to a bound-
ary region Lεω,ω′ , keeping on switching from Θω and Θω′ .
This is not the case and the following proposition holds [8].

Proposition 12: If P ∈ RN×N+ and admits positive
eigenvalues, then there exists s ∈ N such that θ̂(s) 6∈⋃
ω,ω′∈{α,β}N Lω,ω′ for all t > s.
3) Proof of Theorem 1: From Prop. 11 we have that if

yω1 /∈ Θω , then θ̂(t) will be definitely outside Θω . Recalling
that the (finite) union of the regions Θω , ω ∈ {α, β}N , is
a partition of RN , θ̂(t) definitely must belong to a region
Θω containing ȳω1 and Prop. 9 and 12 guarantees that T̂ (t)

stabilizes at ω. Finally, from Corol. 7 we get that θ̂(∞) =
limt→+∞ θ̂(t) = ȳω. This proves point 1).

For the second part, let ε > 0 and θ be such that ||θ̂(∞)−
θ|| < ε and T̂ (θ) defined in (4). Then we have

L(θ, T ) ≤ max
T∈{α,β}N

L(θ, T ) = L(θ, T̂ (θ)).

If ε is sufficiently small then L(θ, T̂ (θ)) = L(θ, T̂ (∞)) and

L(θ, T ) ≤ L(θ, T̂ (∞)) ≤ max
θ∈R

L(θ, T̂ (∞)) = L(θ̂(∞), T̂ (∞))

where the last equality follows from (3).
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