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Abstract— This paper presents a compact exploration strat-
egy designed to be implemented onboard indoor Miniature Air
Vehicles (MAVs) operating in cluttered and confined environ-
ments. The exploration strategy uses 2D range information
from a laser range scanner to generate velocity commands by
blending a Sensor-based Random Tree frontier planner with a
wall-following velocity field generator. The combined approach
leverages the efficient exploration capabilities of frontier-based
guidance and ensures that the vehicles follows a path that
is free of obstacles and conducive to maintaining good scan
geometry through a wall-following approach. The strategy has
been successfully implemented and tested on a Quadrotor MAV
and simulation results are presented. Flight test results shall be
included in the final version.

I. INTRODUCTION

A. Motivation

Indoor Miniature Air Vehicles (MAVs) can be used in
various potential applications, including search and rescue,
disaster assessment, reconnaissance, or other tasks that would
be risky or impossible for a human to perform. These appli-
cations often require MAVs to enter unmapped buildings, and
explore other cluttered and confined environments. Indoor
flight in such environments pose significant challenges due
to unreliability of radio links, unavailability of a-priori
knowledge, and unavailability of external navigational aids,
such as Global Positioning System (GPS). As a result, MAVs
capable of exploring indoor environment should be self-
contained, and capable of running all guidance, navigation,
and control softwares onboard. Furthermore, indoor aerial
vehicles operating in GPS denied environments often rely on
Simultaneous Localization and Mapping (SLAM) algorithms
to solve the navigation problem, in which local geometry is
used to map the surrounding as well as bound the drifts of
inertial sensors. Hence, unlike autonomous ground vehicles,
the navigation and guidance problems for an MAV can be
tightly coupled. Position estimate from SLAM (navigation)
solution may quickly diverge if the vehicle encounters fea-
tureless scan geometries. Therefore, as part of flight safety
consideration, guidance strategy must be designed such that
the vehicle always “sees SLAM-favored” scan geometry [1],
[2], [3], [4].

This work focuses on developing an exploration (guid-
ance) strategy compact enough to run onboard MAV. The
strategy can be superimposed with any low computational
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cost Simultaneous Localization and Mapping (SLAM) algo-
rithm such as [1] or [5] to create a totally self-contained
autonomous air vehicle. The developed guidance strategy is
expected to meet the following requirements:

• achieve efficient exploration
• perform computations onboard using low-cost and light-

weight processor
• maintain navigable scan geometry.
It should be noted that onboard SLAM, guidance, and

control problems have been well-studied for ground robots.
However, in extending these methods to MAVs, significant
new challenges due to weight constraints, six degree of free-
dom dynamics, and the agility of MAVs must be overcome.
In fact, many well-known optimal guidance and path plan-
ning techniques are not feasible for onboard implementation
on MAVs because of limited computational power. As a
result, in contrast to many published works on guidance
and path planning, our approach trades-off optimality of
exploration with simplicity and safety of the vehicle.

B. Previous Work

SLAM and autonomous exploration for MAV application
was first demonstrated by Achtelik et. al. [6]. Achtelik et.
al. uses frontier-based exploration with goal-driven dynamic
programming trajectory generation. However, such naviga-
tion and guidance algorithms are computationally expensive
and have to be run from ground station. The setup promotes a
very effective exploration but is still subject to failure should
communication link between ground station and vehicle is
lost. Sobers et. al. proposed a totally self-contained MAV
architecture with a very compact SLAM algorithm and a
simple wall following guidance strategy[1]. Fig. 1 shows ex-
ample of map created from SLAM algorithm implemented in
[1]. However, behavior of wall following guidance is highly
dependent on scan geometry and can be very inefficient and
unpredictable in various cases. In some cases, the method
may only tracks the outermost walls of the building and
leaves inner rooms completely unexplored. In worse cases
with unfavorable geometries of the building’s entrance, the
method may commands the vehicle to leave the building as
soon as the vehicle had entered the building. Our goal is
to improve upon efficiency of such guidance algorithms by
introducing frontier-based techniques, but yet keeping the
algorithm compact and SLAM-favored.

In effort to promote efficiency of exploration, we apply the
basic principle of frontier-based exploration in a novel way.
Frontier-based exploration was first introduced by Yamauchi
[7] as an effective way for a mobile robot to explore an
unknown environment. Without frontier-based exploration,
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Fig. 1. SLAM map

a robot may have to explore an unknown environment
randomly with some form of obstacle avoidance logic. The
principle of frontier-based exploration is : “try to get as
much new information as possible by going to a boundary
between explored and unexplored territory”. Various forms
of frontier-based exploration strategy have been developed,
most of which require some form of global map in order to
find frontiers and plan trajectories[7], [8], [9]. A global map
can be grid-based, feature-based, or polygonal-based. How-
ever, such global map and its essential guidance algorithms
are not computationally practical onboard a MAV.

Rather than using a global map, Freda and Oriolo applied
the principle of frontier-based exploration to a data structure
called Sensor-Based Random Tree (SRT) [10], [11]. In this
research, we use SRT method called SRT-Star to store
frontiers, store safe-regions, and sequence new waypoints
[10]. The SRT-Star is blended with wall following algorithm
as will be described in Section V and Section IV.

The strategy has been implemented and flown on Georgia
Tech’s quadrotor while participating in the 2010 International
Aerial Robotics Competition (IARC) [12], [13].

The paper is organized as follows. First, we discuss
the main algorithm of how frontier contribution and wall
following contribution are combined. Then, wall following
contribution and frontier contribution are each discussed sep-
arately in detail. Finally, we present results of the proposed
strategy.

II. WALL FOLLOWING - FRONTIER GUIDANCE

This section describes overall wall following-frontier
exploration strategy. Assuming near hover dynamics and
semi-structured environment, we first recognize that three-
dimensional guidance problem can be simplified by de-
coupling horizontal plane guidance and altitude guidance.
Altitude guidance simply commands constant altitude above
ground level while horizontal guidance commands horizontal
velocity and heading.

The main idea is overall velocity command (~vcmd) is
composed of contribution from frontier velocity (~vfr) and
contribution from wall following velocity (~vwf ).

~vcmd = ~vwf + ~vfr (1)

Heading command (ψcmd), on the other hand, is solely gen-
erated from frontier contribution. We use raw scan data from

laser range scanner to create SRT and ultimately compute
velocity and heading commands. The commands are updated
as soon as new scan data is available. For Hokuyo URG-
04LX laser scanner [14] used in our flight vehicle, this update
rate is approximately 10 Hz. Algorithm 1 illustrates sequence
of commands that are executed at a particular update time
step.

Algorithm 1 Compute Velocity Command (~vcmd) and Head-
ing Command (ψcmd)
Require: ~x, ~xwaypoint, scan, SRT , and d

1: ~vwf ⇐ getWallFollowingV elocity(scan)
2: if ||~x− ~xwaypoint|| < d then
3: newFrontier ⇐ frontierSearch(scan)
4: SRT ⇐ updateSRT (SRT, newFrontier)
5: if frontierExist(SRT ) then
6: ~xwaypoint = newWaypoint(SRT )
7: else
8: ~xwaypoint = previousWaypoint(SRT )
9: end if

10: end if
11: ~vfr ⇐ getFrontierV elocity(~x, ~xwaypoint)
12: ψcmd ⇐ getHeading(~x, ~xwaypoint)
13: ~vcmd ⇐ ~vfr + ~vwf

The main algorithm requires vehicle’s current position
(~x), position of commanded waypoint (~xwaypoint), raw scan
data (scan), sensor based random tree structure (SRT ), and
threshold distance (d).

The algorithm begins by computing wall following veloc-
ity (~vwf ) directly from scan data. The algorithm then checks
whether the vehicle has arrived at the commanded waypoint
(~xwaypoint); if the vehicle has not arrived the commanded
waypoint, the commanded waypoint will not be modified. If
the vehicle has arrived at the commanded waypoint, a new
commanded waypoint is generated from the frontier planner
(line 3 through line 8). The vehicle is said to have arrived
at the commanded waypoint when it is within distance d
of the commanded waypoint. Finally, commanded waypoint
and vehicle’s position are used to generate heading command
(ψcmd) and frontier velocity (~vfr). Notice that although
commanded waypoint may not change at a particular time
step, frontier velocity and heading change at every time step
because vehicle position changes.

Details of each velocity contribution and heading com-
mand are discussed in Section III and Section IV.

III. WALL FOLLOWING CONTRIBUTION

This section discusses how wall following velocity (vwf )
is generated. Wall following velocity is necessary because it
serves two very important purposes. First, it acts as an obsta-
cle avoidance routine, and second, it promotes navigable scan
geometry. We use velocity field approach where each scan
reading produces its own incremental velocity command. All
incremental velocity commands are summed to produce the
total velocity command.
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Fig. 2. Reference frame description of vehicle and scan points

Let ri denote the ith scan range reading shown in Fig.2.
Incremental velocity command (vri) in radial direction due
to each scan reading is obtained from:

vri =

{
Kwf (ri − rt) if ri ≥ rsafe;
Ksafe(ri − rt) if ri < rsafe;

(2)

where Kwf and Ksafe are gains used for nominal and safety
cases as determined by safe radius rsafe. rt is a user specified
parameter representing distance from walls that the vehicle
tries to maintain.

Let θi shown in Fig. 2 denote angle of the ith scan
with respect to body frame (xy), and let n denote number
of in-range scans points. Velocity command in body frame
ucmd and vcmd results from projecting and summing each
incremental velocity.

ucmd =

n∑
i=1

vricosθi vcmd =

n∑
i=1

vrisinθi (3)

Let ψ be the heading angle referenced from an arbitrary
chosen inertial frame (XY). Velocity command in body
frame can be converted to inertial frame using (4).

~vwf =

[
vxwf

vywf

]
=

[
cosψ −sinψ
sinψ cosψ

] [
ucmd

vcmd

]
(4)

Let us elaborate more on choice of rt. Equation (2) can
be thought of as multiple proportional controllers that try to
make all scan readings equal to rt (without commanding
heading change). In practice, some incremental velocities
cancel out. The overall effect is attraction to a wall if the
vehicle is too far away and repulsion from a wall if the
vehicle is too close. In most cases where multiple walls
are visible, which wall the vehicle will follow depends on
scan geometry. The vehicle is attracted to long wall segments
located further away more than short wall segments located
near by.

In effort to improve obstacle avoidance behavior, two
separate gains are used to generate incremental velocities.
The gain Kwf represents nominal gain for typical attraction

and repulsion to walls, while the gain Ksafe represents safety
gain used only when the vehicle is dangerously close to a
wall. The safety gain is selected to be orders to magnitude
higher than the nominal gain. Additionally, one also has to set
Ksafe high enough to ensure that obstacle avoidance velocity
overpowers frontier velocity. Note that “dangerously close to
a wall” is defined by safe radius parameter (rsafe) and should
always be set to a value smaller than rt.

We note that this particular wall following law is designed
to work together with another guidance contribution. Our
strategy uses frontier velocity, but in general, this simple
wall following law can be applied along with any goal-
specified guidance algorithm. The wall following alone may
not work by itself in all situations. It does not provide
heading command. Depending on local scan geometry, it
may also suffer from a local minima and the vehicle may
“get stuck” at a particular location of a room.

Although one purpose of wall following is to promote nav-
igable scan geometry, it should be reminded that wall follow-
ing does not absolutely guarantee continuous navigable scan.
Even with wall following, navigation may not be possible
at certain unfavorable geometries. These geometries include
long hallways where scan is almost identical regardless of
vehicle motion, or a very large room where not enough scan
readings are returned for localization.

IV. FRONTIER CONTRIBUTION

Frontier-based approach is essential for efficient explo-
ration in an unknown indoor environment. As mentioned
earlier, we seek frontier-based algorithm that requires as
low computational power as possible. This work adapts and
extends a very compact Sensor-Based Random Tree (SRT)
frontier method called SRT-Star developed by Freda et. al.
[10].

SRT-Star, outlined in line 2 to line 10 of Algorithm 1,
takes advantage of 2D laser range scanners’ characteristics.
Upon arriving at a waypoint, SRT-Star divides laser scan
beams into sectors, where each sector contains left-point,
mid-point, and right-point. Mid-point is declared as a frontier
if the sector is completely obstacle free while left-point
and right-point are declared as frontiers if there are large
discontinuities between adjacent sectors. Sectors and frontier
points are illustrated in Fig. 3. If at least one frontier exists,
a new commanded waypoint is generated by randomizing
a point inside a sector that possesses at least one frontier.
If no frontier exists, the vehicle backtracks to the previous
waypoint.

Sectors and frontiers are stored in a tree-like structure
with waypoints as nodes and frontiers as potential branches.
Since regions inside the sectors are obstacle free by scanner’s
characteristic, obstacle free regions also expand as SRT
evolves. Expansion of free regions implies that some existing
frontiers may fall under newly acquired sectors. In that
case, SRT-Star will remove the frontier in order to avoid
unnecessary exploration. Details of SRT-Star are discussed
in [10].
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Fig. 3. SRT-Star divides laser scan into sectors

The difference between the original SRT-Star and our
method is: the original SRT-Star feeds commanded waypoint
directly to the controller. Our method as outlined in Algo-
rithm 1 calculates frontier velocity and heading commands
from commanded waypoint. It then blends frontier velocity
command with wall following velocity, and finally feeds
velocity and heading commands to the controller.

Let Kfr be a frontier gain specified by user. Let xwaypoint

and ywaypoint be position of the commanded waypoint in
inertial frame as obtained from SRT-Star. Let x and y be
the vehicle’s current position in inertial frame. Given the
commanded waypoint, a simple proportional feedback law
shown in (5) is used to obtain frontier velocity.

~vfr =

[
vxfr

vyfr

]
=

[
Kfr(xwaypoint − x)
Kfr(ywaypoint − y)

]
(5)

Moreover, the vehicle’s heading will always be commanded
to point directly to the commanded waypoint.

ψcmd = atan2(ywaypoint − y, xwaypoint − x) (6)

Note that this heading command also provides another
benefit. It steers the scan scope to see more walls in
neighborhood of the commanded waypoint. Wall following
velocity will command attraction to these walls. Therefore,
wall following velocity also implicitly brings the vehicle
towards the commanded waypoint.

V. PRACTICAL CONSIDERATIONS

This section addresses additional practical considerations
required for successful flight. Besides from wall following-
frontier strategy explained in Section , III, and IV, the
following items are also implemented to ensure vehicle’s
safety:

• Speed limit: Speed limit is necessary as our approach
relies on summing several incremental velocities. The
total velocity magnitude is very difficult to predict.

It depends upon scan geometry and distance to the
commanded waypoint. Without speed limit, the vehicle
may unsafely command high speed as it observes
distant walls and waypoints.

• Yaw rate limit: When a new commanded waypoint is
acquired, yaw rate limit ensures that the vehicle does
not turn too fast. This behavior is most profound when
vehicle recognizes that no local frontier exist and starts
to backtrack. High yaw rate should be avoided as it
may reduce quality of SLAM.

• Waypoint-to-waypoint time limit: We impose traveling
time limit between one waypoint to another. It should
be reminded that SRT-Star assumes perfect navigation.
However, real operations may suffer from slow drift of
inertial frame due to imperfections, or worse, temporary
loss of SLAM due to unfavorable geometry. In such
cases, commanded waypoint as erroneously interpreted
by SLAM may no longer be obstacle free. Time limit
ensures that the vehicle will not “get stuck” trying
to reach an unreachable waypoint. If time limit is
exceeded, the SRT is erased and a new exploration is
initiated.

VI. SIMULATION RESULTS

We apply wall following-frontier guidance strategy to
a quadrotor shown in Fig. 4 developed at Georgia Tech
UAV Research Facility (GTUAVRF). The vehicle is designed
to accomplish the 6th mission of the International Aerial
Robotics Competition (IARC)[12], [13]. The vehicle is based
on AscTec Pelican quadrotor from Ascending Technologies
GmbH. The vehicle structure, motors, and propellers of
AscTec Pelican are used without modification. GTUAVRF
then supplements the quadrotor with processors and sensors
for autonomous operation. The sensors include Hokuyo
URG-04LX laser range scanner [14], sonar range finder for
altitude measurement, and inertial measurement unit. The
processors include Gumstix Overo Fire running guidance,
navigation, and control software, and ATMega128 running
stability augmentation software. Details of the architecture
is discussed in [12].

Our exploration strategy has been implemented and tested
in a simulation software developed in-house at Georgia Tech
UAV Research Facility. The software simulates full nonlinear
vehicle dynamics, sensors with noise characteristics, and
indoor structure. Fig. 5 shows a simulated flight of the pro-
posed strategy. The quadrotor, quadrotor’s trajectory, com-
manded waypoint, laser scan, active SRT, and the building
are shown on Fig. 5. The vehicle is able to avoid obstacles
while creating SRT and explores the building. In Fig. 5(c),
the quadrotor is able to get pass through a small gap on
the northwest corner without collision. The quadrotor then
explores towards the east of the building but later recognizes
that there is an unexplored room in the middle of the
building. Fig. 5(f) shows result when the entire building is
explored.
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Fig. 4. Georgia Tech’s quadrotor

VII. FLIGHT TEST RESULTS

A. Flight Test Results

In this section we present flight test results of the GTQ ex-
ploring an indoor cluttered environment fully autonomously
without any external sensing aids (such as GPS). The on-
board GNC algorithm does not assume any a-priori knowl-
edge of the indoor environment. Navigation is performed by
solving a SLAM problem online using techniques presented
in [15]. Guidance is achieved by frontier-guidance type
method coupled with wall-following guidance as described in
this paper, and control is achieved using a dynamic inversion
based linear control architecture. The flight test begins with
the aircraft hovering at about 2.8 ft above the ground. The
onboard guidance logic then commands waypoints that take
the aircraft towards unexplored frontiers, the onboard navi-
gation logic provides the aircraft with its pose information
and simultaneously builds a map of the environment in real-
time. The map information is fed back into the guidance
logic to explore new frontiers. Note that all computation,
including SLAM is performed online using onboard avionics.
The GNC algorithms were optimized to execute completely
onboard the embedded computer (Gumstix Overo Fire) used
by trading-off map accuracy with guaranteeing a reliable
instantaneous position fix for pose estimation. This trade-
off results in a slight skew in the onboard generated map.
However, the position accuracy was found acceptable for
exploring indoor areas reliably.

VIII. CONCLUSIONS

We presented a compact and efficient exploration strategy
intended for running onboard indoor Miniature Air Vehi-
cles. Efficient exploration was achieved by augmenting a
frontier based guidance strategy with wall-following logic.
This approach ensured that the vehicle explores unknown
indoor environments efficiently using a path that is free of
obstacles and conducive to maintaining good scan geometry.
We demonstrated the feasibility of the strategy onboard a
low-cost off-the-shelf embedded computer on a Quadrotor
MAV running six degree of freedom SLAM algorithm.
While significant work remains to be done in guaranteeing

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 5. Simulated Exploration in Indoor Environment
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(a) Time = 19 s (b) Time = 40 s (c) Time = 61 s

(d) Time = 92 s (e) Time = 124 s

Fig. 6. The GTQ autonomously explores an unknown cluttered indoor
environment without any external sensing or computational aids. The figures
show the map of the unknown indoor environment generated by the onboard
navigation algorithm as the GTQ explores the indoor environment. Stars
mark the waypoints commanded by the guidance strategy, the guidance
strategy ensures the GTQ explores unexplored areas of the indoor envi-
ronment. The pictured area is approximately 50 by 80 feet. Note that all
computation, including solving the SLAM problem, is performed onboard.

optimal performance, we conclude that this strategy can
be used to create a totally self-contained miniature flight
vehicle running guidance, navigation, and control algorithms
onboard for autonomously exploring indoor environment.
This conclusion is supported from simulation and flight test
results.
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