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Abstract— Differential game theory is used to develop con-
trollers for an uncertain nonlinear Euler-Lagrange system. A
closed-loop Stackelberg strategy based on hierarchical charac-
teristics of the system is employed. A Robust Integral Sign
of the Error (RISE) controller is used to partially cancel
uncertain nonlinearities in the system first, and the residual
system is modeled as an infinite-horizon two-person Stackelberg
differential game. Although the game is linear-quadratic (LQ)
not all the nonlinearities are lost since the residual system is
linear in errors but not in the original states. To alleviate
time inconsistency a closed-loop strategy is sought such that
the controller assumes the potential perturbation to the system
and computes its strategy accordingly. An analytical solution is
presented to allow of a real-time controller implementation. A
Lyapunov analysis is provided to examine the stability of the
developed controller.

I. INTRODUCTION

Noncooperative differential game theory has been applied

to a variety of control problems [1]–[14]. While zero-sum

differential games have been heavily exploited in nonlinear

H∞ control theory, nonzero-sum differential games have had

limited application in feedback control. In particular, Stack-

elberg differential games, which is based on a hierarchical

relationship between the players, have been utilized in a

decentralized control system [5], hierarchical control prob-

lems [3], [4], [12], and nonclassical control problems [6].

Differential games, as well as optimal control, are difficult

tools to apply because of the challenges associated with de-

termining analytical solutions for real-time implementation,

with a few exceptions such as the linear quadratic structure.

One way to incorporate optimal control and differential game

structures is to formulate a system composed of control

terms to feedback linearize and additional control terms to

optimize the residual system. For example, optimal controller

are developed with feedback linearization with exact model

knowledge assumption [15] and via neural networks [16]–

[18]. In [19] an open-loop Stackelberg game-based controller

is developed based on the Robust Integral of the Sign of the

Error (RISE) [20]–[22] technique.

The solution to a differential game consists of the optimal

strategy (i.e., control input) of each player, the state trajectory

propagated based on the players’ strategies, and the corre-

sponding costs. Ideally, the solution is good for the entire
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horizon. However, any changes in the game, such as changes

in the objective of each player and different behavior of the

system due to uncertainty and disturbances, compromise the

optimality of the game strategies. This phenomenon is known

as “time inconsistency” or “subgame-imperfection” in game

theory [23]. There are strong and weak time inconsistencies,

where the distinction is based on the initial conditions. The

type of inconsistency addressed in this paper is associated

with strong time inconsistency.

To account for time inconsistency, this paper extends

our previous open-loop work in [19] to design a game-

theoretic controller using a closed-loop Stackelberg strategy.

In the differential game-theoretic sense, “open-loop” refers

to a decision making of each player based on the initial

condition, and “closed-loop” refers to the ability of the

players to change their decisions based on current infor-

mation. In Stackelberg games there is also a distinction

between “closed-loop” and “feedback” strategies, where the

former corresponds to the ability of the follower to change

its strategy based on current information, and the latter

corresponds to the ability of the leader to further change

its strategy in reaction to the follower’s closed-loop strategy.

This paper is aimed at investigating the development of

the RISE controller in conjunction with a differential game-

based controller with a closed-loop Stackelberg strategy, for

uncertain Euler-Lagrange systems with additive disturbances.

While the RISE controller partially feedback linearizes the

Euler-Lagrange system, a closed-loop Stackelberg strategy is

employed to minimize cost functionals associated with the

residual dynamics. A Lyapunov analysis is used to prove

semi-global asymptotic tracking. The result is described as

an asymptotic optimal tracking result because the RISE

controller asymptotically compensates for uncertainties and

disturbances, eventually yielding a residual system for which

the Stackelberg-derived component of the controller is used

to minimize the corresponding cost functionals.

II. DYNAMIC MODEL AND PROPERTIES

The class of nonlinear dynamic systems considered in this

paper is assumed to be modeled by the following Euler-

Lagrange formulation:

M(q)q̈+ Vm(q, q̇)q̇+G(q) +F (q̇) + τd(t) = τL + τF , (1)

where M(q) ∈ R
n×n denotes the generalized inertia matrix,

Vm(q, q̇) ∈ R
n×n denotes the generalized gravity vector,

F (q̇) ∈ R
n denotes the generalized friction vector, τd ∈ R

n
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denotes a general uncertain disturbance, τL, τF ∈ R
n denote

the control input vectors, and q(t), q̇(t), q̈(t) ∈ R
n denote

the generalized position, velocity, and acceleration vectors,

respectively. It is assumed that q(t) and q̇(t) are measurable,

and that M(q), Vm(q, q̇), G(q), F (q̇), and τd are unknown.

In addition, the following assumptions are exploited in the

subsequent development.

Assumption 1: The inertia matrix M(q) is symmetric,

positive-definite, and satisfies the following inequality:

m1 ‖ξ‖
2
≤ ξTM(q)ξ ≤ m̄(q) ‖ξ‖

2
, ∀ξ(t) ∈ R

n (2)

where m1 ∈ R, m̄(q) ∈ R, and ‖·‖, respectively, denote a

known positive constant, a known positive functions, and the

standard Euclidean norm.

Assumption 2: The following skew-symmetric relationships

are satisfied for ∀ξ ∈ R
n:

ξT
(

Ṁ(q)− 2Vm(q, q̇)
)

ξ = 0,

ξT
(

Ṁ(q)−
(

Vm(q, q̇) + V T
m (q, q̇)

)

)

ξ = 0.
(3)

Note that in general Vm 6= V T
m .

Assumption 3: If q(t), q̇(t) ∈ L∞, then Vm(q, q̇), F (q̇),
and G(q) are bounded. Moreover, if q(t), q̇(t) ∈ L∞, then

the first and the second partial derivatives of the elements

of M(q), Vm(q, q̇), and G(q) with respect to q(t) exist and

are bounded, and the first and second partial derivatives of

the elements of Vm(q, q̇) and F (q̇) with respect to q̇(t) exist

and are bounded.

Assumption 4: The desired trajectory is assumed to be

designed such that qd(t), q̇d(t), q̈d(t),
...
q d(t), and

....
q d(t) ∈

R
n exist and are bounded.

Assumption 5: The disturbance term and its first two time

derivatives (i.e., τd(t), τ̇d(t), τ̈d(t)) are bounded by known

constants.

III. ERROR SYSTEM DEVELOPMENT

The control objective is to ensure that the system tracks a

desired time-varying trajectory, denoted by qd(t) ∈ R
n, de-

spite uncertainties in the dynamic model, while minimizing a

given performance index. To quantify the tracking objective,

a position tracking error, denoted by e1(t) ∈ R
n, is defined

as

e1 , qd − q. (4)

To facilitate the subsequent analysis, filtered tracking errors,

denoted by e2(t), r(t) ∈ R
n, are also defined as

e2 , ė1 + α1e1, (5)

r , ė2 + α2e2, (6)

where α1, α2 ∈ R
n×n, are positive definite constant gain ma-

trices. The filtered tracking error r(t) is not measurable since

the expressions in (6) depend on q̈(t). The error systems are

based on the assumptions that the generalized coordinates of

the Euler-Lagrange dynamics allow additive errors instead of

multiplicative errors (e.g., error quaternions).

A state-space model can be developed based on the

tracking errors in (4) and (5). For this model, a controller

is developed that minimizes a quadratic performance index

under the temporary assumption that the dynamics in (1) are

known. The feedback controller of interest is the solution to

a two-person nonzero-sum differential game using a closed-

loop Stackelberg strategy. The subsequent analysis then uses

a robust controller to identify the unknown dynamics and

additive disturbance, thereby relaxing the temporary assump-

tion that these dynamics are known.

To develop a state-space model for the tracking errors in

(4) and (5), the inertia matrix is premultiplied to the time

derivative of (6), and substitutions are made from (1) and

(4) to obtain

Mė2 = −Vme2 − (τL + τF ) + h+ τd, (7)

where the nonlinear function h(q, q̇, t) ∈ R
n is defined as

h ,M(q̈d + α1ė1) + Vm(q̇d + α1e1) +G+ F. (8)

Under the temporary assumption that the dynamics in (1) are

known, the control input is designed as

τL + τF , h+ τd − (uL + uF ) , (9)

where uL denotes the leader’s input and uF denotes the fol-

lower’s input that will be respectively designed to minimize

their performance indices. By substituting (9) into (7) the

closed-loop error system for e2(t) can be obtained as

Mė2 = −Vme2 + uL + uF . (10)

From (5) and (10), a state-space model for e1 and e2 are

developed as

ż = Az +BuF +BuL, (11)

where

A(q, q̇) ,

[

−α1 In×n

0n×n −M−1Vm

]

,

B(q) ,
[

0n×n M−1
]T
,

z(t) ,
[

eT1 eT2
]T
,

(12)

where In×n and 0n×n denote the n× n identity matrix and

the matrix of zeros, respectively.

IV. CLOSED-LOOP STACKELBERG GAME CONTROL

Stackelberg games provide a framework for systems that

operate on different levels with a prescribed hierarchy of

decisions. For a two-person Stackelberg game where the

system is affected by two decision makers, the problem is

cast in two solution spaces: the leader and the follower,

where each player tries to minimize their respective cost

functionals. The leader is a decision maker that can enforce

its strategy to minimize its objective metric over the follower.

For example, when two inputs affect the behavior of a

system, the one with more rapid dynamics can be considered

the leader in Stackelberg structure; since the system responds

more rapidly to the leader’s control input, it is reasonable to
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put more weight in optimizing the leader’s control strategy

while making the follower compromise.

A Stackelberg differential game problem, with uF as

the follower and uL as the leader, is formulated by a

differential constraint and the cost functionals J1(z, uF , uL),
J2(z, uF , uL) ∈ R as

ż = Az +BuF +BuL,

JF =
1

2

∫

∞

t0

(

zTQz + uTFR11uF + uTLR12uL
)

dt,

JL =
1

2

∫

∞

t0

(

zTNz + uTFR21uF + uTLR22uL
)

dt,

(13)

where Q, N ∈ R
2n×2n are symmetric constant matrices

defined as

Q =

[

Q11 Q12

QT
12 Q22

]

, N =

[

N11 N12

NT
12 N22

]

, (14)

and Qij , Nij ∈ R
n×n are positive definite and symmetric

constant matrices ∀i, j = 1, 2. A closed-loop solution is

sought by extending [19]. Unlike the open-loop case, the

follower assumes that the leader’s strategy explicitly affects

the system. With the game being of linear-quadratic structure,

the following assumption is made.

Assumption 6: In computing its strategy, the follower as-

sumes that the leader’s strategy is linear in the states such

that

uL = F2z,

where F2(t) ∈ R
2n×2n such that the follower’s problem is

written as

ż = (A+BF2)z +BuF ,

JF =
1

2

∫

∞

t0

(

zT
(

Q+ FT
2 R12F2

)

z + uTFR11uF
)

dt.

The Hamiltonian of the follower is

HF =
1

2

(

zT (Q+ FT
2 R12F2)z + uTFR11uF

)

+ λT1 ((A+BF2)x+BuF ) ,

where the optimal control strategy and the costate equation

of the follower are obtained as

uF = −R−1

11 B
Tλ1, (15)

λ̇1 = −(Q+ FT
2 R12F2)

T z − (A+BF2)
Tλ1. (16)

Substituting (15) and (16) into the dynamics and

J2(z, uF , uL, t) yields an optimal control problem of the

leader

ż = Az −BR−1

11 B
Tλ1 +BuL,

JL =
1

2

∫

∞

t0

(

zTNz + uTLR22uL

+ λT1 BR
−1

11 R21R
−1

11 B
Tλ1

)

dt,

where the Hamiltonian of the leader is constructed as

HL =
1

2

(

zTNz + λT1 BR
−1

11 R21R
−1

11 B
Tλ1 + uTLR22uL

)

+ λT2
(

Az −BR−1

11 B
Tλ1 +BuL

)

+ ψT
(

−(Q+ FT
2 R12F2)

T z − (A+BF2)
Tλ1

)

,

where

uL = −R−1

22 B
Tλ2, (17)

λ̇2 = −NTx−ATλ2 + (Q+ FT
2 R12F2)ψ, (18)

ψ̇ = −BR−1

11 R21R
−1

11 B
Tλ1 +BR−1

11 B
Tλ2

+ (A+BF2)ψ. (19)

The expressions derived in (15)-(19) define the solution

to the differential game. The subsequent analysis aims at

developing an expression for the costate variables (λ1(t),
λ2(t), ψ(t)) which can be implemented by the controllers

uF (t) and uL(t). Suppose that the costates are linear in the

state:

λ1 = Kz, (20)

λ2 = Pz, (21)

ψ = Sz, (22)

where K(t), P (t), S(t) ∈ R
2n×2n are time-varying positive

definite diagonal matrices. Given these assumed solutions,

conditions and constraints are developed to ensure (20)-(22)

satisfy (16), (18), and (19). Differentiating (20)-(22) and

substituting the dynamic constraint in (13) along with (15)-

(19) yields three differential Riccati equations

0 = K̇ +KA−KBR−1

11 B
TK −KBR−1

22 B
TP +Q

+ PBR−1

22 R12R
−1

22 B
TP +ATK − PBR−1

22 B
TK,

(23)

0 = Ṗ + PA− PBR−1

11 B
TK − PBR−1

22 B
TP +N

+ATP −QS − PBR−1

22 R12R
−1

22 B
TPS,

(24)

0 = Ṡ + SA− SBR−1

11 B
TK − SBR−1

22 B
TP

+BR−1

11 R21R
−1

11 B
TK −BR−1

11 B
TP

−AS +BR−1

22 B
TPS.

(25)

Equations (23)-(25) can be expressed as open-loop Riccati

equations plus additional terms. From [19] the open-loop

Riccati equations are

0 = K̇ +KA+ATK −KBR−1

11 B
TK

−KBR−1

22 B
TP +QT ,

(26)

0 = Ṗ + PA+ATP − PBR−1

11 B
TK

− PBR−1

22 B
TP +NT −QS,

(27)

0 = Ṡ + SA−AS − SBR−1

11 B
TK − SBR−1

22 B
TP

+BR−1

11 R21R
−1

11 B
TK −BR−1

11 B
TP.

(28)

Let the subscripts CRE and ORE denote the closed-

loop (23)-(25) and open-loop (26)-(28) Ricatti equations,

respectively. Then the closed-loop Riccati equations can be
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written as

KCRE = KORE + PBR−1

22 R12R
−1

22 B
TP

− PBR−1

22 B
TK = 0,

(29)

PCRE = PORE − PBR−1

22 R12R
−1

22 B
TPS = 0, (30)

SCRE = SORE +BR−1

22 B
TPS = 0. (31)

In (29)-(31), K(t) and P (t) correspond to uF (t) and uL(t)
respectively, while S(t) places constraints between the K(t)
and P (t). Equations (29)-(31) must be solved simultaneously

to yield Stackelberg control strategies for the leader and the

follower. If P (t), K(t), and S(t) are selected as

P =

[

P11 0n×n

0n×n M

]

, (32)

K =

[

K11 0n×n

0n×n M

]

, (33)

S =

[

S11 0n×n

0n×n −2In×n

]

, (34)

where K11 and P11 satisfy

K11 = −
1

2

(

Q12 +QT
12

)

,

P11 = −
1

2

(

N12 +NT
12

)

+ 2K11,

(35)

then (23)-(25) are solved with the following constraints on

the cost functionals:

1

2

[(

Q12 +QT
12

)

α1 + αT
1

(

Q12 +QT
12

)]

+Q11 = 0,

1

2

[(

N12 +NT
12

)

α1 + αT
1

(

N12 +NT
12

)]

+N11 = 0,

Q22 +R−1

22 +R−1

11 R21R
−1

11 = 0,

−R−1

11 − 2R−1

22 +Q22 +R−1

22 R12R
−1

22 = 0,

Q22 +N22 = 0.

(36)

From (15), (17), (20), (21), (32), and (33), the closed-loop

Stackelberg game-based controllers are obtained as

uF = −R−1

11 e2, (37)

uL = −R−1

22 e2. (38)

Note that the solution has the same form as the open-loop

problem except that more conservative constraints are placed

on the relationship among the gain matrices. In particular,

constraints in (36) include R12, which affects the decision

of uF (t) due to the decision of uL(t) for the closed-loop

case. Therefore, a closed-loop strategy for the follower is

better than an open-loop strategy in addressing the time

inconsistency.

V. RISE FEEDBACK CONTROL DEVELOPMENT

In general, the bounded disturbance τd(t) and the non-

linear dynamics given in (8) are unknown, so the controller

given in (9) cannot be implemented. However, if the control

input can identify and cancel these effects, then z(t) will

converge to the state space model in (11) such that that uF
and uL minimize the respective performance index JF and

JL. In this section, a control input is developed that exploits

RISE feedback to identify the nonlinear effects and bounded

disturbances thus enabling z(t) to asymptotically converge

to the state space model in (11).

To develop the control input, the error system in (6) is

premultiplied by M(q) and the expressions in (1), (4), and

(5) are utilized to obtain

Mr = −Vme2 + h+ τd + α2Me2 − (τF + τL) . (39)

Based on the open-loop error system in (39), the control input

is composed of the game theoretic controllers developed in

(37) and (38), plus a subsequently designed auxiliary control

term µ(t) ∈ R
n as

(τF + τL) , µ− (uF + uL) . (40)

The closed-loop tracking error system can be developed by

substituting (40) into (39) as

Mr = −Vme2 + h+ τd + α2Me2 + (uF + uL)− µ. (41)

To facilitate the subsequent stability analysis the auxiliary

function fd(t) ∈ R
n, which is defined as

fd ,M(qd)q̈d + Vm(qd, q̇d)q̇d +G(qd) + F (q̇d), (42)

is added and subtracted to (41) to yield

Mr = −Vme2+h̄+fd+τd+(uF + uL)−µ+α2Me2, (43)

where h̄ ∈ R
n is defined as

h̄ , h− fd.

Substituting (38) into (43), taking the time derivative, and

manipulating with (6) yields

Mṙ = −
1

2
Ṁr+ Ñ +ND−e2−

(

R−1

11 +R−1

22

)

r− µ̇, (44)

after strategically grouping specific terms. In (44), the un-

measurable auxiliary terms Ñ(e1, e2, r, t), ND(t) ∈ R
n are

defined as

Ñ , −V̇me2 − Vmė2 −
1

2
Ṁr + ˙̄h+ α2Ṁe2

+ α2Mė2 + e2 +
(

R−1

11 +R−1

22

)

α2e2,

ND , ḟd + τ̇d.

The Mean Value Theorem and Assumptions 3, 4, and 5 can

be used to upper bound the auxiliary terms as
∥

∥

∥
Ñ(t)

∥

∥

∥
≤ ρ (‖y‖) ‖y‖ , ‖ND‖ ≤ ζ1,

∥

∥

∥
ṄD

∥

∥

∥
≤ ζ2, (45)

where y(t) ∈ R
3n is defined as

y(t) ,
[

eT1 eT2 rT
]T
,

the bounding function ρ (‖y‖) ∈ R is a positive globally

invertible nondecreasing function, and ζi ∈ R, i = 1, 2,

denote known positive constants. Based on (44), the control

term µ(t) is designed as the generalized solution to

µ̇(t) , ksr(t) + β1sgn(e2), (46)
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where ks, β1 ∈ R are positive constant control gains. The

closed-loop error systems for r(t) can now be obtained by

substituting (46) into (44) as

Mṙ = −
1

2
Ṁr + Ñ +ND − e2 −

(

R−1

11 +R−1

22

)

r

− ksr − β1sgn(e2).
(47)

VI. STABILITY ANALYSIS

It can be shown that the controller given by (37), (38),

(40), and (46) ensures that all system signals are bounded

under closed-loop operation, and the tracking error are reg-

ulated in the sense that (see [19] for similar details)

‖e1(t)‖ , ‖e2(t)‖ , ‖r(t)‖ → 0 as t→ ∞. (48)

The boundedness of the closed-loop signals and the result in

(48) can be obtained provided the control gain ks introduced

in (46) is selected sufficiently large (see the subsequent

stability analysis), and α1, α2 are selected according to the

sufficient conditions

λmin(α1) >
1

2
, λmin(α2) > 1, (49)

where λmin(α1) and λmin(α2) are the minimum eigenvalues

of α1 and α2, respectively. The gain β1 is selected according

to the following sufficient condition:

β1 > ζ1 +
ζ2

λmin(α2)
. (50)

Let a Lyapunov function VL(Φ, t) : D× [0,∞) → R be a

continuously differentiable positive definite function defined

in [19] as

VL(Φ, t) , ‖e1‖
2
+

1

2
‖e2‖

2
+

1

2
rTMr +O. (51)

where the auxiliary function O(t) ∈ R is the solution to (see

[19] for further details)

Ȯ , −rT (ND − β1sgn(e2)) ,

O(0) = β1

n
∑

i=1

|e2i(0)| − e2(0)
TND(0).

(52)

Taking the time derivative of (51) yields

V̇L = 2eT1 ė1 + eT2 ė2 +
1

2
rT Ṁr + rTMṙ + Ȯ.

Utilizing (5), (6), (47), and (52), the Lyapunov derivative is

rewritten as

V̇L(Φ, t) ≤ −2eT1 α1e1 + 2eT2 e1 + rT Ñ

−
{

ks + λmin

(

R−1

11 +R−1

22

)}

‖r‖
2

− λmin(α2) ‖e2‖
2
.

(53)

Utilizing (45), (53) can be further simplified as

V̇L ≤ −λ3 ‖y‖
2
−
[

ks ‖r‖
2
− ρ(‖y‖) ‖r‖ ‖y‖

]

, (54)

where

λ3 , min







2λmin(α1)− 1
λmin(α2)− 1

λmin

(

R−1

11 +R−2

22

)







. (55)

Completing the squares for the terms inside the brackets in

(54) yields

V̇L ≤ −λ3 ‖y‖
2
+
ρ2(‖y‖) ‖y‖

2

4ks
≤ −U(Φ), (56)

where U(Φ) = c ‖y‖
2

for some positive constant c. The

function U(Φ) is a continuous, positive semi-definite and

defined within the closed set:

D ,

{

Φ ∈ R
3n+1

∣

∣ ‖Φ‖ ≤ ρ−1

(

2
√

λ3ks

)}

.

The inequality in (56) can be used to show that VL(Φ, t) ∈
L∞ in D; hence, e1(t), e2(t), and r(t) ∈ L∞ in D. Then

standard linear analysis methods can be used to prove that

ė1(t), ė2 ∈ L∞ in D from (5)-(6). Since e1(t), e2(t),
r(t) ∈ L∞ in D, Assumption 4 is used along with (5)-

(6) to conclude that q(t), q̇(t), q̈(t) ∈ L∞ in D, which is

then combined with Assumption 3 to conclude that M(q),
Vm(q, q̇), G(q), and F (q̇) ∈ L∞ in D. Thus, from (1) and

Assumption 4, it can be shown that τL(t), τF (t) ∈ L∞ in D.

With r(t) ∈ L∞ in D, it can be shown that µ̇(t) ∈ L∞ in D;

hence, (47) can be used to show that ṙ(t) ∈ L∞ in D. From

ė1(t), ė2(t), ṙ ∈ L∞ in D, the definitions for U(y) and z(t)
can be used to prove that U(y) is uniformly continuous in

D.

Using similar arguments as given in [19] it can be shown

that

c ‖y(t)‖
2
→ 0 as t→ ∞ ∀y(0) ∈ S. (57)

Based on the definition of y(t), (57) can be used to conclude

that Theorem 1 holds for all y(0) ∈ S .

Since uF (t), uL(t) → 0 as e2(t) → 0 from (37) and (38),

then (43) can be used to conclude that

µ→ h̄+ fd + τd as r(t), e2(t) → 0. (58)

Equation (58) indicates that the dynamics in (1) converge

to the state-space model in (11). Hence, uF (t) and uL(t)
converges to an optimal controller to solve the game defined

in (13), provided the gain constraints in (36) are satisfied.

VII. CONCLUSION

A closed-loop Stackelberg-based feedback controller for

an Euler-Lagrange system subject to state dependent and

bounded disturbances is developed to alleviate limitations

due to time inconsistency. Asymptotic optimality of the

proposed controller is achieved through a two-level archi-

tecture: the RISE controller yields a residual dynamical

model by compensating for nonlinear uncertainties, and then

the closed-loop Stackelberg-based controller minimizes cost

functionals for the residual hierarchical system. Using a

Lyapunov stability analysis and a Stackelberg game devel-

opment, sufficient gain conditions were derived to ensure

asymptotic tracking while minimizing the cost functionals.

The developed controller provides a more robust solution

than our previous open-loop method. The advantages of the

closed-loop method will be examined through experimental

results in future development. Furthermore, future efforts will
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also focus on the development of feedback solutions which

will enable the leader to respond to changes in the follower’s

policy.
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