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Abstract— In this paper, linear and nonlinear robust control
strategies are proposed to suppress wing rock motion. The
approaches are based on the uncertainty and disturbance
estimator (UDE), which calculates and robustly cancels system
uncertainties and input disturbances with appropriate filtering.
In the case of a nonlinear controller, the information regarding
the known part of the nonlinear plant dynamics is used by the
controller, while in the case of a linear controller the terms
containing the nonlinear functions are treated as additional
uncertainties to the system. The algorithms provide excellent
performance in suppressing the oscillations and disturbance
rejection. Simulations are given to show the effectiveness of the
strategies via an application to an experimentally derived delta
wing rock model.
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I. INTRODUCTION

Lightly damped or undamped rolling oscillations around

the longitudinal axis at moderate to high angle of attack

(AOA) exhibited by several modern high performance air-

craft are commonly referred to as wing rock. Such dynamics

typically possesses limit cycles, which become stable after

a transient phase. In addition to being highly annoying to

the pilot, wing rock can have a deteriorating effect on an

aircraft performance. For some cases, wing rock is an early

warning of imminent departure or spin entry. For other

cases, the severity of wing rock could create inertial and

kinematic coupling to cause AOA excursions and lead to loss

of control. Handling qualities are clearly compromised in

addition to degradation of maneuvering capabilities in terms

of the maximum achievable angle of attack [1], [2].

Two different types of wing rock have been mentioned in

the literature. The first type of wing rock is usually associated

with low-airspeed, high-AOA flight in gusty conditions and

characterized by unsteady lateral motions at moderate to

high AOA. These motions show small-amplitude intermittent

non-periodic roll oscillations, assumed to be a function of

pilot-vehicle interaction. Flight procedures can be changed to

avoid this type of wing rock without significantly affecting

mission completion. The second type of wing rock is char-

acterized by very large changes in roll angle and normally

associated with high-AOA maneuvering such as in close-in

air combat. For example, if a combat aircraft is incapable of
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tracking a target due to wing rock, significant mission accom-

plishment degradation is obvious. Moreover, the presence of

wing rock during the approach or landing phase can have se-

vere influence on the operational safety of the aircraft. From

the stability point of view, wing rock phenomenon arises

from a nonlinear aerodynamic mechanism and is associated

with the nonlinear trend of roll damping derivatives, leading

to hysteresis and sign changes of the stability parameters

when increasing the AOA during aircraft maneuvers [3], [4].

The wing rock is usually controlled by appropriate ailerons

deflection, as shown in Figure 1. Controlling wing rock is a

challenge to both aircraft designers and control engineers.
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Fig. 1. Aileron deflection influence on the roll motion, modified from
http://en.wikipedia.org/wiki/Aileron

Many researchers have tackled the problem of control-

ling wing rock motion. Adaptive feedback linearisation ap-

proaches were proposed in [5], [6], while suboptimal and

optimal feedback algorithms were discussed in [7] and [8],

respectively. Kalman filter based control [9] were shown

to be a good candidate to solve the wing rock motion

problem. Fuzzy [10], [11], fuzzy adaptive [12], and fuzzy

neural [13] approaches gained popularity during the last

decade. Neural network based control [14], [15] and wavelet

adaptive backstepping approach [16] were also considered.

Recently, several nonlinear control algorithms were shown

to be suitable for dealing with wing rock [17], [18], [19].

The Uncertainty and Disturbance Estimator (UDE) strat-

egy introduced in [20] is able to quickly estimate uncer-

tainties and disturbances and thus provides excellent robust

performance. It is based on the assumption that a continuous

signal can be approximated as it is appropriately filtered. The

UDE-based control strategy has been successfully extended

to uncertain systems with delays in [21], [22]. Recently, the

two-degree of freedom nature of UDE controllers has been
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revealed in [23], which considerably facilitates the design

of the controller. In [24], the UDE strategy was adopted to

formulate a robust input-output linearized controller, which

was then applied to control the wing rock motion. In this

paper, the UDE-based control strategy is directly applied

to solving the wing rock motion problem, without going

through the input-output linearisation.

The rest of the paper is organized as follows. In Section

II, general linear and nonlinear UDE-based control laws for

uncertain nonlinear systems with disturbances are revisited.

Wing rock modeling is described in Section III, followed

by the application of UDE-based control to the wing rock

problem in Section IV. Conclusions are made in Section V.

II. DESCRIPTION OF UDE-BASED CONTROL FOR

NONLINEAR SYSTEMS

Consider the nonlinear system with uncertainties and dis-

turbances

ẋ(t) = g(x(t), t) + b(x(t), t)u(t) + f(x(t),u(t),d(t), t).
(1)

Here x = (x1, ..., xn)T is the state vector, u(t) =
(u1(t), ..., ur(t))

T the control input vector, d(t) the

unpredictable disturbances vector, g(x(t), t) the known

smooth nonlinear function of the state vector and

f(x(t),u(t),d(t), t) the unknown smooth nonlinear function

of the state vector, the control input and the unpredictable

disturbances. b = B1 + B2((x(t), t)) is a known nonzero

control function of the state vector, where B1 is a constant

vector and B2 a function of the state vector.

A linear reference model is chosen according to the desired

specifications as

ẋm(t) = Amxm(t) + Bmc(t). (2)

The control objective is to force the error e between the

states of the reference model and the states of the system

e(t) = xm(t) − x(t) (3)

to be stable and satisfy the error dynamic equation

ė(t) = (Am + K)e(t), (4)

where K is an error feedback gain matrix with appropriate

dimensions, c(t) = (c1(t), ..., cr(t))
T is a piecewise contin-

uous and uniformly bounded command to the system. It is

worth noting that the dimension of c(t) does not have to be

the same as that of u(t). This provides more freedom for the

choice of Bm.

Combining equations (1), (2), (3), and (4), then1

Amx + Bmc − g−bu−f = Ke. (5)

Hence, the control signal u needs to satisfy

bu = Amx + Bmc−Ke−g−f . (6)

1In order to simplify the exposition, the arguments of functions in the
time-domain are omitted hereafter.

A. A nonlinear control law

The unknown term in (6), including the uncertainties and

the external disturbance, can be represented as

f = ẋ − g − bu. (7)

Hence, the unknown dynamics and disturbances can be

obtained from the known dynamics of the system and the

control signal. However, it cannot be directly used to for-

mulate a control law. The UDE control strategy proposed in

[20] adopts an estimation of this signal to construct control

laws. Assume that gf(t) is the impulse response of a filter

Gf (s), whose passband contains the frequency content of f .

Then f can be accurately estimated from the output of the

UDE as

fude = f ⋆ gf , (8)

where ′⋆′ is the convolution operator. Going back to (6), the

control action satisfies

bu = Amx + Bmc−Ke−g − fude

= Amx + Bmc−Ke−g + (−ẋ + g + bu) ⋆ gf .

This brings the nonlinear UDE-based control law

u = b+

[

L−1{
1

1 − Gf (s)
} ⋆ (Amx + Bmc − Ke)

−L−1

{

sGf (s)

1 − Gf (s)

}

⋆ x− g

]

(9)

where b+ = (bTb)−1bT is the pseudo inverse of b,

Gf (s) = L{gf(t)} and L{·} is the Laplace operator. The

control signal has nothing to do with the unknown dynamics

and disturbances. Since u is an approximate solution of (5),

equations (4) and (5) are not always met and, when choosing

the control parameters, the following structure constraint

needs to be met:
(

I− bb+
)

(Amx + Bmc−g−f−Ke) = 0. (10)

Obviously, if b is a square matrix and invertible, the above

structural constraint is always met. If not, the choice of

the reference model and the error feedback gain matrix is

restricted. The unknown dynamics and disturbances also play

a role in the above constraint. As shown in [20], a system

in the canonical form always satisfies this constraint.

B. A linear control law

It is possible to construct a linear control law for the

nonlinear system to achieve the desired performance given

by the reference model. In this case, it is necessary that B1

is not zero. Moreover, the term B2((x(t), t)) in b is treated

as uncertain as well. Denote the terms in (6) that include

the uncertainties, the external disturbance and the nonlinear

dynamics as

h = −g−f−B2u = −ẋ + B1u. (11)

With the UDE defined as

hude = h ⋆ gf , (12)
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there is

B1u = Amx + Bmc−Ke + hude

= Amx + Bmc−Ke + (−ẋ + B1u) ⋆ gf .

This results in the following linear UDE control law, after

using the Laplace transform:

U(s) =
1

1 − Gf (s)
B1

+ [AmX(s) + BmC(s)

−KE(s) − sX(s)Gf (s)] (13)

where B1
+ = (B1

T B1)−1B1
T is the pseudo inverse

of B1. When the filter Gf (s) is strictly proper, sGf (s)
is implementable and there is no need of measuring the

derivative of states in both linear and nonlinear control laws.

Some generic principles about how to design K and Gf

can be found from [23].

III. MODELING OF THE WING ROCK MOTION

The wing rock motion can be described by the following

one-degree-of-freedom nonlinear differential equation [1],

[17]:

Ixxφ̈ = Ta − Tr, (14)

where Ixx is the moment of inertia about the roll axis, Ta is

the anti-rolling torque created by the ailerons deflection and

Tr is the rolling torque evaluated as

Tr = q · S · b · Cr, (15)

where q is the dynamic pressure, S is the wing surface area,

b is the wing span and Cr is the rolling moment coefficient.

The dynamic pressure is given by

q =
1

2
ρv2, (16)

where ρ is the air density and v is the airspeed. The

following expression of the rolling moment coefficient was

experimentally identified in [2]:

Cr = b0φ + b1φ̇ + b2

∣

∣

∣
φ̇
∣

∣

∣
φ̇ + b3φ

3 + b4φ̇φ2, (17)

where b0 − b4 are nonlinear functions of aircraft AOA and

Reynolds number (Re), which is related to the airspeed as

Re =
ρvL

µ
(18)

with L and µ being the wing root chord and air viscosity,

respectively. Substituting (15), (16), (17) and (18) to (14),

then the wing rock motion can be described as

φ̈ + a0φ + a1φ̇ + a2

∣

∣

∣
φ̇
∣

∣

∣
φ̇ + a3φ

3 + a4φ̇φ2 =
1

Ixx

Ta, (19)

with

ai =
q · S · b · bi

Ixx

, i = 0, ..., 4,

which are also nonlinearly dependent on AOA and Re
as well as on the aircraft dimensions and environmental

conditions. They are normally determined experimentally.

When there is an additive input disturbance (such as wind

gusts) of the form d =

(

0
d

)

and model parameters un-

certainty of the form ai = ain + ∆ai, i = 0, ..., 4 and with

bn = I−1
xx , the wing rock dynamics (19) can be reformulated

into the form of system (1) with x =
(

φ φ̇
)T

and

g =

(

φ̇
g2

)

,

b =

(

0
bn

)

,

f =

(

0
f2

)

, (20)

where

g2 = −a0nφ − a1nφ̇ − a2n

∣

∣

∣
φ̇
∣

∣

∣
φ̇ − a3nφ3 − a4nφ̇φ2,

f2 = −∆a0φ − ∆a1φ̇ − ∆a2

∣

∣

∣
φ̇
∣

∣

∣
φ̇ − ∆a3φ

3

−∆a4φ̇φ2 + ∆b · Ta + d.

Consider an aircraft with an 80◦ delta wing with L =
479mm, b = 169mm and Ixx = 1.0117×10−3kg ·m2 from

[2]. According to the free-to-roll experiments described in

[2] on the delta wing for AOA = 25◦ ∼ 45◦and v = 15 ∼
40 m/s, corresponding to Re = 486000 ∼ 1290000, the

coefficients a0−a4 were determined and are shown in Figure

2. Apparently, these parameters vary a lot.

It is well known that an uncontrolled wing rock motion

results either in limit cycle oscillations or in unstable di-

vergence depending on the initial condition [13]. This is

shown in Figures 3 with two different initial conditions. In

the case of initial conditions of x0 =

(

35 × 10−3rad
0 rad/sec

)

,

the wing rock motion results in limit cycle oscillations as

shown in Figure 3(a). Step changes of Reynold number

and angle of attack affect the oscillation characteristics but

do not cause divergence. In the case of initial conditions

of x0 =

(

35 × 10−3rad
52 × 10−3 rad/sec

)

, the wing rock motion

results in roll angle divergence as shown in Figure 3(b).

Hence, appropriate control strategies should be developed

to avoid these.

IV. UDE-BASED CONTROL OF WING ROCK MOTION

Assume that the nominal values of the coefficients a0 ∼ a4

are chosen as a0n = 7 × 10−3, a1n = −0.02, a2n = 0.25,

a3n = −0.01 and a4n = 0.05. In addition, the moment

of inertia about the roll axis was measured incorrectly as

Ixx = 2 × 10−3kg · m2 and an external input disturbance

d(t) = 2.5 × 10−4
∞
∑

k=0

(1(t − 100k) − 1(t − 50 − 100k)) is

applied to the system. The reference model is chosen as the

second order system
(

φ̇m

φ̈m

)

=

(

0 1
−ω2 −2ξω

) (

φm

φ̇m

)

.

Here, c(t) =

(

0
0

)

because the control objective is to

suppress the wing rock dynamics and the desired steady-state
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Fig. 2. The coefficients a0, ..., a4 corresponding to different AOA and
Reynolds number Re from [2]
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Fig. 3. Uncontrolled wing rock dynamics
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Fig. 4. Change of the operating conditions during the simulations

In order to suppress the wing rock within 10sec without

overshoot, ξ = 1 and ω = 0.2π are chosen. The error

feedback gain is set to K = 0 and the low-pass filter is

selected as Gf (s) = 1

s+1
.

When a nonlinear control law is preferred, the information

regarding the nominal values of the coefficients a0 ∼ a4 is
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Fig. 6. Simulation results with the linear controller
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Fig. 5. Simulation results with the nonlinear controller

used and the nonlinear control law is derived according to

(9). If this information is absent or a linear control law is

preferred, a linear control law can be derived according to

(13).

According to (9) and (13), the nonlinear and linear control

laws are

u(t) = −b−1
n

(

g2(t) + ω2x1(t) + ω2

∫ t

0

x1(t)dt

+x2(t) + 2ξωx2(t) + 2ξω

∫ t

0

x2(t)dt

)

,

where x1 = φ and x2 = φ̇, and

U(s) = −b−1
n

[

(1 +
1

s
)(ω2x̂1 + 2ξωx̂2) + x̂2

]

,

respectively. Note that x̂1 and x̂2 are the corresponding

variables in the Laplace domain of x1 and x2. The con-

trol approaches were verified by simulations. During the

simulations the controller was periodically turned on and

off to demonstrate the differences between controlled and

uncontrolled motions. The operating conditions were also

changed during the simulations, as shown in Figure 4, to

better demonstrate the performance of the controller under

different operating conditions. The simulation results with

both control laws are shown in Figures 5 and 6, respec-

tively. Both approaches demonstrated excellent results while

the nonlinear controller slightly outperforms the linear one

because of the additional information used.

V. CONCLUSIONS

In this paper, the uncertainty and disturbance estimator

(UDE) based control has been applied to the problem of

wing rock motion. Both linear and nonlinear control strate-

gies have been developed. The proposed algorithms have

demonstrated excellent performance in suppressing the wing

rock oscillations.
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