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Abstract— This paper studies the phase transition in a
heterogeneous mean-field oscillator game model using methods
from bifurcation theory. In our earlier paper [1], we had
obtained a coupled PDE model using mean-field approximation
and described linear analysis of the PDEs that suggested
possibility of a Hamiltonian Hopf bifurcation. In this paper,
we simplify the analysis somewhat by relating the solutions
of the PDE model to the solutions of a certain nonlinear
eigenvalue problem. Both analysis and computations are much
easier for the nonlinear eigenvalue problem. Apart from the
bifurcation analysis that shows existence of a phase transition,
we also describe a Lyapunov-Schmidt perturbation method to
obtain asymptotic formulae for the small amplitude bifurcated
solutions. For comparison, we also depict numerical solutions
that are obtained using the continuation software AUTO.

I. INTRODUCTION

The dynamics of a large population of coupled hetero-
geneous nonlinear systems is of interest in a number of
applications, including neuroscience, communication net-
works, power systems, and economic markets. Game theory
provides a powerful set of tools for analysis and design
of strategic behavior in controlled multi-agent systems. In
economics, for example, game-theoretic techniques provide
a foundation for analyzing the behavior of rational agents in
markets.

In practice, a fundamental problem is that controlled
multi-agent systems can exhibit phase transitions with often
undesirable outcomes. In economics, an example of this
is the so-called rational irrationality: “behavior that, on
the individual level, is perfectly reasonable but that, when
aggregated in the marketplace, produces calamity [2]”.

A prototypical example of a multi-agent heterogeneous
nonlinear system that exhibits phase transition is the cou-
pled oscillator model of Kuramoto [3]. Motivated by the
Kuramoto model, we introduced a mean-field oscillator game
model in our earlier paper [1]. The model comprises of
a large number (N) of oscillators that are coupled via
performance objectives in a non-cooperative game.

In general, establishing the existence and uniqueness of
Nash equilibrium for large N is an intractable problem. The
key idea for complexity mitigation is to use the Nash Cer-
tainty Equivalence (NCE) principle introduced in the seminal
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work of Huang et. al. [4], wherein the ith oscillator optimizes
by using local information consisting of (i) its own state
(θi) and (ii) the mass-influence of the population. The mass
influence arises as a result of mean-field approximation: In
the limit of large population size (as N→∞), the population
affects the ith oscillator in a nearly deterministic fashion.
The NCE based analysis results in a coupled PDE model
which comprises of a backward PDE, the Hamilton-Jacobi-
Bellman (HJB) equation, coupled with a forward PDE, the
Fokker-Planck-Kolmogorov (FPK) equation.

In this paper, we use the coupled PDE model for analysis
of phase transition in a heterogeneous mean-field oscillator
game. The phase transition is important in a number of
applications [5]. For example, in thalamocortical circuits in
the brain, transition to the synchronized state is associated
with diseased brain states such as epilepsy [6].

The phase transition is studied by using methods from
bifurcation theory. In our earlier paper [1], we had described
linear analysis of the coupled PDE model that suggested
possibility of a Hamiltonian Hopf bifurcation. In this paper,
we simplify the analysis somewhat by relating the solutions
of the PDE model to the solutions of a certain nonlinear
eigenvalue problem. Both analysis and computations are
much easier for the nonlinear eigenvalue problem. In par-
ticular, the bifurcation result reduces to a straightforward
application of the standard steady state bifurcation theorem.

Apart from the bifurcation analysis that shows existence
of a phase transition, we also describe a Lyapunov-Schmidt
perturbation method to obtain asymptotic formulae for the
small amplitude bifurcated solutions. For comparison, we ob-
tain numerical solutions of the nonlinear eigenvalue problem.
The numerical solutions are obtained using the continuation
software AUTO.

The remainder of the paper is organized as follows:
In Sec. II, we briefly introduce the mean-field oscillator game
problem and the coupled PDE model. The solutions of the
PDE model are related to a nonlinear eigenvalue problem.
In Sec. III, we describe the bifurcation and perturbation
analyses of the nonlinear eigenvalue problem via Lyapunov-
schmidt reduction. Finally, we discuss the numerical results
obtained by using AUTO in Sec. IV.

II. THE MEAN-FIELD OSCILLATOR GAME

We consider a set of N oscillators, denoted by N :=
{1, . . . ,N}. The dynamics for the ith oscillator is described
by the stochastic differential equation (SDE):

dθi(t) = (ωi +ui(t))dt +σ dξi(t), (1)
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where θi(t)∈ [0,2π] is the phase of the ith oscillator at time t,
ui(t) is the control input, and {ξi(t), i∈N } are mutually in-
dependent standard Wiener processes. The frequencies {ωi}
are chosen independently according to a fixed distribution
with density g, which is supported on an interval of the form
Ω = [1− γ,1+ γ] for some γ < 1. In this paper we consider
the uniform distribution, i.e., g(ω) = 1

2γ
.

We consider an N−player noncooperative game, denoted
by GN , where we assume that the ith oscillator minimizes its
own performance objective, given the decisions of (compet-
ing) oscillators:

η
(POP)
i (ui;u−i) = lim

T→∞

1
T

∫ T

0
[c(θi;θ−i)+ 1

2 Ru2
i ]ds, (2)

u−i = (u j) j 6=i, R > 0 denotes the control penalty, θ−i =
(θ j) j 6=i, c(·) is the cost function of the following separable
form:

c(θi;θ−i) :=
1
N ∑

j 6=i
c•(θi,θ j(t)), (3)

and the following assumption is made for c•:
Assumption (A1) The function c• introduced in (3) is as-

sumed to be a bounded function that is
1) spatially invariant, i.e., c•(ϑ ,θ) = c•(ϑ −θ),
2) 2π-periodic, i.e., c•(θ) = c•(θ +2π),
3) non-negative, i.e., c•(θ)≥ 0,
4) even, i.e., c•(θ) = c•(−θ).

We write the Fourier series of the cost function as

c•(θ) = C•0 +
∞

∑
k=1

C•k cos(kθ).

As an example, the function

c•(θ ,ϑ) =
1
2

sin2
(

θ −ϑ

2

)
(4)

satisfies the assumption (A1) with C•0 = 1
4 , C•1 = − 1

4 and
C•k = 0 for k = 2,3, . . ..

The form of the function c and the value of R are assumed
to be common to the entire population. A Nash equilibrium in
control policies is given by {u∗i }i∈N such that u∗i minimizes
η

(POP)
i (ui;u∗−i) for i = 1, . . . ,N.
Our interest in this paper is in the large-population limit,

where N→∞. We denote the limiting dynamic game as G∞.
As shown in [1], a mean-field approximation leads to the
following PDE-based characterization of the solutions

∂th+ω∂θ h =
1

2R
(∂θ h)2− c̄(θ , t)+η

∗− σ2

2
∂

2
θθ h, (5)

∂t p+ω∂θ p =
1
R

∂θ [p(∂θ h)]+
σ2

2
∂

2
θθ p, (6)

c̄(θ , t) =
∫

Ω

∫ 2π

0
c•(θ ,ϑ)p(ϑ , t,ω)g(ω)dϑ dω, (7)

where h(θ , t,ω) is the relative value function, p(θ , t,ω) is
intended to approximate probability density of the random
variable θi(t), evolving according to the SDE (1) with the
optimal control function

u(θ , t;ω) =− 1
R

∂θ h(θ , t;ω). (8)

In this paper, we restrict our attention to solutions of the
following type:

p(θ , t;ω) = p̃(θ̃ ;ω),

h(θ , t;ω) = h̃(θ̃ ;ω),

u(θ , t;ω) = ũ(θ̃ ;ω),

(9)

where θ̃ = θ − at, a denotes the wave speed, and p̃, h̃ are
2π-periodic functions with respect to θ̃ . The form (9) leads
to the following two types of solution:

1) If a = 0, the solution is referred to as the equilibrium
solution in which the cost function, the relative value
function, and the density are independent of time.

2) If a > 0, the solution is referred to as the periodic
solution in which p(θ , t;ω), h(θ , t;ω), and c̄(θ , t) are
periodic in time, with period τ = 2π/a > 0.

The equilibrium and periodic solutions are considered for the
following reasons:

1) These solutions define approximate Nash equilibrium
of the game with a finite large number of oscilla-
tors [1].

2) For certain values of the parameter R, these solutions
represent the steady-state solutions of the PDE model.

3) These solutions potentially represent the incoherence
and synchrony solutions described in the coupled os-
cillators literature [5], [7].

For solutions of type (9),

∂th+ω∂θ h = (ω−a)∂
θ̃

h̃,

∂t p+ω∂θ p = (ω−a)∂
θ̃

p̃.

Using FPK equation (6), we obtain a formula for optimal
control in terms of density function p̃.

Lemma 1: Suppose (p, h) is a solution of the coupled
PDE model (5) - (7) of the type (9). Then the optimal control
function (see (8)) is given by

ũ(θ̃ ;ω) =
σ2

2
∂

θ̃
ln p̃+(a−ω)

(
1− 2π

p̃
∫ 2π

0 (p̃)−1 dθ̃

)
, (10)

where θ̃ = θ −at.
Proof: Using the ansatz (9), Eqn. (6) can be written as

(ω−a)∂
θ̃

p̃ =−∂
θ̃
[p̃ũ]+

σ2

2
∂

2
θ̃ θ̃

p̃.

Integrating both sides of the equation with respect to θ̃ , we
have

ũ =
σ2

2
∂

θ̃
p̃

p̃
+(a−ω)+

K(ω)
p̃

, (11)

where K denotes the constant of integration. Integrating both
sides of the resulting equation (11) from 0 to 2π once more,
we obtain∫ 2π

0
ũdθ̃ =

∫ 2π

0

σ2

2
∂

θ̃
ln p̃dθ̃ +K

∫ 2π

0

1
p̃

dθ̃ +(a−ω)2π.

Using the fact that h̃ and p̃ are 2π-periodic in θ̃ , we have

0 = 0+K
∫ 2π

0

1
p̃

dθ̃ +(a−ω)2π,
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which implies

K(ω) =
(ω−a)2π∫ 2π

0 (p̃)−1 dθ̃
. (12)

We obtain the result (10) by substituting (12) back in (11).

Since p̃ is non-negative valued, we write p̃(θ ;ω) =
v2(θ ,ω); for notational ease, we drop “∼” in the remainder
of this paper. Using Eqn. (10) and Eqn. (8), we can simplify
the coupled PDE model (5)-(7) to a nonlinear eigenvalue
problem:

G(v,η ,R,a) := ∂
2
θθ v+

2
Rσ4 (η− c̄)v

− (ω−a)2

σ4

(
1−
(

2π

v2
∫

v−2

)2
)

v = 0, (13)

B(v) :=
∫ 2π

0
v2(θ ,ω)dθ −1 = 0, (14)

where c̄ is defined as

c̄(θ) =
∫

Ω

∫ 2π

0
c•(θ ,ϑ)v2(ϑ ,ω)g(ω)dϑ dω. (15)

By solving the eigenvalue problem (13)-(15), one can
obtain solution of coupled PDE model (5)-(7). The result
is summarized in the following without proof.

Lemma 2: Suppose (h, p,η∗) is a traveling wave solution
of the form (9) of the coupled PDE model (5)-(7) with
wave-speed ‘a’. Let v =

√
p. Then (v,η∗) is the solution

of the nonlinear eigenvalue problem (13)-(15). Conversely,
suppose (v,η∗) is the solution of the nonlinear eigenvalue
problem (13)-(15). Let

p(θ , t,ω) = v2(θ −at,ω),

and h satisfy

∂θ h =−Rσ2

2
∂θ ln p−R(a−ω)

(
1− 2π

p
∫

p−1

)
.

Then (h, p,η∗) is a solution to the PDEs (5)-(7).
In the remainder of the paper, we consider solutions of

the eigenvalue problem (13)-(15). The solutions of coupled
PDEs (5)-(7) are obtained by using Lemma 2.

III. BIFURCATION ANALYSIS

In this section, we describe bifurcation analysis for the
nonlinear eigenvalue problem (13)-(15).

We denote T := [0,2π], X := C2
2π

(T×Ω,R), the space of
twice continuously differentiable real-valued periodic func-
tions on T×Ω, Y := C0

2π
(T×Ω,R) and E as the space

of functions η : Ω → R+. The nonlinear maps (13)-(14),
G : X×E×R2

+→Y and B : X→R. For any fixed R∈R+, we
are interested in obtaining solutions (v,η ,a) ∈ X×E×R+

such that G(v,η ,R,a) = 0 and B(v) = 0.
We begin by noting that there is a trivial solution given

by

v(θ ,ω) = v0 :=
1√
2π

,

η(ω) = η0 := C•0 =
1

2π

∫ 2π

0
c•(θ)dθ .

(16)

About the trivial solution, the linearization of G in (13) is
given by

L (R,a)ṽ := ∂
2
θθ ṽ− 2

σ4R
1
π

∫
T

∫
Ω

c•(θ ,ϑ)ṽ(θ ,ω)g(ω)dω dθ

− 4(ω−a)2

σ4

(
ṽ− v2

0

∫
T

ṽ
)

, (17)

with ṽ ∈ X. The spectrum of the linear operator L (R,a) :
X→ Y is summarized in the following:

Theorem 3: For the linear operator L (R,a) : X→ Y,
(i) The continuous spectrum equals the union of sets
{S(k)

c }k=1,2,...

S(k)
c := {λ ∈ R|λ =−k2− 4

σ4 (ω−a)2 for all ω ∈Ω}.

(ii) The discrete spectrum equals the union of sets
{S(k)

d }k=1,2,.... We have the following two cases:

1) If C•k = 0, the set S(k)
d is empty and

2) if C•k 6= 0,

S(k)
d :=

{
λ ∈ C

∣∣∣C•k
2R

∫
Ω

g(ω)

(ω−a)2 + σ4

4 (k2 +λ )
dω =−1

}
.

The eigenspace for the kth eigenvalue, λk ∈ S(k)
d , is given by

span{cos(kθ),sin(kθ)}.
As the parameter R varies, the potential bifurcation points

are where a discrete eigenvalue crosses zero. The kth such
bifurcation point is given by

R =−
C•k
2

∫
Ω

g(ω)

(ω−a)2 + σ4

4 k2
dω,

provided C•k < 0. In the following, we consider the first
bifurcation point where k = 1 (we assume C•1 < 0). The
analysis for other bifurcation points is similar.

The first bifurcation point is given by,

r0(a) :=−C•1
2

∫
Ω

g(ω)
ρ2(ω,a)

dω, (18)

where ρ(ω,a) :=
√

(ω−a)2 +σ4/4. Note that r0(a)
achieves its maximum value at a = a0 := 1. Fig. 1 depicts the
plot of r0(a) in the neighborhood of a0 for c• = 1

2 sin2( θ−ϑ

2 ).
We denote

Rc := r0(a0)

and have the following eigen-speed property at (Rc,a0). The
proof appears in Appendix V-A:

Lemma 4: Suppose λ (R,a)∈ S(1)
d is the 1st discrete eigen-

value of linear operator L (R,a). Then

∂λ

∂R
(Rc,a0) =− 32

σ4K(a0)
< 0, (19)

where

K(a) :=
∫

Ω

1
ρ4(ω,a)

g(ω)dω. (20)

As R decreases from a large value, a (double) real-valued
eigenvalue, λ1, crosses imaginary axis with non-zero speed.
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Fig. 1. The plot of r0 as a function of a when C•1 =− 1
4 .

One would thus expect existence of a bifurcated solution
branch [8]. One problem, however, is that the eigenvalue is
double. This is dealt with by using the symmetry properties.
In particular, because of Assumption (A1), G is equivariant
with respect to the spatial symmetry group O(2):

SO(2) : G(v(θ +ϑ),η ,R,a) = G(v,η ,R,a)(θ +ϑ), (21)

Z2 : G(v(−θ),η ,R,a) = G(v,η ,R,a)(−θ). (22)

These two properties (21)-(22) allow us to look for solutions
with respect to even (or odd) functions v(θ ,ω). In particular,
denote Xe := {v ∈X : v(θ ,ω) = v(−θ ,ω)} and similarly for
Ye. Then we have

G : Xe→ Ye, and B : Xe→ R. (23)

Henceforth, we consider these restricted map and seek solu-
tions of

G(v,η ,R,a) = 0 and B(v) = 0

for (v,η ,R,a) ∈ Xe × E× R2
+ near (v0,η0,Rc,a0). Using

property (21), a more general family of solutions is obtained
by applying an arbitrary phase shift ϑ ∈R(mod 2π) to these
even solutions.

A. The Lyapunov-Schmidt reduction

We define the inner product for any v,w ∈ Ye as

〈v,w〉 :=
1
π

∫
T

∫
Ω

v(θ ,ω)w(θ ,ω)g(ω)dω dθ . (24)

One can verify that the operator L (R,a) is self-adjoint with
respect to this inner product because the convolution kernel
c• is spatially invariant and even. Define the function

φ(θ ,ω,a) :=
1√
K(a)

1
ρ2(ω,a)

cos(θ), (25)

where ρ(ω,a) is defined in (18) and K(a) is defined in (20).
Then, L (r0,a)φ = 0 and 〈φ ,φ〉= 1.

We denote

Lo := L (Rc,a0) and ζ = φ(θ ,ω,a0).

Then Loζ = 0. So the kernel of the operator Lo is given by

ker(Lo) = {v : v = xζ ,x ∈ R}. (26)

Because Lo is self-adjoint, the range of Lo is given by

R(Lo) = {y ∈ Ye : 〈y,ζ 〉= 0}. (27)

We consider the direct-sum decomposition:

Xe = ker(Lo)⊕X0,

Ye = R(Lo)⊕ker(Lo),

where X0 := {v ∈ Xe : 〈v,ζ 〉 = 0}. These decompositions
define projection P : Ye→ ker(Lo) through

Py := 〈ζ ,y〉ζ , ∀y ∈ Ye.

We rewrite Eqn. (13) as

PG(v0 + xζ +w,η ,R,a) = 0, (28)
(I−P)G(v0 + xζ +w,η ,R,a) = 0, (29)

where w ∈X0. The range of I−P equals R(Lo). Now, Lo :
X0→R(Lo) is invertible and by the implicit function theo-
rem, Eqn. (29) can be solved uniquely for w = ŵ(x,η ,R,a)
in some neighborhood of (v,η ,R,a) = (v0,η0,Rc,a0)⊂Xe×
E×R2

+. Because (v,η) = (v0,η0) solves Eqn. (29), it is
clear that ŵ(0,η0,R,a) ≡ 0, and it can also be shown that
ŵv(0,η0,Rc,a0) = 0; cf. [9].

Substituting ŵ into (28), we obtain a scalar equation,

PG(v0 + xζ + ŵ(x,η ,R,a),η ,R,a) = 0.

Or explicitly,

s1(x,η ,R,a) := 〈ζ ,G(v0 + xζ + ŵ(x,η ,R,a),η ,R,a)〉= 0.

Note by construction there exists a trivial solution (x,η) =
(0,η0) such that s1(0,η0,R,a) = 0. Using the property (21),
it also follows that

s1(−x,η ,R,a) =−s1(x,η ,R,a).

So, we write

s1(x,η ,R,a) = s̃1(x2,η ,R,a)x.

The non-trivial solution of R is obtained by solving
s̃1(x2,η ,R,a) = 0. A direct calculation shows that

∂ s̃1

∂R
(0,η0,Rc,a0) =

∂ 2s1

∂x∂R
(0,η0,Rc,a0)

= 〈ζ ,
∂

∂R
L (R,a)[ζ + ŵv(0,η0,Rc,a0)ζ ]〉

∣∣∣
R=Rc,a=a0

+ 〈ζ ,Lo[ŵv,R(0,η0,Rc,a0)ζ ]〉

= 〈ζ ,
∂

∂R
L (R,a)[ζ ]〉

∣∣∣
R=Rc,a=a0

=
∂λ

∂R
(Rc,a0)〈ζ ,ζ 〉< 0,

where the last inequality follows from (19). Using the
implicit function theorem, we find a local branch of nontrivial
solutions of R = R̂(x2,η ,a) in the neighborhood of (0,η0,a0)
such that R̂(0,η0,a0) = Rc and s̃1(x2,η , R̂(x2,η ,a),a)≡ 0.

Now, we consider the constraint B(v) = 0 to solve for
η . Instead of solving it directly, we integrate both sides of
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G(v,η ,R,a) = 0 from 0 to 2π and substitute B(v) = 0. This
results in an equivalent constraint

B′(v,η ,R,a)

:= η−C•0 −
1∫ 2π

0 v(θ ,ω)dθ
×
[

∞

∑
k=1

C•k

∫ 2π

0
v(θ ,ω)cos(kθ)dθ∫

T

∫
Ω

v2(θ ,ω)cos(kθ)g(ω)dω dθ

− R
2

(ω−a)2
∫

T

(
v(θ ,ω)− 4π2

v3(
∫

v−2)2

)
dθ

]
= 0.

By substituting v = v0 +xζ +ŵ(x,η ,R,a) and R = R̂(x2,η ,a)
into B′(v,η ,R,a), we obtain a scalar equation

s2(x,η ,a)

:= B′(v0 + xζ + ŵ(x,η , R̂(x2,η ,a),a),η , R̂(x2,η ,a),a) = 0.

Expanding B′, we find locally that s2(x,η ,a) = s̃2(x2,η ,a)
and that ∂ s̃2

∂η
(0,η0,a0) = 1. So by implicit function the-

orem, one obtains a unique solution η = η̂(x2,a) in the
neighborhood of (v0,a0) such that s̃2(x2, η̂(x2,a),a)≡ 0 and
η̂(0,a0) = η0. We conclude:

Theorem 5: Consider the nonlinear eigenvalue prob-
lem (13)-(15) with Assumption (A1) and (A2). Let (v0,η0)
denote the incoherence solution. Then from R = Rc = r0(a0)
bifurcates a branch of non-constant solutions (v,η) of (13)-
(15). More precisely, there exists a neighborhood J(x,a) ⊂
R×R+ of (0,a0), functions η̂(x,a;ω), R̂(x,a)∈C1(J(x,a)),
and a family v(x,ω) of non-constant solutions of (13)-(15)
in X such that, for all ω ∈Ω,

(i) η = η̂(x,a;ω) and η̂(x,a;ω) → η0, R = R̂(x,a) and
R̂(x,a)→ Rc as x→ 0 and a→ a0 ≡ 1,

(ii) v(x,ω)− v0 tends to zero as x→ 0.

B. Perturbation analysis

We next describe Lyapunov-Schmidt reduction based per-
turbation analysis to obtain asymptotic formulae for the so-
lution (v,η ,R); We use c•(θ ,ϑ) = 1

2 sin2 ( θ−ϑ

2

)
to carry out

the calculations. Specifically, we consider a series expansion
in the small parameter ε:

R = r0 + εr1 + ε
2r2 + . . .

v = v0 + εv1 + ε
2v2 + . . .

η = η0 + εη1 + ε
2
η2 + . . .

We substitute the series into the nonlinear eigenvalue prob-
lem (13) - (14) and collect the terms according to different
orders of ε .

At O(1), we recover the incoherence solution (16). At
O(ε),

L (r0,a)v1 =− 2v0

σ4r0
η1. (30)

Its solution is given by v1 = φ(θ ,ω,a), where φ is given
by (25), η1 = 0 and r0 is given by (18).

At O(ε2),

L (r0,a)v2

=− r1

r0
∂

2
θθ v1−

2
σ4r0

(
v0η2−

v−1
0
8

+
2r0v−1

0√
K(a)

v1 cos(θ)

)

+
(ω−a)2

σ4

(
4r2v1

r0
−6v−1

0 v2
1 +6v0

∫
T

v2
1 dθ

)
, (31)

whose solution is given by

r1 = 0, (32)

η2 =−
r0v−2

0
K(a)

1
ρ2(ω,a)

, (33)

v2 = v20 + v22 cos(2θ), (34)

where

v20 =−
v−1

0
4K(a)ρ4(ω,a)

,

v22 =
v−1

0
4K(a)ρ4(ω,a)

5(ω−a)2 + σ4

2
(ω−a)2 +σ4 .

At O(ε3),

L (r0,a)v3

=− r2

r0
∂

2
θθ v1−

2
σ4r0

(
v0η3 + v1η2−2v0

∫
T

∫
Ω

c•v1v2

− v1

∫
T

∫
Ω

c•v2
1−2v0v1

∫
T

∫
Ω

c•v2−2v0v2

∫
T

∫
Ω

c•v1

)
+

(ω−a)2

σ4

(
4

r2

r0
v1−12v−1

0 v1v2 +10v−2
0 v3

1

−18v1

∫
T

v2
1 +12v0

∫
T

v1v2 +12v0v1

∫
T

v2

)
. (35)

We use (35) to find the function r2 by noting that
〈v1,L (r0,a)v3〉= 〈L (r0,a)v1,v3〉= 0. This yields

r2(a) =
v−2

0
16K(a)

∫
Ω

g(ω)
ρ6(ω,a)

5(ω−a)2− 7
4 σ4

(ω−a)2 +σ4 dω. (36)

In summary, the solution is given by the asymptotic
formulae,

R = r0(a)+ ε
2r2(a)+o(ε2),

v = v0 + εv1(θ ,ω,a)+ ε
2v2(θ ,ω,a)+o(ε2),

η = η0 + ε
2
η2(ω,a)+o(ε2),

(37)

where r0(a) is obtained in (18), r2(a) is obtained in (36), η0,
v0 are defined in (16), v1 = φ(θ ,ω,a) which is defined in
(25), v2 is obtained in (34) and η2(ω,a) is obtained in (33).

IV. NUMERICAL RESULTS

In this section, we provide computation of the bifurcated
solutions obtained using the perturbation method (37) and
using the continuation-based software AUTO [10]. We as-
sume g(ω)= 1

3 δ (ω−ω1)+ 1
3 δ (ω−ω2)+ 1

3 δ (ω−ω3), where
ω1 = 0.95, ω2 = 1.00 and ω3 = 1.0. The cost function
c•(θ ,ϑ) = 1

2 sin2( θ−ϑ

2 ).
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(a) (b) (c)

Fig. 2. Average cost as a function of R−1/2 for different values of frequency ω and wave speed a.

TABLE I
CRITICAL VALUE OF R FOR DIFFERENT WAVE SPEED.

a
ω1 ω2 ω3

r0(a) 28.33 33.33 28.33

r0(a)−1/2 0.1879 0.1732 0.1879

Fig. 2 depicts a companion of average cost η(ω) for three
wave speeds a = ω1, ω2 and ω3. Table I lists the critical
value R = r0(a) for the three solutions. The bifurcation plots
depicted in Fig. 2 help validate the local behavior of the
solution obtained using the perturbation formulae (37).

V. APPENDIX

A. Proof of Lemma 4

Because λ (R,a) ∈ S(1)
d , it satisfies the equation

C•1
2R

∫
Ω

g(ω)

(ω−a)2 + σ4

4 (1+λ )
dω +1 = 0. (38)

Denote the left-hand side of (38) as F(λ ,R,a). Then,
F(λ ,R,a) = 0. So

0 =
d

dR
F(λ (Rc,a0),Rc,a0) (39)

=
∂

∂R
F(λ ,R,a)+

∂F
∂λ

∂

∂R
λ (R,a)

∣∣∣
R=Rc,a=a0

. (40)

From (38), we obtain

∂F
∂R

∣∣∣
R=Rc,a=a0

=− C•1
2R2

c

∫
Ω

g(ω)

(ω−a0)2 + σ4

4 (1+λ (Rc,a0))
dω

=− C•1
2R2

c

∫
Ω

g(ω)

(ω−a0)2 + σ4

4

dω

=−4C•1
Rc

, (41)

where the second equality uses the fact that λ (Rc,a0) = 0.
Next

∂F
∂λ

∣∣∣
R=Rc,a=a0

=
C•1
2Rc

∫
Ω

g(ω)(−σ4

4 )(
(ω−a0)2 + σ4

4

)2 dω

=−σ4C•1
8RC

∫
Ω

g(ω)
ρ4(ω,a0)

dω. (42)

Denote K(a) =
∫

Ω

g(ω)
ρ4(ω,a) dω and substitute (41)-(42) in (40)

to obtain the result (19).
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