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Abstract— We propose a convex optimization procedure for
identification of nonlinear systems that exhibit stable limit
cycles. It extends the “robust identification error” framework in
which a convex upper bound on simulation error is optimized to
fit rational polynomial models with a strong stability guarantee.
In this work, we relax the stability constraint using the concepts
of transverse dynamics and orbital stability, thus allowing sys-
tems with autonomous oscillations to be identified. The resulting
optimization problem is convex. The method is illustrated by
identifying a high-fidelity model from experimental recordings
of a live rat hippocampal neuron in culture.

I. INTRODUCTION

Black-box identification of highly nonlinear systems poses
many challenges: flexibility of representation, efficient opti-
mization of parameters, model stability, and accurate long-
term simulation fits, to name but a few [1], [2]. It is
especially challenging when the system exhibits autonomous
oscillations: such a system is intrinsically nonlinear and lives
on the “edge of stability”, since periodic solutions must have
at least one critically-stable Lyapunov exponent [3].

Recently, a new framework has been introduced for
identifying a broad class of nonlinear systems along with
certificates of model stability and accuracy of long-term
predictions [4]. However this method necessarily fails if the
system has autonomous oscillations. In this paper we extend
the method of [4] to remove this restriction.

A. Identification of Oscillating Systems

In many scientific fields there is a need to capture oscilla-
tory behaviour in the form of a compact mathematical model
which can then be used for simulation, analysis, or control
design. When the data comes from experimental recordings,
this is known as system identification. It is also becoming
more frequent to perform model-order reduction via system
identification methods from solutions of a very high dimen-
sional simulation, e.g. computational fluid dynamics [5] or a
detailed electronic circuit model (see, e.g., [6], [7]).

In biology, systems that oscillate seem to be the rule
rather than the exception: heartbeats, firefly synchronization,
circadian rhythms, neuron spking, and many others [8],
[9]. Nonlinear oscillator models have been used in speech
analysis and synthesis, where stability of the identified model
has been acknowledged as a major issue [10].

To the authors’ knowledge, there is no generally applicable
methods of system identification — or model-order reduction
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— for oscillating systems. One family of approaches popular
for aerospace model reduction is harmonic balance (describ-
ing function) methods, in which the period of oscillation
is assumed known and the model is reduced consider the
problem in the fourier-series domain [11], [12], [5]. A similar
approach has been taken to analyse phase-locked loops and
oscillators, in which a local phase-offset system is of primary
interest [7]. Neither of these approaches extend easily to
situations in which the frequency of oscillation is input-
dependent. Other papers assume a known decomposition into
a stable linear part and a static nonlinear map, and consider
it a problem of closed-loop linear system identification
[13]. Applications have included identification of combus-
tion instabilities [14], [15]. A mixed empirical/physics-based
approach has been used to produce low-order models of
periodic vortex shedding in fluid flows [16].

B. Stability of Oscillations

No linear system can produce an asymptotically stable
limit cycle. Identifying nonlinear models from data is a dif-
ficult problem, in particular because of the complex relation-
ship between system parameters and long term behaviour of
solutions. A recent approach, which this paper builds upon,
works via convex optimization of a robust identification
error which imposes an asymptotic stability constraint on
the identified model [4].

However, if the system has a periodic solution, not driven
by a periodic forcing term then this approach must fail:
the stability constraint is too strong. To see this, suppose
a system

= f(z)eR"

has a non-trivial T-periodic solution z*(¢), then x*(t +
7),7 € (0,T) is also a solution which will never converge
to z*(t).

The natural notion of stability for oscillating systems is
orbital stability. A T-periodic solution z* is orbitally stable
if nearby initial conditions coverge to the solution sef in state
space X = {z(7) : 7 € [0,T]} and not necessarily to the
particular time solution z*(¢). This is a weaker condition
than standard (Lyapunov) asymptotic stability.

Orbital stability can be studied via the introduction of so-
called transverse coordinates, also referred to as the moving
Poincaré section [3], [17]. The basic idea is to contruct a new
coordinate system at each point of the solution, decomposing
the state into a scalar component tangential to the solution
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curve, and a component of dimension n—1 transversal (often
orthogonal) to the solution curve.

It is known that periodic solution of a nonlinear differential
equation is orbitally stable if and only the dynamics in
the transverse coordinates are stable [3, Chap. VI]. This
framework has previously been used to design stabilizing
controllers and analyze regions of attraction for oscillating
systems [18], [19], [20], [21], [22]. It has also been used to
analyze the convergence of prediction-error methods when
identifying a linear/static-nonlinearity feedback interconnec-
tion that can oscillate [13]. In this chapter we extended the
robust identification error method of [4] using a storage
function in the transverse coordinates so as to robustly
identify a broad class of nonlinear systems that may (or may
not) admit autonomous oscillations.

II. PROBLEM STATEMENT

Given a data record! of states, inputs, and outputs
{&(t),a(t),y(t)},t € [0,T], the general problem is to
construct a compact model in the form of a differential
equation that, when simulated, faithfully reproduces the data.
To pose the problem exactly we must specify both a model
class to search over, and an optimization objective.

A. Model Class

The model class we will search over consists of
continuous-time state-space models with state z € R"™, input
u € R™, output y € RP, and dynamics defined in the
following implicit form:

d
—e(x) = 1
y = glz,u) 2
where e : R* — R, f : R" x R — R", g : R x

R™ — RP are smooth functions. The Jacobians with respect
to « of e(z), f(z,u), and g(x,u) are denoted E(x) =
a%e(x), F(x,u) = a%f(x, u), G(z,u) = %g(m,u). We
will enforce the constraint that F(z) be nonsingular, so the
above implicit model can equivalently be written in explicit
form:

&= E(x) ' f(x,u).

Remark 1: To implement the methods described in this
paper, e(x), f(x,u), and g(z, u) should come from a convex
class of vector-valued functions for which we can efficiently
check positivity. In practice, we use matrices of polynomials
or trigonometric polynomials, so as to make use of sum-of-
squares programming [23], [24].

B. Optimization Objective

The general problem we consider is to minimize, over
choice of e, f, g, the value of the simulation error:

T
e=A|mw—mm%t

'Here we assume that the data record consists of sufficiently smooth
continuous-time signals on an interval, though in practice it will consist of
a finite sequence of data points.

where y(¢) is the solution of (1), (2) with z(0) = Z(0). One
may also wish to ensure that the dynamical system defined by
(1), (2) is well-posed and has some sort of stability property.
Note that we do not assume that the system from which data
is recorded is in the model class.

Direct optimization of simulation error is not usually
tractable: the relationship between system parameters and
model simulation is highly nonlinear, and for black-box mod-
els we typically don’t have good initial parameter guesses.
We make the problem tractable (a convex program) through
a series of approximations and relaxations.

III. NONLINEAR SYSTEM IDENTIFICATION VIA ROBUST
IDENTIFICATION ERROR

In this section we briefly present some results from [4]
and explain why they cannot be directly applied to systems
with autonomous oscillations. The basic idea is to search
jointly for system equations as well as a storage function
with output reproduction error as a supply rate. Standard
dissipation inequality arguments [25] then provide a bound
on long-term simulation error.

A. Linearized Simulation Error

Suppose we have a model of the form (1), (2) and a
data record {Z(t),u(t),g(t)},t € [0,T]. We introduce the
linearized simulation error as a local measure of the model’s
divergence from the data.

First, we define the equation error signals associated with
(1), (2) and the data:

ex(t) = BE(&()(t) — f(2(t), alt)), 3)
e(t) = §(t) —g(@(t),u(d))- (4)

Now, consider the following family of systems parametrized
by 6 € [0,1]:

E(Ig)i’g
Yo =

f(zo,u) + fo, (5)
9(zo,u) + go- (6)
Let (24, yp) be the solution of the above system with fp =
(1—6)e, and gy = (1 — 0)e,. Note that we have (z1,y1) =
(x,y), i.e. the results of simulation, and (x,y0) = (Z,7) i.e.

the observed data. We can consider the following linearized
simulation error about the recorded trajectory:

1T o2
e=limz [ o -0k

as local approximation of the true simulation error €.

B. Local Robust Identification Error

Note that £ can alternately be represented as

T
5:/|mﬂmmmA+%m%t
0

where

A(t) = lim olzo(t) ~ #(0)] )
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which obeys the dynamics
d .
= F(z(t), a(t)) At) + € (1)

—FE(z(t)A(t
 BE(0)AW
That is, A(¢) is an estimate of the deviation of the model
simulation z(¢) from the recorded data trajectory Z(t).

It was shown in [4] that

T
5§/)%@ﬁ (8)
0
for any Q = Q' > 0, where?
Eq(t) = sup {2A'E'Q(FA +¢€,) + |GA + ¢}, (9)
A€R"

The systems theory interpretation of (9) is that the first
term in the supremum is the derivative of a positive-definite
storage function with respect to linearized simulation error,
and the second term is the output reproduction error. The
storage function is an upper bound for “simulation-error
to go” due to accumulated system deviations, and thus
Eg(t) can be considered to be the worst-case increment to
present and future output reproduction error due to the model
mismatch at the current data point €.

The bound (8) suggests searching over functions e, f, g
and a matrix Q = Q' > 0 so as to minimize the right-
hand-side of (8). This optimization is still non-convex, but a
convex relaxation is given in [4] (we use a similar relaxation
in Section V of the present paper).

Each of the supremums over A in (9) are finite if and only
if the matrices

R=EQF+FQE+G'G

for each data point is negative semidefinite. If this property
holds for all z,u, then it has been proven that the system
is globally incrementally output stable. Roughly speaking:
A’E'QFEA is a contraction metric for the identified system
[26] and A'(E'QF + F'QE)A is its derivative. A formal
proof of stability is given in [4].

For the purposes of the present paper, it is sufficient to note
that enforcing global incremental stability is foo strong to
allow identification of systems exhibiting autonomous oscil-
lations, since such systems cannot satisfy this property. The
main purpose of this paper is to overcome this limitation via
a reformulation of the local RIE in the transverse dynamics.

IV. TRANSVERSE ROBUST IDENTIFICATION ERROR

In oscillating systems, perturbations in phase cannot be
stable and will therefore accumulate over time. The natural
form of stability is orbital stability, which can be defined
as stability to a solution set in state space, rather than a
particular time solution. A standard framework for anlaysis
of orbital stability is via transverse coordinates (see [3],[17]).

Such an analysis begins with knowledge of the vector
field and a (not necessarily periodic) solution z*(t¢). This

2Here, and frequently throughout the paper, we drop the arguments on
E(z(t)), F(&(t),a(t)), G(Z(t), u(t)), ex(t), and €y (t) for the sake of
compactness of notation. It should be understood that these are always
functions of time and the data.

curve is used to construct a time-varying change of co-
ordinates locally about z*(¢). This change of coordinates
transforms solutions nearby z*(t) into a scalar component
describing perturbations in the 4*(t) direction (i.e. “phase”
perturbations) and perturbations which are transversal (e.g.
in directions orthogonal to &*(t)).

In this work we consider a simplified situation wherein
we take the data Z(t) in place of z*(t). Define the following
projection operators:

r(t) o= 22
|z(t)]?
i.e. m(t) projects on to the one-dimeonsional subspace par-
allel to Z(t) and II(t) projects on to the (n — 1)-dimensional

subspace orthogonal to this.

We examine a relaxed variation on the local RIE ((9)
defined by:

E5t) =

I(¢t) :== I — w(t), (10)

sup {2AI7 E'Q((F + EINIT"A + ¢,)
AcRn—1

+|GII"A + ¢, |} (11)

where TI7(t) € R™*("~1) is a matrix with orthonormal rows
spanning the subspace orthogonal to Z and @ a symmetric
positive-definite n X n matrix. It is a “reduced” form of the
rank n — 1 matrix II(¢) containing only independent rows.

The motivating idea is to minimize deviations of the model
from the recorded data in phase space, i.e. transversal to
the curve z, allowing for time reparametrizations due to
persistent perturbations in phase. Considering all deviations
transversal to Z(¢), the term gé‘ (t) is a bound on the
increment to present and future output reproduction error
induced by the modelling error €,. Precise statements about
simulation-error bounds and model stability will appear in a
future publication.

V. A CoNVEX UPPER BOUND

We suggest minimizing:

T
/‘%@ﬁ
0

over choices of e, f,g and @ as an effective procedure
for system identification. However, this is still a nonconvex
optimization. In this section we propose a convex upper
bound for which one can efficiently find the global minimum
via semidefinite programming.

The basic idea is to decompose the each non-convex term
into the sum of a convex and a concave part, and upper-
bound the concave part with a linear relaxation.

Theorem 1: Define

AY = E@I+IDIA + F(&a)T"A + ¢,
A; = E@I-IDIA - F(&a)I"A — ¢,
Ay, = GII'A +¢,.
Then EQ é ) where
{ A+|Q+|HTA‘2 1 (HTA)/Ae‘HAyF}
AER" 1
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which is convex in e, f, g, and Q7! > 0. |

The proof is omitted to meet space restrictions, but a similar
statement was proved in [4, Section V].
To perform system identification via the optimization

T
/ éé‘ (t)dt — min
0

over choices of e, f, g, and Q~! > 0 subject to the constraint
E(z)' + E(x) > I for all .

In practice, we will have a record of the true system at a
finite number of times t;,¢ = 1,2, ..., N, and as a surrogate
for the above we minimize the finite sum of the TRIE terms:

N
Z 55‘ (t;) — min.
i=1

VI. IMPLEMENTATION

We now discuss practical considerations for data prepara-
tion and minimization of the upper bounds using semidefinite
programming.

A. Extracting States from Input/Output Data

The RIE formulation assumes access to approximate state
observations, Z(t). In most cases of interest, the full state of
the system is not directly measurable and extraction of a state
vector is a challenging problem in its own right. In practice,
our solutions have been motivated by the assumption that
future output can be approximated as a function of recent
input-output history and future input. A common method
for choosing a set of time-delays is to optimize mutual
information [27]. To summarize recent history, we have had
success applying linear filter banks, as is common in linear
identification (e.g. Laguerre filters [28]).

Projection-based methods such as subspace identification
[29] and proper-orthogonal-decomposition [30] are common
methods for linear system identification and model reduction.
However, even in fairly benign cases one expects the input-
output histories to live near a nonlinear submanifold of the
space of possible histories. Connections between nonlinear
dimensionality reduction and system identification have been
explored in some recent papers, e.g. [31] and [32].

For experimental recordings, derivatives can be estimated
via differentiation filters or noncausal smoothing before
numerical differentiation. Approximating additional states
through filter banks allows the rates of these variables to
be calculated analytically.

B. Semidefinite/Sum-of-Squares Programming Formulation

For each data point, the upper bound on the local TRIE is
the supremum of a concave quadratic form in A. So long as
e, f and g are chosen to be linear in the decision variables,
this upper bound can be minimized by introducing an LMI
for each data-point: we introduce a slack variable s; for each
data-point:

Si > fjé (i),

which can be transformed via Schur complement into an
LMI constraint. Then we optimize for ) . s; — min. We

200 400 600 800 1000

Fig. 1. The neuron in culture and the glass micropipette electrode used to
interface to it. Imaging: phase contrast image at 20X magnification on an
inverted Olympus IX-71 microscope. Scale: 100 pixels (marked on axes) =
43 microns.

parametrize e, f, and g as polynomials, so that a sum-of-
squares relaxation [23] is used to enforce the well-posedness
constraint E(z) + E(x)' > I VYx € R™.

Note that the robust identification criterion typically has
a relatively small number of decision variables, dependent
on the order and degrees of the system model. However, to
transform the problem into a standard semidefinite pogram,
a very large number of slack variables, equality constraints,
and LMI constraints are introduced, growing with the number
of data points. The main reason for doing this is to make use
of existing and well-tested semidefinite solvers, however it is
likely that specialized solvers will be more computationally
efficient. This will be a topic of future work.

VII. EXPERIMENTAL RESULTS ON LIVE NEURONS

We now demonstrate the method by identifying the
membrane-potential dynamics of a live, in-vitro hippocampal
neuron. A micropipette is used to establish an interface with
the cell such that current can be injected into the soma,
and the membrane potential response can be recorded. A
microscopic photograph of the neuron and patch is shown in
Figure 1. The preparation of the culture is described in the
appendix.

The membrane dynamics of a single neuron are highly
complex: at low currents the system responds like a low-
order passive linear system. However, when certain ion
channels are activated rapid spiking can occur. After spiking
there is a refractory period in which sensitivity is reduced,
and with sufficient current input spiking can repeat at an
input-dependent frequency.

There is a spectrum of models of neuron dynamics,
ranging from simple “integrate and fire” models to highly
complex biophysical models of ion channels and conduc-
tances [33]. Threshold based models generally have a very
small number of parameters, but do not provide high fi-
delity reproduction of the membrane potential dynamics.
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By contrast biophysical models can be very accurate, but
are highly nonlinear and are very difficult to identify [34]
— they can have many locally optimal fits in disconnected
regions of parameter space [35]. In this section we use the
proposed method to identify a black-box nonlinear model
with comparatively few states (three) which reproduces the
experimentally observed spiking and subthreshold behavior
with very high fidelity.

Three increasing step currents are applied to the neuron
resulting in increasing firing rate and a characteristic change
in the spike amplitude and shape.

As discussed in Section VI, we must find a good proxy for
the internal state of the system. Here we used two Laguerre
filters with identical pole locations to summarize the recent
history voltage history.

Figure 2 presents a comparison of fit performance using
three methods. The first is equation error minimization, i.e.
simply optimizing

S IB@(6))3(E) ~ £(@(6), a(t:) - min

subject to the well-posedness constraint E(z) + E(z) > T
but without constraints on stability or long-term simulation
error (this is similar in principle to NARX and prediction
error methods). The second method is the comparison is
the original RIE minimization from [4], and the third is the
proposed Transverse RIE method.

We see that while equation error minimization (top) leads
to initially good performance, the model goes unstable quite
quickly. Fitting with the RIE (middle) leads to the anticipated
overly stable model dynamics (see Section III). The final plot
presents the Transverse RIE identification, which matches the
experimentally observed spike patterns very well.

We have also had success identifying behavior which
covers both the subthreshold and spiking regime of a neuron.
The applied stimulus was a variety of multisine signals.
Figure 3 presents validation of a Transverse RIE fit on held-
out data. The lower plot is the multisine input in pico-
Amperes. The upper plot presents the original data and fit.
Both the subthreshold regime and spikes are generally well
reproduced.

VIII. CONCLUSIONS

This paper has introduced a new technique for identifica-
tion of nonlinear systems which may produce autonomous
oscillations, i.e. system oscillations which are produced
internally by the dynamics rather than as a response to a
periodic input.

The proposed method worked well on the challenging
problem of accurately modeling the membrane dynamics of
a live neuron from experimental current-voltage recordings.
The input-dependent absence or presence, and frequency of
repitition, of spiking events was well captured in the model.

Future work will include theoretical investigations into
the properties of identified models, further software devel-
opment, and testing on a wider range of systems exhibiting
autonomous oscillations.

Data
Fit

Membrane Potential (mv)

L L L L
2.64 2.66 2.68 272 274 2.76

Data
Fit

Membrane Potential (mV)

2.64 2.66 2.68 2.7 272 274 276

Validation Data Set
T

Membrane Potential (mv)

L L L L L
2.64 2.66 2.68 27 272 274 276

Fig. 2. A neuron was subjected to increasing step-currents, and spiked
with increasing frequency. Long-term simulation of an equation error fit
(top) is unstable. RIE (middle) minimization provides an overly stable fit.
The proposed TRIE method (bottom) reproduces the spikes accurately.

APPENDIX

A. Live Neuron Experimental Procedure

Primary rat hippocampal cultures were prepared from P1
rat pups, in accordance with the MIT Committee on Animal
Care policies for the humane treatment of animals. Dissec-
tion and dissociation of rat hippocampi were performed in a
similar fashion to [36]. Dissociated neurons were plated at a
density of 200K cells/mL on 12 mm round glass coverslips
coated with 0.5 mg/mL rat tail collagen I (BD Biosciences)
and 4 pg/mL poly-D-lysine (Sigma) in 24-well plates. After
2 days, 20 uM Ara-C (Sigma) was added to prevent further
growth of glia.

Cultures were used for patch clamp recording after 10 days
in vitro. Patch recording solutions were previously described
in [37]. Glass pipette electrode resistance ranged from 2-
4 MS). Recordings were established by forming a G2 seal
between the tip of the pipette and the neuron membrane.
Perforation of the neuron membrane by amphotericin-B (300
pg/mL) typically occurred within 5 minutes, with resulting
access resistance in the range of 10-20 M). Recordings with
leak currents smaller than -100 pA were selected for analysis.
Leak current was measured as the current required to voltage
clamp the neuron at -70 mV. Synaptic activity was blocked
with the addition of 10 uM CNQX, 100 uM APV, and 10 uM
bicuculline to the bath saline. Holding current was applied
as necessary to compensate for leak current.
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Injected Current (pA) Membrane Potential (mV)

Fig.

Spiking and Subthreshold Behaviour

_1 00 1 1 1 1 1
1.35 1.4 1.45 1.5 1.55 1.6 1.65
200 1n*
0
_200 1 1 1 1 1
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3. Response of real neuron and TRIE model simulation, showing both

stable sub-threshold behavior and spiking.
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